CONTENTS

	Page	
Acknowledgement	с	
Abstract in Thai	d	
Abstract in English		
List of Tables	h	
List of Figures	1	
List of Abbreviations	P r	
List of Symbols		
Chapter 1 Introduction	1	
11 Deckennund of eneited state minten (hudre een stern tronofen mootien		
1.1 Background of excited-state proton/nydrogen atom transfer reaction		
1.2 Molecular hubiescence	3	
1.5 7-Azamuole (7AI)	5	
1.4 1 Schrödinger equation	5	
1.4.2 Born-Oppenheimer approximation	6	
1.4.3 <i>Ab initio</i> method	7	
1) Hatree-Fock approximation	7	
2) Coupled cluster	8	
1.4.4 Adiabatic dynamics	9	
1) Initial conditions	10	
2) Wigner distributions	11	
1.5 Objectives	11	
Chapter 2 7-Azaindole with One to Five Water Clusters (7AI(H ₂ O) ₁₋₅)		
2.1 Introduction	13	
2.2 Computational details	15	

	2.2.1	Ground-state calculations	15
	2.2.2	Excited-state dynamics simulations	16
2.3	Result	s and discussion	18
	2.3.1	Ground-state structures	18
	2.3.2	Excited-state dynamics simulations	20
		1) 7AI(H ₂ O) ₃ cluster	22
		1.1) Bridged-planar isomer	22
		1.2) Cyclic-nonplanar isomer	25
		1.3) Bicyclic-nonplanar isomer	27
		2) 7AI(H ₂ O) ₄ cluster	29
		3) 7AI(H ₂ O) ₅ cluster	30
		4) $7AI(H_2O)_1$, $7AI(H_2O)_{1+1}$, and $7AI(H_2O)_2$ clusters	32
	2.3.3	Comparative analysis	36
2.4	Conclu	usions	40
Chapter 3	7-Azai	indole with Water, Ammonia and Mixed Water-Ammonia Clusters	41
3.1	Introd	uction	41
3.2	Comp	utational details	43
	3.2.1	Ground-state calculations	43
	3.2.2	Excited-state dynamics simulations	44
3.3	Result	s and discussion	45
	3.3.1	Ground-state structures	45
	3.3.2	Excited-state dynamics simulations	46
		1) 7AI with one solvent molecule	51
		2) 7AI with two solvent molecules	52
		3) 7AI with three solvent molecules	56
	3.3.3	Comparative analysis	64
3.4	Conclu	usions	66
Chapter 4	Summ	ary by Chiang Mai Univ	67
Reference	es		69
Curriculu	m Vitae	shts reserv	76

LIST OF TABLES

Page

50

65

- Table 2.1 Relative energy of three different ground-state isomers of 7AI(H₂O)₃ optimized at RI-ADC(2)/SVP-SV(P) level: (a) bridgedplanar, (b) cyclic-nonplanar (2+1), and (c) bicyclic-nonplanar 19 Table 2.2 Summary of the excited-state dynamics performed at RI-ADC(2)/SVP-SV(P): number of trajectories showing 7AI tautomerization (ESPT) or no tautomerization (NT), tautomerization probability, and average time to complete the proton transfers. Average distances at the proton-transfer time are 21 given in parenthesis (Å) Table 2.3 Time lag of the excited-state dynamics simulation 22 Table 2.4 Tautomerization probabilities and free energy barriers for ESPT reactions in the excited state computed from the dynamics 33 simulations Table 3.1 Summary of hydrogen-bond distances and distances between the heavy atoms in all clusters of the ground-state structures computed 47 at RI-ADC(2)/SVP-SV(P) level. Distances are in Å Table 3.2 Summary of the excited-state dynamics of 7-Azaindole(solvent)_n cluster performed at RI-ADC(2)/SVP-SV(P): number of trajectories following superscripts. ESPT probability, average relative excited-state barrier energies and average time to complete the proton transfers (PT). Average distances at the PT time are given in parenthesis (in Å) 48
 - Table 3.3
 Average time lag of the excited-state dynamics simulation
 - Table 3.4 Average relative ground (S₀) and excited states ($\pi\pi^*$) free energies (kcal.mol⁻¹)

h

LIST OF FIGURES

		Page
Figure 1.1 Scl	heme of the excited-state proton/hydrogen atom transfer reaction	1
Figure 1.2 Jab	blonski diagram	3
Figure 1.3 7A	AI structure	4
Figure 1.4 Scl	heme of intermolecular PT/HT reaction of 7-azaindole with	
alc	cohol	4
Figure 2.1 Str	ructure of 7AI with water molecules showing (a) first hydration	
she	ell and (b) first and second hydration shells	13
Figure 2.2 Re	elative single-point energies at RI-ADC(2)/SVP-SV(P) of first	
exc	cited-states ($\pi\pi^*$ and $\pi\sigma^*$) of a selected trajectory for the	
7A	AI(H ₂ O) ₃ -bridged-planar cluster	17
Figure 2.3 Th	aree different isomers of 7AI(H ₂ O) ₃ optimized at RI-	
AE	DC(2)/SVP-SV(P) level: (a) bridged-planar, (b) cyclic-nonplanar	
and	d (c) bicyclic-nonplanar. First row is top view and second row is	
sid	le view	18
Figure 2.4 Gro	round-state geometries of (a) $7AI(H_2O)_4$ and (b) $7AI(H_2O)_5$	
opt	timized at RI-ADC(2)/SVP-SV(P) level	19
Figure 2.5 Gr	round-state structures of 7AI(H ₂ O) ₁ , 7AI(H ₂ O) ₁₊₁ , and 7AI(H ₂ O) ₂	
opt	timized at RI-ADC(2)/SVP-SV(P) level	20
Figure 2.6 Co	omparison of relative single-point energies at RI-ADC(2)/SVP-	
SV	/(P) and RI-ADC(2)/TZVPP of the ground and first excited states	
(So	₀ and $\pi\pi^*$) of a selected trajectory for the 7AI(H ₂ O) ₃ -bridged-	
pla	anar cluster	23
Figure 2.7 Sna	apshots of the 7AI(H ₂ O) ₃ -bridged-planar dynamics showing the	
tim	ne evolution of the ESQPT reaction through the hydrogen-	
bo	nded network. Normal (N), proton transfer (PT), and tautomer	
(T)). Values correspond to the average over all ESQPT trajectories	24

i

- Figure 2.8 Average values over quadruple ESPT trajectories of the 7AI(H₂O)₃-bridged-planar isomer. (a) Average breaking and forming of bonds showing time evolution. N1–H1 and O1…H1 in black, O1–H2 and O3…H2 in red, O3–H3 and O2…H3 in blue, and O2–H4 and N2…H4 in green. (b) Average relative energies of excited state (S₁), ground state (S₀), and energy difference between S₁ and S₀ state (S₁-S₀)
- Figure 2.9 Snapshots of one trajectory of the 7AI(H₂O)₃-bridged-planar dynamics showing the HBR in waters leading it to form 7AI(H₂O)₃-cycylic-nonplanar isomer following by triple PT at 500 fs. Normal (N), Proton transfer (PT), and Tautomer (T)
- Figure 2.10 Snapshots of the 7AI(H₂O)₃-cyclic-nonplanar dynamics showing the time evolution of the triple ESPT reaction through the hydrogen-bonded network. Normal (N), proton transfer (PT), and tautomer (T). Values correspond to the average over all triple ESPT trajectories
- Figure 2.11 Average values over 19 trajectories of the 7AI(H₂O)₃ cyclic-nonplanar (2+1) isomer. (a) Average breaking and forming of bonds showing time evolution. N1–H1 and O1··H1 in black, O1–H2 and O2··H2 in red, and O2–H3 and N2··H3 in blue (b) Average relative energies of excited state (S₁), ground state (S₀), and energy difference of S₁ and S₀ state (S₁-S₀)
- Figure 2.12 Snapshots of the 7AI(H₂O)₃-bicyclic-nonplanar dynamics showing the time evolution of the triple ESPT reaction through the hydrogen-bonded network. Normal (N), proton transfer (PT), and tautomer (T). Values correspond to the average over all triple ESPT trajectories
- Figure 2.13 Average values over 30 trajectories of the 7AI(H₂O)₃ bicyclicnonplanar isomer. (a) Average breaking and forming of bonds showing time evolution. N1–H1 and O1…H1 in black, O1–H2 and O2…H2 in red, and O2–H3 and N2…H3 in blue (b) Average

25

relative energies of excited state (S_1) , ground state (S_0) , and energy difference of S_1 and S_0 state (S_1-S_0)

- Figure 2.14 Snapshots of the 7AI(H₂O)₄ dynamics showing the time evolution of the triple ESPT reaction through the hydrogen-bonded network. Normal (N), proton transfer (PT), and tautomer (T). Values correspond to the average over all triple ESPT trajectories
- Figure 2.15 Average values over 40 trajectories of the 7AI(H₂O)₄. (a) Average breaking and forming of bonds showing time evolution. N1–H1 and O1··H1 in black, O1–H2 and O2··H2 in red, and O2–H3 and N2··H3 in blue (b) Average relative energies of excited state (S₁), ground state (S₀), and energy difference of S₁ and S₀ state (S₁-S₀)
- Figure 2.16 Snapshots of the 7AI(H₂O)₅ dynamics showing the time evolution of the triple ESPT reaction through the hydrogen-bonded network. Normal (N), proton transfer (PT), and tautomer (T). Values correspond to the average over all triple ESPT trajectories
- Figure 2.17 Average values over 38 trajectories of the 7AI(H₂O)₅. (a) Average breaking and forming of bonds showing time evolution. N1–H1 and O1…H1 in black, O1–H2 and O2…H2 in red, and O2–H3 and N2…H3 in blue (b) Average relative energies of excited state (S₁), ground state (S₀), and energy difference of S₁ and S₀ state (S₁-S₀)
- Figure 2.18 (a) Average relative energies of the ground (S₀) and the first excited states $(\pi\pi^*)$ of 7AI(H₂O)₃-bridged-planar isomer. (b) Tautomerization probability versus free energy barrier for all clusters. The labels aside each symbol indicate the number of water molecules and the isomer
- Figure 2.19 Snapshots representing the average over 12 trajectories of the 7AI(H₂O)₁ showing the time evolution of the ESTPT reaction through a hydrogen-bonded network within 83 fs. Normal (N), proton transfer (PT), and tautomer (T)

Figure 2.20 Average values over 12 trajectories of the 7AI(H₂O)₁. (a) Average breaking and forming of bonds showing time evolution. N1–H1

29

30

31

and O1··H1 in black, and O1–H2 and N2··H2 in red (b) Average relative energies of excited state (S₁), ground state (S₀), and energy difference of S₁ and S₀ state (S₁-S₀)

- Figure 2.21 Snapshots representing the average over 18 trajectories of the 7AI(H₂O)₁₊₁ showing the time evolution of the ESTPT reaction through a hydrogen-bonded network within 83 fs. Normal (N), proton transfer (PT), and tautomer (T)
- Figure 2.22 Average values over 18 trajectories of the 7AI(H₂O)₁₊₁. (a)
 Average breaking and forming of bonds showing time evolution.
 N1–H1 and O1··H1 in black, and O1–H2 and N2··H2 in red
 (b) Average relative energies of excited state (S₁), ground state
 (S₀), and energy difference of S₁ and S₀ state (S₁-S₀)
- Figure 2.23 Snapshots representing the average over 20 trajectories of the 7AI(H₂O)₂ showing the time evolution of the ESTPT reaction through a hydrogen-bonded network within 83 fs. Normal (N), proton transfer (PT), and tautomer (T)
- Figure 2.24 Average values over 20 trajectories of the 7AI(H₂O)₂. (a) Average breaking and forming of bonds showing time evolution. N1–H1 and O1…H1 in black, O1–H2 and O2…H2 in red, and O2–H3 and N2…H3 in blue (b) Average relative energies of excited state (S₁), ground state (S₀), and energy difference of S₁ and S₀ state (S₁-S₀)
- Figure 2.25 Average relative energies (kcal.mol⁻¹) of the ground (S₀) and the excited states $(\pi\pi^*)$ of 7AI(H₂O)₁
- Figure 2.26 Average relative energies (kcal.mol⁻¹) of the ground (S₀) and the excited states $(\pi\pi^*)$ of 7AI(H₂O)₁₊₁
- Figure 2.27 Average relative energies (kcal.mol⁻¹) of the ground (S₀) and the excited states $(\pi\pi^*)$ of 7AI(H₂O)₂
- Figure 2.28 Average relative energies (kcal.mol⁻¹) of the ground (S₀) and the excited states ($\pi\pi^*$) of 7AI(H₂O)₃-cyclic-nonplanar (2+1) isomer Figure 2.29 Average relative energies (kcal.mol⁻¹) of the ground (S₀) and the excited states ($\pi\pi^*$) of 7AI(H₂O)₃-bicyclic-nonplanar isomer

34

34

ñ

35

35

36

37

37

37

Figure 2.30 Average relative energies (kcal.mol⁻¹) of the ground (S₀) and the excited states $(\pi\pi^*)$ of 7AI(H₂O)₄

38

39

42

43

43

44

45

51

- Figure 2.31 Average relative energies (kcal.mol⁻¹) of the ground (S₀) and the excited states $(\pi\pi^*)$ of 7AI(H₂O)₅
- Figure 3.1 Scheme of 7AI with solvent clusters
- Figure 3.2 Ground-state optimized structure of 7AI with one ammonia cluster at RI-ADC(2)/SVP-SV(P) level. Dashed lines show intermolecular hydrogen-bonded network
- Figure 3.3 Ground-state optimized structures of 7AI with two solvent molecules at RI-ADC(2)/SVP-SV(P) level: (a) 7AI(WW), (b) 7AI(WA), (c) 7AI(AW), and (d) 7AI(AA). Intermolecular hydrogen bonds are indicated by dashed lines. W and A represent water and ammonia
- Figure 3.4 Ground-state optimized structures of 7AI with three solvent molecules at RI-ADC(2)/SVP-SV(P) level: (a) 7AI(WWW), (b) 7AI(WWA), (c) 7AI(WAW), (d) 7AI(WAA), (e) 7AI(AWW), (f) 7AI(AWA), (g) 7AI(AAW), and (h) 7AI(AAA). Intermolecular hydrogen bonds are indicated by dashed lines. W and A represent water and ammonia
- Figure 3.5 The plot of the relative energies and possible crossing between $\pi\pi^*$ and $\pi\sigma^*$ states for a selected 7AI(AAA) cluster
- Figure 3.6 Snapshots of the 7AI(A) cluster dynamics showing the time evolution of the ESDPT reaction through the hydrogen-bonded network. Normal (N), Proton transfer (PT), and Tautomer (T). Values correspond to the average over all ESDPT trajectories
- Figure 3.7 Averaged values over ESDPT trajectories of the 7AI(A) cluster.
 (a) Average breaking and forming bonds showing time evolution.
 N1–H1 and N'··H1 in black, and N'–H2 and N2··H2 in red
 (b) Average relative energies of excited state (S1), ground state
 (S0), and energy difference of S1 and S0 state (S1-S0)
 - m

- Figure 3.8 Snapshots of the 7AI(AW) cluster dynamics showing the time evolution of the ESTPT reaction through the hydrogen-bonded network. Normal (N), Proton transfer (PT), and Tautomer (T). Values correspond to the average over all ESTPT trajectories
- Figure 3.9 Average values over ESTPT trajectories of the 7AI(AW) cluster.
 (a) Average breaking and forming bonds showing time evolution.
 N1-H1 and N'··H1 in black, N'-H2 and O2··H2 in red, and O2-H3 and N2··H3 in blue (b) Average relative energies of excited state (S1), ground state (S0), and energy difference of S1 and S0 state (S1-S0)
- Figure 3.10 Snapshots representing the average over all ESTPT trajectories of the 7AI(WA) cluster showing the time evolution of the ESTPT reaction through a hydrogen-bonded network within 133 fs. Normal (N), proton transfer (PT), and tautomer (T)
- Figure 3.11 Average values over ESTPT trajectories of the 7AI(WA) cluster.
 (a) Average breaking and forming of bonds showing time evolution. N1–H1 and O1…H1 in black, O1–H2 and N"…H2 in red, and N"–H3 and N2…H3 in blue (b) Average relative energies of excited state (S1), ground state (S0), and energy difference of S1 and S0 state (S1-S0)
- Figure 3.12 Snapshots representing the average over all ESTPT trajectories of the 7AI(AA) cluster showing the time evolution of the ESTPT reaction through a hydrogen-bonded network within 175 fs. Normal (N), proton transfer (PT), and tautomer (T)
- Figure 3.13 Average values over ESTPT trajectories of the 7AI(AA) cluster.
 (a) Average breaking and forming of bonds showing time evolution. N1–H1 and N'··H1 in black, N'–H2 and N"··H2 in red, and N"–H3 and N2··H3 in blue (b) Average relative energies of excited state (S1), ground state (S0), and energy difference of S1 and S0 state (S1-S0)

53

54

54

- Figure 3.14 Snapshots of the 7AI(AAW) cluster dynamics showing the time evolution of the ESQPT reaction through the hydrogen-bonded network. Normal (N), Proton transfer (PT), and Tautomer (T). Values correspond to the average over all ESQPT trajectories
- Figure 3.15 Average values over ESQPT trajectories of the 7AI(AAW) cluster. (a) Average breaking and forming bonds showing time evolution. N1–H1 and N'··H1 in black, N'–H2 and N'''··H2 in red, N'''–H3 and O2··H3 in blue, and O2–H4 and N2··H4 in green (b) Average relative energies of excited state (S1), ground state (S0), and energy difference of S1 and S0 state (S1-S0)
- Figure 3.16 Snapshots of the 7AI(WWA) cluster dynamics showing the time evolution of the ESQPT reaction through the hydrogen-bonded network. Normal (N), Proton transfer (PT), and Tautomer (T). Values correspond to the average over all ESQPT trajectories
- Figure 3.17 Average values over ESQPT trajectories of the 7AI(WWA) cluster. (a) Average breaking and forming of bonds showing time evolution. N1–H1 and O1…H1 in black, O1–H2 and O3…H2 in red, O3–H3 and N"…H3 in blue, and N"–H4 and N2…H4 in green (b) Average relative energies of excited state (S1), ground state (S0), and energy difference of S1 and S0 state (S1-S0)
- Figure 3.18 Snapshots of the 7AI(WAW) cluster dynamics showing the time evolution of the ESQPT reaction through the hydrogen-bonded network. Normal (N), Proton transfer (PT), and Tautomer (T). Values correspond to the average over all ESQPT trajectories
- Figure 3.19 Average values over ESQPT trajectories of the 7AI(WAW) cluster. (a) Average breaking and forming of bonds showing time evolution. N1–H1 and O1··H1 in black, O1–H2 and N'''··H2 in red, N'''–H3 and O2··H3 in blue, and O2–H4 and N2··H4 in green (b) Average relative energies of excited state (S1), ground state (S0), and energy difference of S1 and S0 state (S1-S0)

58

57

- Figure 3.20 Snapshots of the 7AI(WAA) cluster dynamics showing the time evolution of the ESQPT reaction through the hydrogen-bonded network. Normal (N), Proton transfer (PT), and Tautomer (T). Values correspond to the average over all ESQPT trajectories
- Figure 3.21 Average values over ESQPT trajectories of the 7AI(WAA) cluster. (a) Average breaking and forming of bonds showing time evolution. N1–H1 and O1…H1 in black, O1–H2 and N"…H2 in red, N"–H3 and N"…H3 in blue, and N"–H4 and N2…H4 in green (b) Average relative energies of excited state (S1), ground state (S0), and energy difference of S1 and S0 state (S1-S0)
- Figure 3.22 Snapshots of the 7AI(AWW) cluster dynamics showing the time evolution of the ESQPT reaction through the hydrogen-bonded network. Normal (N), Proton transfer (PT), and Tautomer (T). Values correspond to the average over all ESQPT trajectories
- Figure 3.23 Average values over ESQPT trajectories of the 7AI(AWW) cluster. (a) Average breaking and forming of bonds showing time evolution. N1–H1 and N'··H1 in black, N'–H2 and O3··H2 in red, O3–H3 and O2··H3 in blue, and O2–H4 and N2··H4 in green (b) Average relative energies of excited state (S1), ground state (S0), and energy difference of S1 and S0 state (S1-S0)
- Figure 3.24 Snapshots of the 7AI(AWA) cluster dynamics showing the time evolution of the ESQPT reaction through the hydrogen-bonded network. Normal (N), Proton transfer (PT), and Tautomer (T). Values correspond to the average over all ESQPT trajectories
- Figure 3.25 Average values over ESQPT trajectories of the 7AI(AWA) cluster. (a) Average breaking and forming of bonds showing time evolution. N1–H1 and N'··H1 in black, N'–H2 and O3··H2 in red, O3–H3 and N"··H3 in blue, and N"–H4 and N2··H4 in green (b) Average relative energies of excited state (S1), ground state (S0), and energy difference of S1 and S0 state (S1-S0)

61

60

61

- Figure 3.26 Snapshots of the 7AI(AAA) cluster dynamics showing the time evolution of the ESQPT reaction through the hydrogen-bonded network. Normal (N), Proton transfer (PT), and Tautomer (T). Values correspond to the average over all ESQPT trajectories
- Figure 3.27 Average values over ESQPT trajectories of the 7AI(AAA) cluster. (a) Average breaking and forming of bonds showing time evolution. N1–H1 and N'··H1 in black, N'–H2 and N''··H2 in red, N'''–H3 and N''··H3 in blue, and N''–H4 and N2···H4 in green (b) Average relative energies of excited state (S1), ground state (S0), and energy difference of S1 and S0 state (S1-S0)

63

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

LIST OF ABBREVIATIONS

ESPT/HT	Excited-state proton/hydrogen atom transfer
DNA	Deoxyribonucleic acid
PQ	1 <i>H</i> -pyrrolo[3,2- <i>h</i>]quinoline
7HQ	7-hydroxquinoline
7AI	7-azaindole
IC	Internal conversion
ISC	Intersystem crossing
ESInterPT/HT	Excited-state intermolecular proton/hydrogen atom transfer
ESIntraPT/HT	Excited-state intramolecular proton/hydrogen atom transfer
QM	Quantum mechanics
BOA	Born-Oppenheimer approximation
HF	Hatree-Fock
SCF	Self-consistent field
CC	Coupled cluster
CC2	Second-order approximate coupled cluster model
CI	Configuration interaction
RI	Resolution-of-the-identity
ADC(2)	Algebraic diagrammatic construction through second order
RI-ADC(2)	Resolution-of-the-identity with algebraic diagrammatic construction
	through second order
RI-CC2	Resolution-of-the-identity with second-order approximate coupled
	cluster model
TDSE	Time-dependent Schrödinger equation
UV	Ultraviolet
AIMD	Ab initio molecular dynamics
TDDFT	Time-dependent density functional theory
CASPT2	Complete active space perturbation theory to the second order
HBR O	Hydrogen bond rearrangement

REMPI	Resonance-enhanced multiphoton ionization
MRPT2	Multi-reference perturbation theory to second order
Ν	Normal
Т	Tautomer
NT	No tautomerization
ESDPT	Excited-state double proton transfer
ESTPT	Excited-state triple proton transfer
ESQPT	Excited-state quadruple proton transfer
PES	Potential energy surface
SV	Split valence basis set
SVP	Split valence polarized basis set
TZVPP	Triple zeta for valence electrons plus double polarization function
fs	Femtosecond
ns	Nanosecond
kcal.mol ⁻¹	Kilocalorie per mole

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF SYMBOLS

S ₁	First excited singlet state
S ₂	Second excited singlet state
S ₀	Singlet ground state
T ₁	First excited triplet state
T_2	Second excited triplet state
Ĥ	Hamiltonian
Ψ	Wavefunction
E	Total energy
Z_A, Z_B	Nuclear charges
M_A	Mass of nucleus A
т	Mass of the electron
<i>R</i> _{AB}	Distance between nuclei A and B
r _{ij}	Distance between electrons <i>i</i> and <i>j</i>
r _{iA}	Distance between election <i>i</i> and nuclei <i>A</i>
$\boldsymbol{\varepsilon}_{0}$	Permittivity of free space
ħ	Plank constant
Ψ	Wavefunction associated with solving the electron part
χ	Wavefunction associated with nuclear motion
\hat{h}^F	Hartree-Fock operator
α, β	Electron spin
$ au_k^c$ and $ au_{kl}^{cd}$	Single and double replacement operators
$\operatorname{CIS}(D_{\alpha})$	The doubles correlation to CI singles
$\pi\sigma^*$	Excited-state hydrogen atom transfer surface
$\pi\pi^*$	Excited-state proton transfer surface
Å	Angstrom
Ø	Dihedral angles
°	Degree S C C S C C C C C C C C C C C C C C C
	S_1 S_2 S_0 T_1 T_2 \hat{H} Ψ E Z_A, Z_B M_A m R_{AB} r_{ij} r_{iA} \mathcal{E}_0 \hbar ψ χ \hat{h}^F α, β $\tau_k^c \text{ and } \tau_{kl}^{cd}$ $CIS (D_{\alpha})$ $\pi \sigma^*$ $\pi \pi^*$ \hat{A} \emptyset \circ