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CHAPTER 1 

Introduction 

1.1 Background of excited-state proton/hydrogen atom transfer reaction 

The excited state proton/hydrogen atom transfer (ESPT/HT) reactions play 

important role in chemical reactions and biological system [1–5] such as enol–keto 

tautomerizations [6], proton transport via membrane-spanning proteins [7, 8], and 

proton relay systems in enzymes [8]. Moreover, the ESPT/HT reaction or sometimes 

called a phototautomerization (a reversible transformation process between two forms 

of molecules by absorption of light) is studied in many applications, for example, a 

model for hydrogen bonding in DNA bases and fluorescence emitting mechanism of 

green fluorescence markers in fluorescent probe [9-11]. This type of the PT/HT process 

occurs along the hydrogen-bonded network. The ESPT/HT bonded network can be 

formed by heteroaromatic molecules containing both hydrogen-bonding donor and 

hydrogen-bonding acceptor groups.  

 

 

Figure 1.1 Scheme of the excited-state proton/hydrogen atom transfer reaction 
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From Figure 1.1, a normal form is quite stable in the ground state. It cannot transform 

into a tautomer spontaneously because of high barrier of reaction. In photoexcitation 

process, however, the tautomer easily occurs because it has a lower barrier height than 

the normal form [12-15]. The reactions can be divided into two types, which are 

intermolecular or intramolecular PT/HT. The intermolecular PT/HT reaction occurs via 

a proton or a hydrogen atom transfer between the same molecules (dimer) or through 

the assisted molecules (solvent-assisted molecules). For instance, a simple model 

compound of certain molecules with specific solvents show this kind of property such 

as 1H-pyrrolo[3,2-h]quinoline (PQ) [14-18], 7-hydroxquinoline (7HQ) [19-24], and                

7-azaindole (7AI) [25-52]. Whereas, the intramolecular PT/HT reaction occurs by 

proton/hydrogen atom transfer within molecule without any help from other molecules.   

 
1.2 Molecular fluorescence 

There are two types of emissions of photons on excited state: fluorescence and 

phosphorescence. These types are very important in light-emitting devices. Their 

emission of photons produces different color of light. In this work, only fluorescence 

emission will be studied.  

When a molecule absorbs photons, the energy goes to its electrons. They will be 

excited from ground state into excited state with no changing of electron spin. Then, 

they will emit light called fluorescence and go down into the lower state which is our 

interest in this research. If the spin changes from singlet to triplet state and then emits 

light, the radiation time will take longer than fluorescence called phosphorescence [53].  

From Figure 1.2, Jablonski diagram shows the energy levels of each state 

indicating its spin multiplicity. The lower lines represent the ground state, S0, of the 

atom or molecule. The higher lines (S1 and S2) represent excited singlet states. Whereas, 

the other lines (T1 and T2) represent excited triplet states. In a diatomic or 

polyatomic molecule, one or several series of vibrational and rotational states 

(quantized) are superimposed on each electronic state. The absorption lines (or bands) 

are represented by arrows directed upwards and the emission lines or bands by arrows 

directed downwards. The energy of the quanta of emission or absorption is proportional 

to the lengths of the arrows. An atom or molecule can absorb only energy into S1 and 

S2, then, it can release energy represented by downward arrows, leading from S2 to  

a lower energy state S1. It should be noted that energy absorption is very fast (10-15 fs).  
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Figure 1.2 Jablonski diagram 

A radiationless process from S2 to S1 way in which a transition can occur by energy loss 

to surrounding molecules called internal conversion (IC) and vibrational relaxation of 

the excited molecule within 10-14-10-11 s. Emission of photons from S1 to S0 state called 

fluorescence (10-9-10-7 s) is found at longer wavelengths (low energy) than the 

absorption spectrum because it losses some energy in excited state due to the relaxation 

of electron and it does not change the spin multiplicity. The gap or the energy between 

the maximum of the first absorption band and the maximum of fluorescence is known 

as Stoke rule. In addition, there is some energy emission that is not fluorescence called 

non-radiative relaxation. However, a radiationless process involving a transition 

between two electronic states with different spin multiplicity, or intersystem crossing 

(ISC), possibly occurs. The radiative decay from an excited triplet state (T1) back to 

ground state (S0) is known as phosphorescence (10-3-102 s) [54]. 

 
1.3 7-Azaindole (7AI) 

The 7AI molecule (Figure 1.3), a part of DNA bases as a model compound, is  

an important bicyclic aza-aromatic molecule consisting of pyrrole (proton donor) and 

pyridine (proton acceptor) rings that can form hydrogen bonds with solvent molecules 

forming cluster. The normal form becomes unstable with respect to the tautomer form 
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Figure 1.3 7AI structure 

 
in the S1 state. Tautomerization of the 7AI with solvent clusters such as water, 

ammonia, and alcohol accompanying the ESInterPT/HT reaction has been both 

experimentally and theoretically studied [25-52]. 

Most of theoretical reports have paid much attention to 7AI molecule because of 

its simple structure. It has been employed as a model compound to reveal a key reaction 

for chemical mutagenesis of DNA base pairs [47, 50]. The 7AI with solvent clusters, 

which have been extensively studied in solvents such as ammonia, water, and alcohol 

(especially ethanol and methanol), are prototypes for understanding the ESInterPT/HT 

reactions as illustrated in Figure 1.4.  

 

 

Figure 1.4 Scheme of intermolecular PT/HT reaction of 7-azaindole with alcohol 

In addition, theoretical calculations of model compounds consisting of 7AI and 

solvents can be employed to clarify mechanistic aspects of the reaction. Dynamics 

simulations can be employed to explore this challenging system to understand the 

ESPT/HT mechanism. Most of the PT and HT reactions occur in molecules having 

bifunctional groups (proton donor and acceptor) via hydrogen-bonded network between 
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two functional groups. However, the excited-state intramolecular PT/HT reaction 

cannot spontaneously occur in some molecules because the proton donor is positioned 

too far from the acceptor. In such situations, solvent molecules may trigger the 

ESPT/HT reactions. In presence of solvent assistance, formation of strong hydrogen 

bonds along the hydrogen-bonded network can reduce the barrier high of reaction and 

induce intermolecular multiple PT/HT reaction to occur after the photoexcitation. 

 
1.4 Theoretical background of computational chemistry 

Quantum mechanics (QM) was established since twenty centuries for explanation 

effort of electron movement around nucleus. QM is fundamental knowledge for study 

molecule or atom structure to understand the natural of them which are explain the 

microscopic phenomena and interaction between atoms. QM is employed in all 

branches of chemistry. In physical chemistry, thermodynamic and kinetic properties of 

gases are calculated with statistical mechanics. Organic chemists use it to observe 

reaction processes by stimulating reaction mechanism, which suitable models provide 

deep understanding along reaction. Moreover, some specific catalysts and drug are also 

designable by computational chemistry to calculate their barrier height energy and 

binding energy of model such as the reaction of enzyme-substrate complex. 

When we focus on consideration of QM concept, chemical reaction occurs via 

electron interaction so theoreticians transform this reaction to mathematical equation. In 

general, by solving Schrödinger’s equation both atomic and molecular properties can be 

obtained. However, the exact solution to Schrödinger’s equation cannot be solved 

analytically due to the electron correlation. So, numerical methods have been used to 

approximate the solution such as ab initio, semi-empirical methods, density functional 

theory, coupled cluster, and etc. 

 
1.4.1 Schrödinger equation 

QM is a mathematical function that describes microscopic phenomena such as the 

behavior of electron. Erwin Schrödinger and Werner Heisenberg individually developed 

this new quantum theory in 1925. QM can be used to predict the property of an 

individual atom or molecule exactly. However, this method is mathematically 

equivalent and the Schrödinger equation can solve the exact solution for one electron 

system only. 
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The wave function is found by solving the Schrödinger equation (1.1), it usually 

describes on wave function (Ψ), Hamiltonian operator (Ĥ), and the total energy (E). 

Normally, Ψ is function reported atomic or molecular system. Ĥ is defined as 

eigenfunction. Ψ is taken by Ĥ to give solution as eigenvalue, E. 

                                           EĤ      (1.1) 

1.4.2 Born-Oppenheimer approximation 

The complete nonrelativistic Hamiltonian operator (1.2) includes sum of kinetic 

and potential energy terms of both nucleus and electron motions [55]:  
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where ZA and ZB define at the nuclear charges, MA is the mass of nucleus A, m is the 

mass of the electron, RAB is the distance between nuclei A and B, rij is the distance 

between electrons i and j, riA is the distance between electron i and nuclei A, ε0 is the 

permittivity of free space, and ћ is the Plank constant. Note that it is impossible to 

obtain solution without reduces some variants except one electron case. The compact 

formula (1.3) can be represented as 

    )()(),()()(ˆ rVRVRrVrTRTH eeNNeNeN     (1.3) 

where TN(R) and Te(r) is the kinetic energy of nuclei and electron, respectively, VeN(r,R) 

is electron-nuclei attractive Coulomb potential, and VNN(R) and Vee(r) are repulsive 

Coulomb potential of nuclear-nuclear and electron-electron, respectively.  

From the complex equation, it is too complicated to get the solution because 

there are many variables. The estimated solution to Schrödinger equation can be 

obtained by using Born-Oppenheimer approximation (BOA). BOA considers nuclear 

and electron motions separately because the electron is too much lighter than the 

nucleus. Consequently, the electron can move much faster than the nuclei or the nucleus 

is fixed while the electron moves. Therefore, leaving )(RVNN  and )(RTN  out of the 

electronic Schrödinger equation leads to only electron motion form (1.4) 

                                  )(),()(ˆ rVRrVrTH eeeNeelectron               (1.4) 

Such that 

               );();(ˆ RrERrH electronelectronelectron     (1.5) 
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Schrödinger equation with separated electronic and nuclear parts is easier to be 

solved. The simple Schrödinger electron equation part is given in equation (1.5). Thus, 

Ψ can be set at multiple between wave function of electron part ψ and wave function of 

nuclear part χ as equation (1.6)  

                      )();(),( RRrRr      (1.6) 

The BOA is accepted but it cannot be used for all cases. The boundary of solving 

equation is limited only to hydrogen atom or some molecules with the help of numerical 

methods. Ab initio method, one of numerical methods, is progressive process assigned 

matrix to estimate more than one electron system that will be discussed in next section.   

 
1.4.3 Ab initio method 

Ab initio is Latin term meaning “from the beginning”, combined from the word 

ab which means “from” and initio that means “beginning”. It originates from 

Schrödinger equation supported by an appropriately approximated theory. A calculation 

of eigenvalue is done when a basis set is put into the operator. The results of eigenvalue 

are more accurate when we choose more accurate levels and big basis sets. 

 
1) Hatree-Fock approximation 

The well-known type of ab initio calculation is Hatree-Fock (HF) approximation. 

This approximation starts by guessing initial orbital coefficient (ca) which is combined 

with wavefunction of electron (a). The linear-combination of a, and ca is called 

combination of molecular orbital (𝜑). To calculate energy (i) and new set of orbital 

coefficient values, substitution of ψi continuously iterates until these answer is constant. 

This procedure is known as a self-consistent field (SCF). Mathematically, Schrödinger 

equation can be rewritten by changing Hamiltonian operator to be Fock operator (ĥF) as 

equation (1.7) by 

          iii

Fh  ˆ
                        (1.7) 

The appropriated method applied by matrix procedure is transformation molecular 

orbital function intro Slater’s determinant showed in equation (1.8). 

Due to electron has spin itself (α or β spin) on Pauli principle, the modified 

molecular orbital is multiple of 𝜑 and spin function. In N-electron system, the Slater 

determinant is defined as a single matrix. 
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Although HF approach can solve Schrödinger equation, solution which lack of 

electron-electron correlation is not exactly true.  There are more accurate theories that 

using mixing with exited-states functions such as Møller-Plesset perturbation theory, 

configuration interaction and coupled cluster theory. 

 
2) Coupled cluster 

Coupled cluster (CC) calculations are similar to configuration interaction (CI) 

calculations in that the wavefunction is a linear combination of many determinants. The 

CI calculation wavefunction is a multiple-determinant wavefunction conducted by 

starting with the HF wavefunction and making new determinant by promoting electron 

from occupied to unoccupied orbitals. This CI calculation can be very accurate, but the 

cost of computing is very high (N8 time complexity). However, the means of choosing 

the determinants in a coupled cluster calculation is more complex than the choice of 

determinants in a CI. For CC expansion, it is included perturbation. It gives variational 

energy as long as the excitations. The CC results are a bit more accurate than the 

equivalent size CI calculation results [56]. 

The resolution-of-the-identity (RI) with second-order approximate coupled cluster 

model, RI-CC2 is a module for the calculation of excitation energies and response 

properties at a correlated ab initio level, in particular the CC2. All calculations employ 

RI approximation for the electron repulsion integrals needed for the correlation 

treatment and the description of excitation processes. All functionalities are 

implemented for closed-shell restricted HF and open-shell unrestricted HF reference 

wavefunctions. However, RI with the algebraic diagrammatic construction through 

second order, RI-ADC(2), is used in 7-azaindole system which is  a main interest of this 

thesis. This method has been employed in our previous calculations [57-58]. 

In addition, the performance of the second-order methods for excitation energies 

is concerned in many systems. The approximation of CC2 has been used to solve the 

excitation energies corrected through second-order in the fluctuation potential,  

the Jacobian becomes 
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where F is the usual Fock operator and 
^

H  = exp(-T1)H exp(T1), i.e., a Hamiltonian 

similarly transformed with the exponential function of the single replacement part of  

the cluster operator T=T1+T2. Here and in the following indices i, j, k … are used for 

orbitals which are occupied in the reference determinant HF  and indices a, b, c …            

are used for virtual orbitals c

k  and cd

kl  denote, respectively, single and double 

replacement operators. 

The secular used in ADC(2) is the symmetric or, in the some cases, the  Hermitian 

part of that for the iterative variant of the doubles correlation to CI singles, CIS  D  in 

equation 1.10. 
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So that 

               *)(
2

1 )()()2(  DCISDCISACD AAA              (1.11) 

The above relations between CC2, CIS  D , and ADC(2) provide a simple recipe 

to implement the latter two methods in an existing CC2 program: for CIS  D , the only 

modification required is that the converged CC2 ground-state amplitudes are replaced 

by those form first-order perturbation theory. For ADC(2), in addition, the contributions 

of 
  ],[ 1

2

^

TH  to the singles-singles block have to be symmetrized. 

 
1.4.4 Adiabatic dynamics  

The basic problem in dynamics simulations of molecules is to solve the time-

dependent Schrödinger equation (TDSE) [59] for the complete molecular system, 
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where Ĥ  is the Hamiltonian and Ѱ is the wavefunction depending on t, on the nuclear 

coordinates, R, and on the electronic coordinates, r, of the whole system. 

The nuclear motion can be described using Born-Oppenheimer expansion  

    
i

ii tRRrtRr ),();(),,(                                    (1.13) 

where ψi is a electronic wavefunction and χi is a nuclear wavefunction in equation 

(1.12) for electronic state i. 

  
rjmk

m

kj RF  )(                           (1.14) 

where Fk is the electronic wavefunction.  

In equation 1.14, each quantity with superscript c was approximated by its value 

at a single nuclear configuration, Rc, which is given by the Newton's equations for each 

nucleus m 
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For this reason, we should impose a series of approximations to perform the 

simulations. In this approximation, the TDSE is reduced to a set of first-order 

differential equation for the amplitudes ck of each electronic state k: 

   ,0).(  j

cc

kjkj

c

k

j

k cvFiV
dt

dc
i    (adiabatic)                 (1.16) 

In this equation, Vk is the potential energy surface for state k, v is the nuclear 

velocity and Fkj is the nonadiabatic coupling vector between the states k and j. 

 
1) Initial conditions 

In order to integrate the Newton’s equations for the nuclei, an ensemble of initial 

conditions needs to be prepared. Normally, this problem is approached by building  

a phase space distribution in the electronic ground state and then projecting it onto the 

electronic excited states. The ground state distribution can be prepared either by  

a ground state trajectory simulation or from a probabilistic sampling. In addition,  

the quantum nature of typical distributions like that given by the Wigner function, the 

two sets may differ substantially.  
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2) Wigner distributions 

Assuming a quadratic approximation for the ground-state potential energy surface 

around the minimum, the 3Nat−6 internal coordinates can be described in terms of 

normal modes Q and the nuclear wavefunction can be approximated as that of a 

quantum harmonic oscillator. The classical phase space distribution can be 

approximated by a Wigner distribution 

              ,)()()(),( /20*01 
iPii

HO

i

HO

ii

W eQQdPQP   


    (1.17) 

where 0

HO  is the quantum harmonic oscillator wavefunction for the ground vibrational 

state and Pi is the momentum associated with the normal coordinate 
iQ . 

     )),/(exp()/exp()(),( 221  i
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where 
i and i

OH are, respectively, the reduced mass, the harmonic frequency and the 

equilibrium, distance of normal mode i. 

To sample coordinates and momentum, independent random values are assigned 

to Pi and
iQ , then, the acceptance of the pair is evaluated according to the probability 

given by equation 1.18. To solve the problem, the equation 1.17 can be written as   
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where i

OH is the harmonic oscillator wavefunction in the momentum representation. 

Even though equation 1.19 is valid for the ground vibrational level, it is motivated to 

write an analogous quasi-Wigner distribution for the excited vibrational states 
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1.5 Objectives 

In this study, we will study the ESInterPT/HT reactions in the gas phase occurring 

through the solvent-assisted molecules on the hydrogen-bonded cyclic network of 7AI 

with water (7AI(W)n when n=1-5), ammonia (7AI(A)n when n=1-3) and mixed 

ammonia-water (7AI(AW)n when n=2-3) clusters. These systems are interesting 

because of their simple reactions and small structures. Most previous reports [36-38] did 

not give any important dynamics properties of the systems in molecular level such as 

reaction pathway, reaction probability, solvent effects, and time evolution of the 
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ESPT/HT process. Thus, our theoretical study using dynamics simulation in the first 

excited state in the gas phase will provide the detailed information that cannot be 

obtained from the experimental results or previous theoretical reports. 


