CONTENTS

cknowledgement bstract in Thai bstract in English ist of Tables ist of Figures	c d f k
bstract in English ist of Tables	f k
ist of Tables	
ist of Figures	
	m
ist of Abbreviations	0
ist of Symbols	q
hapter 1 Introduction	1
1.1 Statement and significance of the problem	1
1.2 Research objectives	2
hapter 2 Literature review	3
2.1 Chemical compositions of essential oils	3
2.1.1 Terpenes	3
2.1.2 Oxygenated derivatives	4
2.2 Extraction of essential oils	7
2.2.1 Expression	7
2.2.2 Solvent extraction	7
2.2.3 Enfleurage	8
2.2.4 Distillation	8
2.3 Gas chromatography-mass spectrometry (GC-MS)	10
2.3.1 Qualitative analysis	12

CONTENTS (Continued)

Page

	2.4 Acne	14	
	2.4.1 Bacteria causing skin diseases	14	
	2.4.2 Plants used for the treatment of acne vulgaris	15	
	2.5 Antibacterial activity of essential oils	17	
	2.6 Determination of antibacterial activity	19	
	2.6.1 Disk diffusion method	19	
	2.6.2 Agar dilution method	19	
	2.6.3 Broth micro-dilution method	19	
	2.7 Plants used in this study	20	
	2.7.1 Clausena harmandiana (Pierre)	20	
	2.7.2 Clausena lansium (Lour.) Skeels	21	
	2.7.3 Elsholtzia communis (Collett & Hemsl.) Diels	25	
	2.7.4 Elsholtzia stachyodes (Link) C.Y.Wu	26	
	2.7.5 Elsholtzia griffithii Hook.f	27	
	2.7.6 Elsholtzia sp.	28	
Chapt	er 3 Experimental	31	
	3.1 Instruments and apparatus	31	
	3.2 Chemicals	32	
	3.3 Microorganisms	33	
	3.4 Plant materials	33	
	3.5 Extraction	33	
	3.5.1 Extraction of essential oil	33	
	3.5.2 Solvent extraction	34	
	3.6 Gas chromatography-mass spectrometry (GC-MS) analysis	34	
	rights rese		
	1		

CONTENTS (Continued)

	Page
3.7 Determination of antibacterial activity	36
3.7.1 Preparation of essential oils and residual crude extracts	36
3.7.2 Preparation of microorganisms	36
3.7.3 Disc diffusion assay	36
3.7.4 Determination of minimum inhibitory concentration (MIC)	37
3.7.5 Determination of minimum bactericidal concentration (MBC)	39
Chapter 4 Results and discussion	40
4.1 Extraction yield	40
4.2 Determination of chemical compounds of essential oils	42
4.2.1 Chemical constituents of essential oil from E. stachyodes	42
4.2.2 Chemical constituents of essential oil from E. communis	48
4.2.3 Chemical constituents of essential oil from E. griffithii	52
4.2.4 Chemical constituents of essential oil from <i>E</i> . sp.	56
4.2.5 Chemical constituents of essential oil from <i>Elsholtzia</i> species	62
4.2.6 Chemical constituents of essential oil from C. lansium	68
4.2.7 Chemical constituents of essential oil from C. harmandiana	74
4.2.8 Chemical constituents of essential oil from Clausena species	79
4.3 Antibacterial activity	83
4.3.1 Antibacterial activity of the essential oils	83
4.3.2 Antibacterial activity of the residual crude extracts	87
Chapter 5 Conclusions	90
References	92
Appendix A by Chiang Mai Univ	103
Appendix B	113
Curriculum Vitae	122

LIST OF TABLES

Page

Table 2.1	Different classes of essential oils compounds and their bioactivities	6
Table 2.2	Bacteria and their susceptibility to essential oils.	18
Table 2.3	Main chemical constituents of essential oil from various	23
	Clausena species	
Table 2.4	Main chemical constituents of essential oil from various	29
	Elsholtzia species	
Table 3.1	Plant materials used in this study	33
Table 3.2	The temperature programme conditional used	35
Table 4.1	Divisional properties and percentage yields (% yield) of assential oils	40
1 able 4.1	Physical properties and percentage yields (% yield) of essential oils from <i>Elsholtzia</i> and <i>Clausena</i> species	40
Table 4.2		41
1 able 4.2	Percentage yield (% yield) of residual crude extracts from	41
	Elsholtzia and Clausena species	
Table 4.3	Chemical constituents of the essential oil from <i>E. stachyodes</i>	43
Table 4.4	Chemical constituents of the essential oil from E. communis	49
Table 4.5	Chemical constituents of the essential oil from E. griffithii	53
Table 4.6	Chemical constituents of the essential oil from E. sp.	57
Table 4.7	Chemical constituents of the essential oil from Elsholtzia species	63
Table 4.8	The comparison of chemical constituents of essential oil from	67
	Elsholtzia species	
Table 4.9	Chemical constituents of the essential oil from C. lansium	69
Table 4.10	Chemical constituents of the essential oil from C. harmandiana	75
Table 4.11	Chemical constituents of the essential oil from Clausena species	80

k

LIST OF TABLES (Continued)

Page

Table 4.12	The comparison of chemical constituents of essential oil from	83
	Clausena species	
Table 4.13	Diameter of inhibition zones (mm) mean ± SD, MIC, and	85
	MBC of essential oils from Elsholtzia species	
Table 4.14	Diameter of inhibition zones (mm) mean \pm SD of	86
	C. lansium oil at different concentrations.	
Table 4.15	Diameter of inhibition zones (mm) mean \pm SD, MIC, and	88
	MBC of residual crude extracts (100 mg/ml) from Elsholtzia	
	and Clausena species	

ลิ<mark>ขสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

Page

Figure 2.1	The carbon skeleton of isoprene unit	3
Figure 2.2	Some structures of hydrocarbon compounds	4
Figure 2.3	Some structures of oxygenated compounds	5
Figure 2.4	Hydrodistillation (a), steam distillation (b), steam distillation and	9
	hydrodistillation apparatus (c)	
Figure 2.5	Gas chromatography-mass spectrometry diagram	10
Figure 2.6	A schematic of a quadrupole analyser	12
Figure 2.7	Lipolysis of the triglycerides in the sebum	15
Figure 2.8	The shrub (a), flowers (b), and fruits (c) of Clausena harmandiana	20
Figure 2.9	The tree (a), fruits (b) and seeds (c) of <i>Clausena lansium</i>	21
Figure 2.10	Structure of the major compounds of essential oil from Clausena	24
Figure 2.11	The shrub (a), flower (b), and leaf (c) of <i>Elsholtzia communis</i>	25
Figure 2.12	The shrub (a), flower (b), and leaf (c) of <i>Elsholtzia stachyodes</i>	26
Figure 2.13	The shrub (a), flower (b), and leaf (c) of <i>Elsholtzia griffithii</i>	27
Figure 2.14	The flower (a), and leaf (b) of <i>Elsholtzia</i> sp.	28
Figure 2.15	Structure of the major compounds of essential oil from Elsholtzia	30
Figure 3.1	Steam-distillation apparatus	34
Figure 3.2	Measurement the diameter of the inhibition	37
Figure 3.3	Two-fold dilution methods for minimum inhibitory	38
	concentration (MIC)	
Figure 3.4	Determination of minimum inhibitory concentration (MIC)	38
Figure 3.5	Determination of minimum bactericidal concentration (MBC)	39

m

LIST OF FIGURES (Continued)

Page

Figure 4.1	Total Ion Chromatogram (TIC) of essential oil from E. stachyodes	43
Figure 4.2	Total Ion Chromatogram (TIC) of essential oil from E. communis	48
Figure 4.3	Total Ion Chromatogram (TIC) of essential oil from E. griffithii	52
Figure 4.4	Total Ion Chromatogram (TIC) of essential oil from E. sp.	56
Figure 4.5	Total Ion Chromatogram (TIC) of essential oils from C. lansium	69
Figure 4.6	Total Ion Chromatogram (TIC) of essential oils from	74
	C. harmandiana	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF ABBREVIATIONS

AR	Analytical reagent
cm	Centimeter
CFU	Colony forming unit
CI	Chemical ionization
DMSO	Dimethylsulfoxide
etc	Et cetera
e.g.	Exempli gratia
eV	Electron volt
EI	Electron impact ionization
g	Gram
GC-MS	Gas chromatography mass spectrometry
GC	Gas chromatography
Не	Helium
1	Litre
mg	Milligram
min	minute
mm	Millimeter
ml	Millilitre
m/z	Mass-to-charge ratio
MBC	Minimal bactericidal concentration
MIC	Minimal inhibitory concentration
MS	Mass spectrometry
ND	Not detection
RI	Retention index
RT	Retention time
S.D.	Standard deviation and have a low ensite

LIST OF ABBREVIATIONS (Continued)

TSA	Tryptic soy agar
TSB	Tryptric soy broth
v/v	Volume-by-volume
W	Weight
w/w	Weight-by-weight
μg	Microgram
ul 🚽	Microlitre

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

LIST OF SYMBOLS

x	Alpha
3	Beta
,	Gamma
,	Para
)	Otho
%	Percentage
	Degree Celsius
	Electron
	Fragment ion
	Methane
	Methane molecule ions
	Carbonium ion
	Molecular ion
	Pseudomolecular ion
	3

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved