CONTENTS

	I age
Acknowledgement	
riokilo wiedgement	
Abstract in Thai	e
Abstract in English	g
List of Tables	1
List of Figures	m
List of Abbreviations and Symbols	p
Chapter 1 Introduction	1
1.1 Introduction	-1
1.2 Objectives	2
Chapter 2 Literature Reviews	3
2.1 Dasymaschalon	3
2.2 Chemical constituents of genus Dasymaschalon	3
2.3 Dasymaschalon obtusipetalum	7
2.4 Alkaloid extraction	8
2.5 Electrocoagulation (EC)	9
2.5.1 Theory of EC	10
2.5.2 Reaction types in the EC process	11
2.5.3 Instumental set-ups for	14
2.5.4 Advantages and Disadvantages of EC	
2.5.4.1 Advantages of EC	16
2.5.4.2 Disadvantages of EC	
2.6 Biological activities	19
Ο	

CONTENTS (continued)

Page

2.6.1 Acetylcholinesterase inhibitory activity	19	
2.6.2 Brine shrimp lethality test (BST)	21	
Chapter 3 Experimental	22	
3.1 Equipments, materials and chemicals	22	
3.1.1 Equipments	22	
3.1.2 Materials	22	
3.1.3 Chemicals	23	
3.2 Collection and extraction of plant materials	23	
3.3 Alkaloid extraction and isolation	25	
3.3.1 Electrocoagulation technique (EC)	26	
3.3.2 Conventional technique (Solvent extraction)	27	
3.4 Determination of compound 21 by RP-HPLC	32	
3.5.1 HPLC conditions	35	
3.5.2 Preparation of standard solutions	35	
3.5.3 Preparation of sample solutions	35	
3.5.4 Calibration Curve	35	
3.5 Structure elucidation	35	
3.6 Determination of efficiency on acetylcholinesterase inhibitory	36	
activity by TLC bioautographic assay	36	
3.7 Brine Shrimp Lethality Activity test (BST)	37	
Chapter 4 Results and Discussion	38	
4.1 Collection and extraction of plant materials	38	
4.2 Alkaloids extraction and isolation	38	
4.2.1 Electrocoagulation technique (EC)	38	

CONTENTS (continued)

Page	
0	

4.2.2 Conventional technique (Solvent extraction)	U S 4 2
4.3 Determination of compound 21 by RP-HPLC	43
4.4 Structure elucidation of compound 21	52
4.5 Determination of efficiency on acetylcholinesterase inhibitor	ry 60
activity by TLC bioautographic assay	
4.6 Biological Activity test	61
Chapter 5 Conclussions	66
References	68
Appendix	73
Curriculum Vitae	75

ลิ<mark>ขสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

Page

Table 4.1	Absorbance of the sample solution after the electrocoagulation	39
	process	
Table 4.2	Calibration curve data of standard solution (compound 21)	47
Table 4.3	RP-HPLC determination of compound 21 in the sample solutions	50
Table 4.4	Quantitative of compound 21 by RP-HPLC determination	51
Table 4.5	¹ H-NMR (400 MHz), ¹³ C-NMR (100 MHz) and HMBC correlation	59
	of compound 21	
Table 4.6	The minimum AChE inhibitory concentrations of samples required	61
	to inhibit AChE	
Table 4.7	The LC ₅₀ values of samples from <i>D. obtusipetalum</i> against brine	61
	shrimp (Artemia salina Leach)	
Table 4.8	Mortality of the brine shrimp larvae after 24 hr of exposure to	62
	various concentration of sample from conventional extract	
Table 4.9	Mortality of the brine shrimp larvae after 24 hr of exposure to	62
	various concentration of sample from EC extract	
Table 4.10	Mortality of the brine shrimp larvae after 24 hr of exposure to	63
	various concentration of dicentrine	
Table 4.11	Biological activities of dicentrine from D. obtusipetalum	64

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

I

LIST OF FIGURES

Page	P	age	
------	---	-----	--

Figure 2.1	Flavonol glycosides from D.sootepense	4	
Figure 2.2	Aristolactam alkaloids from D. sootepense	4	
Figure 2.3	Aristolactam alkaloids from D. sootepense (continued)	5	
Figure 2.4	Aristolactam and oxoaporphine alkaloids from D. blumei	5	
Figure 2.5	Alkaloids from D. glaucum	6	
Figure 2.6	Aristolactam alkaloids from D. trichophorum	6	
Figure 2.7	Aristolactam alkaloids from D. trichophorum (continued)	7	
Figure 2.8	Leaves and flowers of D. obtusipetalum	8	
Figure 2.9	The structure of dimeric (A) and polymeric Al^{3+} hydroxo	12	
	complexes (B)		
Figure 2.10	A simple electrocoagulation set ups	14	
Figure 2.11	Bench-scale EC reactor with monopolar electrodes in parallel	15	
	connection		
Figure 2.12	Bench-scale EC reactor with monopolar electrodes in series	15	
	connection		
Figure 2.13	Bench-scale EC reactor with bipolar electrodes	16	
Figure 2.14	Reaction of acetylcholinesterase with naphthyl acetate and the	21	
	subsequent formation of the purple dye in the TLC bioassay		
Figure 3.1	General extraction procedure of D. obtusipetalum	26	
Figure 3.2	A simple electrocoagulation set-ups	27	
Figure 3.3	Isolation of the dichloromethane crude extract from EC technique	29	
Figure 3.4	Isolation of the acetone crude extract from EC technique	30	
Figure 3.5	Isolation of the dichloromethane crude extract from EC technique	31	
Figure 3.6	Isolation of the dichloromethane crude extract from conventional	33	
	o t c r e c e r		

LIST OF FIGURES (continued)

Page

Figure 3.7	Isolation of the dichloromethane crude extract from conventional technique	34
Figure 3.8	Brine shrimp assays; (a) brine shrimp eggs	37
	(b) hatching brine shrimp in seawater	
	(c) live brine shrimp	
Figure 4.1	Plot of the absorbance and electrolysis time for the sample solution at 242 nm	39
Figure 4.2	The sample solution from conventional technique (a), after treated with EC process (b)	40
Figure 4.3	TLC of EC extract (a), conventional extract (b) and compound 21 (c) with 10 % MeOH:CH ₂ CL ₂	40
Figure 4.4	Electrocoagulation reaction type of phenolic compounds with Al ³⁺	41
Figure 4.5	RP-HPLC chromatogram of mobile phase at 210 nm	43
Figure 4.6	RP-HPLC chromatogram of 10 μ g.mL ⁻¹	44
Figure 4.7	RP-HPLC chromatogram of 20 μ g.mL ⁻¹ standard solution	44
Figure 4.8	RP-HPLC chromatogram of 30 μ g.mL ⁻¹ standard solution	45
Figure 4.9	RP-HPLC chromatogram of 40 μ g.mL ⁻¹ standard solution	45
Figure 4.10	RP-HPLC chromatogram of 50 μ g.mL ⁻¹ standard solution	46
Figure 4.11	Calibration curve data of standard solutions ranging from 10 to 50 μ g.mL ⁻¹	47
Figure 4.12	RP-HPLC chromatogram of fraction E22.9.4	48
Figure 4.13	RP-HPLC chromatogram of fraction E21*7	49
Figure 4.14	RP-HPLC chromatogram of fraction F16*7	49
Figure 4.15	RP-HPLC chromatogram of fraction F18*	50
Figure 4.16	Mass spectrum of compound 21	54

LIST OF FIGURES (continued)

Page

Figure 4.17	UV (MeOH) spectrum of compound 21	54
Figure 4.18	FTIR (neat) spectrum of compound 21	55
Figure 4.19	¹ H-NMR spectrum 400 MHz (CDCl ₃) of compound 21	55
Figure 4.20	¹³ C-NMR spectrum 100 MHz (CDCl ₃) of compound 21	56
Figure 4.21	DEPT spectrum of compound 21	56
Figure 4.22	2D COSY spectrum of compound 21	57
Figure 4.23	2D HMQC spectrum of compound 21	57
Figure 4.24	2D HMBC spectrum of compound 21	58
Figure 4.25	The HMBC correlation spectrum of dicentrine (compound 21)	58
Figure 4.26	Bioautographic thin layer chromatography showing the	60
	acetylcholinesterase inhibition of all samples and standard	
	(galantamine). Gal=galantamine, MeOH=methanol, Con=	
	conventional extract, EC=EC extract and 21=dicentrine	

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

ABBREVIATIONS AND SYMBOLS

δ	Chemical shift
%	Percentage
λ	Wavelength
Ø	Diameter
μΜ	Micrometer
μL	Microlitre
°C	Degree Celsius
1D	One dimension
2D	Two dimensions
¹ H-NMR	Proton nuclear magnetic resonance
¹³ C-NMR	Carbon nuclear magnetic resonance
ANOVA	Analysis of variance
AChE	Acetylcholinesterase
AChEI	Acetylcholinesterase inhibitor
А	Ampare
aq	Aqueous
calcd	Calculated ang Mail University
cm	Centimeter

p

cm ⁻¹	Wavenumbers
СС	Column chromatography
CDCl ₃	Deuterated chloroform
CH ₂ Cl ₂	Dichloromethane
CH ₃ COOC ₂ H ₅	Ethyl acetate
COSY	correlation spectroscopy
d	Doublet
d.b.h.	Diameter at breast height
DC	Direct current
EC	Electrocoagulation technique
Fig	Figure
g	Gram
HMBC	Heteronuclear Multiple Bond Correlation
HMQC	Heteronuclear Multiple Quantum Correlation
Hz	Hertz
IC ₅₀	Half maximal inhibitory concentration
IR	Infrared
J	Coupling constant (NMR)
kg	Kilogram
кı О hv	Potassium iodide
МеОН	Methanol

MeCN	Acetonitrile
Me ₂ CO	Acetone
m	Multiplet (NMR), metre
m/z	Mass number divided by its charge
mg	Milligram
mm	Millimetre
mL	Milliliter
M^+	Molecular ion
Me	Methyl
MHz	Megahertz
MS	Mass spectrospopy
NMR	Nuclear Magnetic Resonance
OCH ₂ O	Methylenedioxy
OMe	Methoxy
QCC	Quick Column Chromatography
ppm	Parts per million
RP-HPLC	Reverse-Phase High Performance Liquid Chromatography
S	Singlet (NMR)
TLC	Thin Layer Chromatography
ght ^O	oyvolchiang Mai University

r