CHAPTER 1

Introduction

1.1 Vernonia scandens

The genus *Vernonia*, in Compositae family, comprising about 1000 species is mainly distributed in the torrid zones of America, Asia and Africa. About 27 species of this genus grow in the southern part of China, many of them have potential applications in Chinese folklore medicine [1]. Several *Vernonia* species are widely used in native cultures as folklore remedies for a variety of human ailments. It should be noted that flavonoids, sesquiterpenoids, diterpenoids, triterpenoids, alkaloids and cardiac glycosides have also been reported from this genus [2, 3]. This class of compounds has been reported to be insect antifeedant, antifungal, cytotoxic and antitumor activities [4].

However, phytochemical and biological studies have not been done on *V*. *scandens*. Therefore, we will focus on the investigation of chemical composition and bioactive substances from this species.

1.1.1 The botany of Vernonia scandens

Kingdom:	Plantae
Phylum:	Tracheophyta
Class:	Magnoliosida
Order:	Asterales
Family:	Asteraceae
Genus:	Vernonia [5]

The aerial parts of *V. scandens*, commonly known as Gu-si-pah-doh (in Lua language), was collected from the northern part of Mae Jam District in Chiang Mai Province of Thailand, in March 2008, and identified by Maxwell J.F. and a voucher specimen (MAXWELL 08-54) was deposited in the herbarium of Department of Biology, Faculty of Science, Chiang Mai University, Thailand. The plant was identified

and the specimen (BKF. No. 130768) has been deposited in the Forest Herbarium, Department of National Park, Wildlife and Plant Conservation, Ministry of National Resources and Environment, Bangkok, Thailand as shown in Figure 1.1 [6].

Figure 1.1 Morphological illustration of V. scandens

1.2 Reviews of chemical constituents of *Vernonia* genus

Vernonia plants contains several types of chemical constituents. The compounds which had been reviewed are classified into two main groups *i.e.* terpenes (sesquiterpenes, diterpenes, and steroids) and phenols (flavonoids and phenylpropanoids) as follows;

1.2.1 Terpenes

The terpenes are among the most widespread and chemically diverse groups of natural products. Fortunately, despite their structural diversity, they have a simple unifying feature by which they are defined and by which they may be easily classified. Terpenes are a unique group of hydrocarbon-based natural products whose structure may be derived from isoprene, give rise to structures which may be divided into isopentane (2-methylbutane) units [7] (Figure 1.2).

Figure 1.2 The terpenes are comprised of isoprene units

Terpenes are thus classified by the number of 5-carbon units they contain: hemiterpenes (C₅), monoterpenes (C₁₀), sesquiterpenes (C₁₅), diterpenes (C₂₀), sesterterpenes (C₂₅), triterpenes (C₃₀) and tetraterpenes (C₄₀).

1) Sesquiterpenes

Derived from three isoprene units, C_{15} sesquiterpenes exist in a wide variety of forms, including linear, bicyclic, and tricyclic frameworks. Like the monoterpenes, most sesquiterpenes are considered to be essential oils because they belong to the steam distillable fraction often containing the characteristic odoriferous components of the plant. Some common sesquiterpenes are shown in Figure 1.3 [7].

The reports of sesquiterpenes from some *Vernonia* genus are shown in Table 1.1 and Figure 1.3, respectively.

Compounds	Part of plants	Biological	Year
[Species]	[Solvent]	activities	[Ref.]
Vernolide (19)	Leaves ^{a,b,c}	Antibacterial ^{a,b}	2002[9] ^a
[V. colorata] ^{a,c}	[EtOAc] ^a	Antifungal ^b	2006[4] ^b
[V. amygdalina] ^b	[99% EtOH] ^b	Antiplasmodial activity ^c	2009[10] ^c
	[Acetone] ^c	P. falciparum (D10) with	
		IC ₅₀ 1.87 µg/ml	
		Cytotoxicity (CHO) with	
		IC ₅₀ 1.83 µg/ml	
11 β ,13-Dihydrovernolide (20)	Leaves	Antibacterial	2002[9]
[V. colorata]	[EtOAc]		
Vernodalin (21)	Leaves ^{a,b}	Antibacterial ^a	2002[9] ^a
[V. colorata] ^{a,b}	[EtOAc] ^a	Antiplasmodial activity ^b	2009[10] ^b
	[Acetone] ^b	P. falciparum (D10) with	
		IC ₅₀ 0.52 µg/ml	
		Cytotoxicity (CHO) with	
		IC ₅₀ 1.45 µg/ml	
Zaluzanin D (22)	Aerial parts	Antifungal	2003[11]
[V. arborea]			
Vernolide A (23)	Stems ^a	VEL	2003[12] ^a
[V. cinerea] ^{a,b}	[EtOH] ^a		2006[13] ^b
	Whole plants ^b		
	[95%EtOH] ^b		
Vernolide B (24)	Stems ^a	a Mai Univers	2003[12] ^a
[V. cinerea] ^{a,b}	[EtOH] ^a		2006[13] ^b
	Whole plants ^b		
	[95%EtOH] ^b		
Glaucolide K (25)	Leaves	-	2005[14]
[V. pachyclada]	[EtOH]		
Glaucolide L (26)	Leaves	-	2005[14]
[V. pachyclada]	[EtOH]		

Table 1.1 (Continued)

	× ×	/	
Compounds	Part of plants	Biological	Year
[Species]	[Solvent]	activities	[Ref.]
Glaucolide M (27)	Leaves	-	2005[14]
[V. pachyclada]	[EtOH]		
8β -(3-Chloro-2-hydroxy-2-	Whole plants	-	2006[13]
methylpropanoyloxy)-	[95%EtOH]		
4β , 6α , 10β -trihydroxyl-13-			
ethoxy-7(11)-guaiaen-12,6-			
olide (28)			
[V. cinerea]			
8α -[4-Hydroxytigloyloxy]-	Whole plants	11-12	2006[13]
hirsutinolide-13-O-acetate (29)	[95%EtOH]		
[V. cinerea]			
8α -[4-Hydroxytigloyloxy]-10 α -	Whole plants	-)	2006[13]
hydroxyhirsutinolide-13-O-	[95%EtOH]		2000[15]
acetate (30)			
[V. cinerea]			
8α -Tigloyloxyhirsutinolide (31)	Whole plants		2006[13]
[V. cinerea]	[95%EtOH]		[]
8α-Tigloyloxyhirsutinolide-13-	Whole plants		2006[13]
O-acetate (32)	[95%EtOH]		2000[10]
[V. cinerea]			
8α-[2-Methylacryloyloxy]-	Whole plants	190100011	2006[13]
hirsutinolide (33)	[95%EtOH]		2000[15]
[V. cinerea]			
8α-[2-Methylacryloyloxy]-	Whole plants	cscive	2006[13]

Table 1.1 (Continued)

[95%EtOH]

hirsutinolide-13-O-acetate (34)

[V. cinerea]

_

2006[13]

Compounds	Part of plants	Biological	Year
[Species]	[Solvent]	activities	[Ref.]
8α -[2-Methylacryloyloxy]-	Whole plants	-	2006[13]
1β , 4β -epoxy- 1α -methoxy-	[95%EtOH]		
10β H-germacra-5 <i>E</i> ,7(11)-dien-			
12,6-olide (35)			
[V. cinerea]			
8α -[2-Methylacryloyloxy]-	Whole plants	2	2006[13]
1β , 4β -epoxy- 1α -methoxy- 13 -	[95%EtOH]		
O-acetate-10 BH-germacra-			
5 <i>E</i> ,7(11)-dien-12,6-olide (36)			
[V. cinerea]			
Vernolide C (37)	Whole plants	Antiplasmodial activity	2006[15]
[V. cinerea]	[CH ₂ Cl ₂]	P. falciparum (W2) with	
		IC ₅₀ 3.9 mM	
Vernolide D (38)	Whole plants	1.1.1.91	2006[15]
[V. cinerea]	$[CH_2Cl_2]$		
8α -Tigloyloxyhirsutinolide-13-	Whole plants		2006[15]
<i>O</i> -acetate (39)	$[CH_2Cl_2]$		
[V. cinerea]			
8α -Tigloyloxyhirsutinolide (40)	Whole plants	-	2006[15]
[V. cinerea]	$[CH_2Cl_2]$		
8α -(4-Hydroxylmethacryl-	Whole plants	19010001	2006[15]
oyloxy)-hirsutinolide-13-O-	$[CH_2Cl_2]$		
acetate (41)			
[V. cinerea]			
8α -Epoxymethacryloyloxy	Whole plants	-	2006[15]
hirsutinolide-13-O-acetate (42)	$[CH_2Cl_2]$		
[V. cinerea]			

Table 1.1 (Continued)

Compounds	Part of plants	Biological	Year
[Species]	[Solvent]	activities	[Ref.]
Hirsutinolide-13- <i>O</i> -acetate (43)	Whole plants	Antiplasmodial activity	2006[15]
[V. cinerea]	$[CH_2Cl_2]$	P. falciparum (W2) with	
		IC ₅₀ 3.7 mM	
Piptocarphin D (44)	Whole plants	Antiplasmodial activity	2006[15]
[V. cinerea]	$[CH_2Cl_2]$	P. falciparum (W2) with	
		IC ₅₀ 3.5 mM	
Vernodalol (45)	Leaves	Antibacterial	2006[4]
[V. amygdalina]	[99% EtOH]	Antifungal	
8α -(4-Hydroxymethacryl-	Aerial parts	Inhibition on IL-8	2006[3]
oyloxy)-10 <i>a</i> -hydroxy-1,13-	[Methyl <i>t</i> -butyl	production in HeLa cells.	
dimethoxyhirsutinolide (46)	ether (MTBE)-		
[V. triflosculosa]	MeOH (8:2)]		
8α -(4-Hydroxymethacryl-	Aerial parts	Inhibition on IL-8	2006[3]
oyloxy)-10 <i>a</i> -hydroxy-13-	[Methyl <i>t</i> -butyl	production in HeLa cells.	
methoxy hirsutinolide (47)	ether (MTBE)-		
[V. triflosculosa]	MeOH (8:2)]		
8α -Methacryloyloxy)-10 α -	Aerial parts	Inhibition on IL-8	2006[3]
hydroxy-13-methoxy	[Methyl <i>t</i> -butyl	production in HeLa cells.	
hirsutinolide (48)	ether (MTBE)-		
[V. triflosculosa]	MeOH (8:2)]		
8α -(2-Methylacryloyloxy)-3-	Leaves	Antiplasmodial activity	2007[16]
oxo-1-desoxy-1,2-dehydro-	$[CH_2Cl_2]$	P. falciparum (D10) with	
hirsutinolide-13-O-acetate (49)		IC ₅₀ 260 ng/ml	
[V. staehelinoides]		P. falciparum (K1) with	
		IC ₅₀ 1,800 ng/ml	
		Cytotoxicity (CHO) with	
		IC ₅₀ 2.9 µg/ml	

Table 1.1 (Continued)

Compounds	Part of plants	Biological	Year
[Species]	[Solvent]	activities	[Ref.]
8α -(5'-Acetoxysenecioyl-oxy)-	Leaves	Antiplasmodial activity	2007[16
3-oxo-1-desoxy-1,2-dehydro-	$[CH_2Cl_2]$	P. falciparum (D10) with	
hirsutinolide-13-O-acetate (50)		IC ₅₀ 240 ng/ml	
[V. staehelinoides]		P. falciparum (K1) with	
		IC ₅₀ 2,600 ng/ml	
		Cytotoxicity (CHO) with	
		IC ₅₀ 0.9 µg/ml	
Vernobockolides A (51)	Aerial parts	- 3	2008[1]
[V. bockiana]	[EtOH]		
(1 <i>S</i> *,4 <i>R</i> *,8 <i>S</i> *,10 <i>R</i> *)-13-	Aerial parts	-	2008[1]
Acetyloxy-1,4-epoxy-1,10-	[EtOH]		
dihydroxy-8-isobutyryloxy-			
germacra-5E,7(11)-dien-6,12-			
olide (52)			
[V. bockiana]			
Vernobockolides B (53)	Aerial parts		2008[1]
[V. bockiana]	[EtOH]		
Piptocarphin C (54)	Aerial parts	VER	2008[1]
[V. bockiana]	[EtOH]		
Piptocarphin F (55)	Aerial parts	?	2008[1]
[V. bockiana]	[EtOH]		
Piptocarphin A (56)	Aerial parts		2008[1]
[V. bockiana]	[EtOH]		
Hirsutolide (57)	Aerial parts	reserve	2008[1]
[V. bockiana]	[EtOH]		
β -D-Glucopyranosyl taraxinic	Aerial parts	-	2008[1]
ester (58)	[EtOH]		
[V. bockiana]			

Table 1.1 (Continued)

Figure 1.4 Sesquiterpenes from Vernonia genus

Glaucolide M (27)

 8β -(3-Chloro-2-hydroxy-2-methylpropanoyloxy)- 4β , 6α , 10β -trihydroxyl-13ethoxy-7(11)-guaiaen-12,6-olide (**28**)

29: $R_1 = A$, $R_2 = Ac$, $R_3 = CH_3$, $R_4 = H$, $R_5 = H$ **30**: $R_1 = A$, $R_2 = Ac$, $R_3 = OH$, $R_4 = CH_3$, $R_5 = H$ **31**: $R_1 = B$, $R_2 = H$, $R_3 = CH_3$, $R_4 = H$, $R_5 = H$ **32**: $R_1 = B$, $R_2 = Ac$, $R_3 = CH_3$, $R_4 = H$, $R_5 = H$ **33**: $R_1 = C$, $R_2 = H$, $R_3 = CH_3$, $R_4 = H$, $R_5 = H$ **34**: $R_1 = C$, $R_2 = Ac$, $R_3 = CH_3$, $R_4 = H$, $R_5 = H$ **35**: $R_1 = C$, $R_2 = H$, $R_3 = CH_3$, $R_4 = H$, $R_5 = CH_3$ **36**: $R_1 = C$, $R_2 = Ac$, $R_3 = CH_3$, $R_4 = H$, $R_5 = CH_3$

8α-[4-Hydroxytigloyloxy]-hirsutinolide-13-O-acetate (29)

 8α -[4-Hydroxytigloyloxy]- 10α -hydroxyhirsutinolide-13-O-acetate (30)

 8α -Tigloyloxyhirsutinolide (**31**)

 8α -Tigloyloxyhirsutinolide-13-O-acetate (32)

 8α -[2-Methylacryloyloxy]-hirsutinolide (33)

 8α -[2-Methylacryloyloxy]-hirsutinolide-13-O-acetate (34)

 8α -[2-Methylacryloyloxy]-1 β ,4 β -epoxy-1 α -methoxy-10 β H-germacra-5E,7(11)-dien-12,6-olide (**35**)

 8α -[2-Methylacryloyloxy]-1 β ,4 β -epoxy-1 α -methoxy-13-O-acetate-10 β H-germacra-5E,7(11)-dien-12,6-olide (**36**)

Figure 1.4 (Continued)

37:
$$R_1 = D$$
; $R_2 = Ac$; $R_3 = H$
38: $R_1 = E$; $R_2 = Ac$; $R_3 = H$
39: $R_1 = D$; $R_2 = H$; $R_3 = H$
40: $R_1 = B$; $R_2 = Ac$; $R_3 = H$
41: $R_1 = H$; $R_2 = Ac$; $R_3 = H$
42: $R_1 = H$; $R_2 = Ac$; $R_3 = OH$
43: $R_1 = C$; $R_2 = Ac$; $R_3 = H$
44: $R_1 = A$; $R_2 = Ac$; $R_3 = H$

Vernolide C (37)

Vernolide D (38)

 8α -Tigloyloxyhirsutinolide-13-*O*-acetate (**39**)

 8α -Tigloyloxyhirsutinolide (40)

 8α -(4-Hydroxylmethacryloyloxy)-hirsutinolide-13-O-acetate (41)

 8α -Epoxymethacryloyloxy hirsutinolide-13-*O*-acetate (42)

Hirsutinolide-13-O-acetate (43)

Piptocarphin D (44)

Vernodalol (**45**) Figure 1.4 (Continued)

46: $R_1 = CH_3$, $R_2 = 4$ -OH-methacryloyl **47**: $R_1 = H$, $R_2 = 4$ -OH-methacryloyl **48**; $R_1 = H$, $R_2 =$ methacryloyl

 8α -(4α -Hydroxymethacryloyloxy)- 10α -hydroxy-1,13-dimethoxyhirsutinolide (46)

 8α -(4-Hydroxymethacryloyloxy)-10 α -hydroxy-13-methoxyhirsutinolide (47)

 8α -(Methacryloyloxy)- 10α -hydroxy-13-methoxyhirsutinolide (48)

 8α -(2-Methylacryloyloxy)-3-oxo-1-desoxy-1,2-dehydrohirsutinolide-13-O-acetate (49)

 8α -(5'-Acetoxysenecioyloxy)-3-oxo-1-desoxy-1,2-dehydrohirsutinolide-13-O-acetate (50)

Vernobockolides A (51)

(1*S**,4*R**,8*S**,10*R**)-13-Acetyloxy-1,4-epoxy-1,10-dihydroxy-8-isobutyryloxygermacra-5*E*,7(11)-dien-6,12-olide (**52**) Figure 1.4 (Continued)

2) Diterpenes

The diterpenes are a widely varied group of compounds based on four isoprene groups, most of which are of limited distribution in the plant kingdom. Because of their higher boiling points, they are not considered to be essential oils. Instead, they are classically considered to be resins, the material that remains after steam distillation of a plant extract. Diterpenes exist in a variety of structural types some selections are shown is Figure 1.5 [7].

The reports of diterpenes from some *Vernonia* genus are summarized in Table 1.2 and Figure 1.6, respectively.

Figure 1.5 Some common diterpenes in plants

Table 1.2 Diterpene from Vernonia genus

Compounds	Part of plants	Biological	Year
[Species]	[Solvent]	activities	[Ref.]
16β-Hydroxy-ent-kauran-19-oic acid	Aerial parts	Inhibition on IL-8	2006[3]
-19-[α -L-arabinopyranosyl-(1 \rightarrow 2)-	[Methyl <i>t</i> -butyl	production in HeLa	
β -D-glucopyranosyl] ester (68)	ether (MTBE)-	cells.	
[V. triflosculosa]	MeOH (8:2)]		
16β-17-Dihydroxy- <i>ent</i> -kauran-19-	Aerial parts	Inhibition on IL-8	2006[3]
oic acid-19-[α -L-arabinopyranosyl-	[Methyl <i>t</i> -butyl	production in HeLa	
$(1\rightarrow 2)$ - β -D-glucopyranosyl] ester	ether (MTBE)-	cells.	
(69)	MeOH (8:2)]		
[V. triflosculosa]			

16β-Hydroxy-*ent*-kauran-19-oic acid-19-[α-L-arabinopyranosyl-(1 \rightarrow 2)-β-D-glucopyranosyl] ester (**68**)

16β-17-Dihydroxy-*ent*-kauran-19-oic acid-19-[α-L-arabinopyranosyl-(1→2)-β-Dglucopyranosyl] ester (**69**)

Figure 1.6 Diterpenes from Vernonia genus

3) Steroids

Practically all plant steroids are hydroxylated at C-3 and are fact sterols. In the animal kingdom, the steroids have profound importance as hormones, coenzymes, and provitamins. The general steroid structure is shown in Figure 1.7 [7].

The reports of steroid compounds from some *Vernonia* genus are shown in Table 1.3 and Figure 1.8, respectively.

Figure 1.7 Some plant sterol natural products

Compounds	Part of plants	Biological	Year
[Species]	[Solvent]	activities	[Ref.]
Vernioniside D ₁ (74)	Roots	-	1998[17
[V. kotschyana]	-		
Vernioniside D ₂ (75)	Roots	-	1998[17
[V. kotschyana]	19918		
Vernioniside D_3 (76)	Roots	-91	1998[17
[V. kotschyana]	50.0a		
Vernioniside F ₁ (77)	Roots	1.31	1998[17
[V. kotschyana]	シゴへ		
Vernioniside F ₂ (78)	Roots	2121	1998[17
[V. kotschyana]			
Vernoguinosterol (79)	Stem barks	- 52	2002[18
[V. guineensis]	[EtOH]		
16 <i>β</i> ,22 <i>R</i> ;21,23 <i>S</i> -Diepoxy-3 <i>β</i> -O- <i>β</i> -D-	Stem barks	1 1 2 1	2003[2]
glucopyranosyloxy-21S,24-dihydro-	$[CH_2Cl_2-$		
xy-5 α -stigmasta-8,14-dien-28-one	MeOH (1:1)]		
(80)			
[V. guineensis]			
16β,22R;21,23S-Diepoxy-21S,24-	Stem barks	Di	2003[2]
dihydroxy-5 <i>a</i> -stigmasta-8,14-dien-	[CH ₂ Cl ₂ -		
28-one (81)	MeOH (1:1)]		
[V. guineensis]			
3- <i>O</i> -{β-D-Galactopyranosyl-(1-2)-	Leaves	Antiinflammatory	2004[19
$[\beta$ -D-glucopyranosyl- $(1\rightarrow 6)$]- β -D-	[Petroleum	activity	
glucopyranoside}-5 α ,14 α -androst-8-	ether, CHCl ₃ ,		
ene (82)	CHCl ₃ -MeOH		
[V. colorata]	(9:1), MeOH]		

Table 1.3 Steroids from Vernonia genus

Compounds	Part of plants	Biological	Year
[Species]	[Solvent]	activities	[Ref.]
3- <i>O</i> -[β -D-Galactopyranosyl-(1 \rightarrow 6)-	Leaves	Antiinflammatory	2004[19]
β -D-glucopyranoside]-5 α ,14 α -	[Petroleum	activity	
androst-8-ene (83)	ether, CHCl ₃ ,		
[V. colorata]	CHCl ₃ -MeOH		
	(9:1), MeOH]		
3 <i>β</i> ,21,24-Trihydroxy-21,23;22,28;	Leaves	Antiinflammatory	2004[19]
26,28-triepoxy-5 α -stigmasta-8(9),	[Petroleum	activity	
14(15)-dien-3- <i>O</i> -β-D-galactopyrano-	ether, CHCl ₃ ,		
syl- $(1\rightarrow 2)$ - β -D-glucopyranoside (84)	CHCl ₃ -MeOH		
[V. colorata]	(9:1), MeOH]		
3 <i>β</i> ,21,24-Trihydroxy-21,23;22,28;	Leaves	Antiinflammatory	2004[19]
26,28-triepoxy-5 α -stigmasta-8(9),	[Petroleum	activity	
14(15)-dien-3- O - β -D-galactopy-	ether, CHCl ₃ ,		
ranosyl- $(1 \rightarrow 2)$ - β -D- $(6$ -acetyl)-	CHCl ₃ -MeOH		
glucopyranoside (85)	(9:1), MeOH]		
[V. colorata]			
3β ,25,29-Trihydroxy- 5α -stigmasta-	Leaves	Antiinflammatory	2004[19]
8(9),14(15),24Z(28)-triene (86)	[Petroleum	activity	
[V. colorata]	ether, CHCl ₃ ,		
	CHCl ₃ -MeOH		
	(9:1), MeOH]		
3β,25,25-Trihydroxy-24,28-epoxy-	Leaves	Antiinflammatory	2004[19]
5α -stigmasta-8(9),14(15)-diene (87)	[Petroleum	activity	
[V. colorata]	ether, CHCl ₃ ,		
	CHCl ₃ -MeOH		
	(9:1), MeOH]		
Vernocuminosides A (88)	Stem barks	Antiinflammatory	2009[20]
[V. cumingiana]	[95% EtOH]	activities and	
		cytotoxicities	

Table 1.3 (Continued)

Compounds	Part of plants	Biological	Year
[Species]	[Solvent]	activities	[Ref.]
Vernocuminosides B (89)	Stem barks	Antiinflammatory	2009[20]
[V. cumingiana]	[95% EtOH]	activities and	
		cytotoxicities	
Vernocuminosides C (90)	Stem barks	Antiinflammatory	2009[20]
[V. cumingiana]	[95% EtOH]	activities and	
		cytotoxicities	
Vernocuminosides D (91)	Stem barks	Antiinflammatory	2009[20]
[V. cumingiana]	[95% EtOH]	activities and	
		cytotoxicities	
Vernocuminosides E (92)	Stem barks	Antiinflammatory	2009[20]
[V. cumingiana]	[95% EtOH]	activities and	
		cytotoxicities	
Vernocuminosides F (93)	Stem barks	Antiinflammatory	2009[20]
[V. cumingiana]	[95% EtOH]	activities and	
		cytotoxicities	
Vernocuminosides G (94)	Stem barks	Antiinflammatory	2009[20]
[V. cumingiana]	[95% EtOH]	activities and	
I AL	UNIVI	cytotoxicities	

Table 1.3 (Continued)

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

 16β ,22*R*;21,23*S*-Diepoxy-3 β -O- β -D-glucopyranosyloxy-21*S*,24-dihydroxy-5 α -stig-masta-8,14-dien-28-one (**80**)

16β,22*R*;21,23*S*-Diepoxy-21*S*,24-dihydroxy-5α-stigmasta-8,14-dien-28-one (**81**)

3-*O*-{ β -D-Galactopyranosyl-(1-2)-[β -D-glucopyranosyl-(1 \rightarrow 6)]- β -D-glucopyranoside}-5 α ,14 α -androst-8-ene (**82**)

3-*O*-[β -D-Galactopyranosyl-(1 \rightarrow 6)- β -D-glucopyranoside]-5 α ,14 α -androst-8-ene (83)

 3β ,21,24-Trihydroxy-21,23;22,28;26,28-triepoxy- 5α -stigmasta-8(9),14(15)-dien- $3-O-\beta$ -D-galactopyranosyl- $(1\rightarrow 2)-\beta$ -D-glucopyranoside (**84**)

 3β ,21,24-Trihydroxy-21,23;22,28;26,28-triepoxy- 5α -stigmasta-8(9),14(15)-dien- $3-O-\beta$ -D-galactopyranosyl- $(1\rightarrow 2)-\beta$ -D-(6-acetyl)-glucopyranoside (**85**)

Figure 1.8 (Continued)

3*β*,25,29-Trihydroxy-5*α*-stigmasta-8(9),14(15),24*Z*(28)-triene (**86**)

 3β ,25,25-Trihydroxy-24,28-epoxy-5 α stigmasta-8(9),14(15)-diene (**87**)

OR₂ 88: $R_1 = \beta$ -D-glc, $R_2 = \beta$ -D-glc 89: $R_1 = \beta$ -D-gal- $(1 \rightarrow 2)$ - β -D-glc, $R_2 = \beta$ -D-glc 90: $R_1 = \beta$ -D-glc, $R_2 = H$ 91: $R_1 = \beta$ -D-gal- $(1 \rightarrow 2)$ - β -D-glc, $R_2 = H$ 92: $R_1 = \alpha$ -L-ara- $(1 \rightarrow 2)$ - β -D-glc, $R_2 = H$ 93: $R_1 = \alpha$ -L-ara- $(1 \rightarrow 2)$ - β -D-glc, $R_2 = \beta$ -D-glc Vernocuminosides A (88) Vernocuminosides B (89) Vernocuminosides C (90) Vernocuminosides D (91) Vernocuminosides E (92)

Vernocuminosides F (93)

Vernocuminosides G (94) Figure 1.8 (Continued)

1.2.2 Phenol

The vast majority of the plant-based aromatic natural products are phenols. Numerous categories of these compounds exist; here we will consider the simple phenols, phenylpropanoids, flavonoids, tannins, and quinones [7].

1) **Phenylpropanoids**

Phenylpropanoids contain a three-carbon side chain attached to a phenol backbone. Common examples include hydroxycoumarins, phenylpropenes, and lignans which are also the representatives of this class of compounds as shown in Figure 1.9 [7].

The reports of phenylpropanoid compounds from some *Vernonia* genus are shown in Table 1.4 and Figure 1.10, respectively.

Compounds	Part of plants	Biological	Year
[Species]	[Solvent]	activities	[Ref.]
2'-Epicycloisobrachycouma-	Roots	Against Leishmania major	1997[21]
rinone epoxide (103)	[Petroleum	promastigotes, Against	
[V. brachycalyx]	ether, CHCl ₃ -	P. falciparum schizonts,	
	EtOAc (1:1),	Inhibition on the	
	MeOH]	proliferation of human	
		lymphocytes, which was	
		significantly weaker than	
		the antiparasitic effects.	
Cycloisobrachycoumarinone	Roots	Against Leishmania major	1997[21]
epoxide (104)	[Petroleum	promastigotes, Against	
[V. brachycalyx]	ether, CHCl ₃ -	P. falciparum schizonts,	
	EtOAc (1:1),	Inhibition on the	
	MeOH]	proliferation of human	
		lymphocytes, which was	
		significantly weaker than	
		the antiparasitic effects.	
4-Geranyl-5- <i>Ο-β</i> -D-	Aerial parts	- RSY	2007[22]
glucopyranosyl-2(3H)-	[n-hexane,		
benzofuranone (105)	CHCl ₃ ,		
[V. mapirensis]	CHCl ₃ -MeOH		
	(9:1), MeOH]		
4-Isoprenyl-5- <i>O</i> -β-D-	Aerial parts	o Mai Univers	2007[22]
glucopyranosyl-2(3H)-	[<i>n</i> -hexane,		
benzofuranone (106)	CHCl ₃ ,		
[V. mapirensis]	CHCl ₃ -MeOH		
	(9:1), MeOH]		

Table 1.4 Phenylpropaniods from Vernonia genus

2'-Epicycloisobrachycoumarinone epoxide (103)

Cycloisobrachycoumarinone epoxide (104)

4-Geranyl-5-*O*-β-D-glucopyranosyl2(3*H*)-benzofuranone (105)
Figure 1.10 Phenylpropanoids from *Vernonia* genus

2) Flavonoids

Flavonoids possess two benzene rings separated by a propane unit and are derived from flavone. They are generally water soluble. The more conjugated compounds often are bright colored. They are generally found in plants as their glycosides which can complicate structure determinations [7].

The different classes within the group are distinguished by additional oxygen containing heterocyclic rings and hydroxyl groups. These also include catechins, leucoanthocyanidins, flavanones, flavanonols, flavones, anthocyanidins, flavonols, chalcones, aurones, and isoflavones whose general structures are shown in Figure 1.11.

The reports of flavonoid compounds from some *Vernonia* genus are shown in Table 1.5 and Figure 1.12, respectively.

Compounds	Part of plants	Biological	Year
[Species]	[Solvent]	activities	[Ref.]
Quercetin 3- O - β -D-galactopyranoside (115)	Leaves	- 206	1996[23]
[V. galamensis]	[MeOH]		
Quercetin 3- O - β -D-apio-D-furanosyl	Leaves	-00/	1996[23]
$(1\rightarrow 2)$ - β -D-galactopyranoside (116)	[MeOH]		
[V. galamensis]			
Quercetin 3- O - α -L-rhamnopyranosyl	Leaves	-	1996[23]
$(1\rightarrow 6)$ - β -D-galactopyranoside (117)	[MeOH]		
[V. galamensis]			
Isorhamnetin 3- O - β -D-apio-D-furanosyl-	Leaves	้อเอโห	1996[23]
$(1\rightarrow 2)$ - β -D-galactopyranoside (118)	[MeOH]		
[V. galamensis]			
2',3,4,4'-Tetrahydroxychalcone (119)	Seeds	E V O	2004[24]
[V. anthelmintica]	[Petroleum, EtOH]		
5,6,7,4'-Tetrahydroxyflavone (120)	Seeds	-	2004[24]
[V. anthelmintica]	[Petroleum, EtOH]		
7,3',4'-Trihydroxydihydroflavone (121)	Seeds	-	2004[24]
[V. anthelmintica]	[Petroleum, EtOH]		

Table 1.5 Flavoniods from Vernonia genus

Compounds	Part of plants	Biological	Year
[Species]	[Solvent]	activities	[Ref.]
Quercetin 3- <i>O</i> -(6"- <i>p</i> -coumaroyl)-β-D-	Aerial parts	-	2007[22]
glucopyranoside-3'-O-β-D-	[<i>n</i> -hexane, CHCl ₃ ,		
glucopyranoside (122)	CHCl ₃ -MeOH (9:1),		
[V. mapirensis]	MeOH]		
Kaempferol 4'- methyl ether 3-O-(6"-p-	Aerial parts	-	2007[22]
coumaroyl)- β -D-glucopyranoside (123)	[<i>n</i> -hexane, CHCl ₃ ,		
[V. mapirensis]	CHCl ₃ -MeOH (9:1),		
	MeOH]		
Quercetin 3,5,7-trimethyl ether $3'-O-\beta$ -D-	Aerial parts	- 21	2007[22]
glucopyranoside (124)	[<i>n</i> -hexane, CHCl ₃ ,		
[V. mapirensis]	CHCl ₃ -MeOH (9:1),		
	MeOH]		
3,7,3',5'-Tetrahydroxy-4'-methoxyflavone	Aerial parts	- 7	2007[22]
$3-O-\beta$ -D-glucopyranoside (125)	[<i>n</i> -hexane, CHCl ₃ ,		
[V. mapirensis]	CHCl ₃ -MeOH (9:1),		
	MeOH]		

Table 1.5 (Continued)

Quercetin 3-O- β -D-galactopyranoside (115)

Quercetin 3-*O*- β -D-apio-D-furanosyl(1 \rightarrow 2)- β -D-galactopyranoside (116)

Quercetin 3-*O*- α -L-rhamnopyranosyl(1 \rightarrow 6)- β -D-galactopyranoside (117)

Isorhamnetin 3-*O*- β -D-apio-D-furanosyl(1 \rightarrow 2)- β -D-galactopyranoside (118)

Figure 1.12 Flavonoids from Vernonia genus

2',3,4,4'-Tetrahydroxychalcone (119)

5,6,7,4'-Tetrahydroxyflavone (120)

Quercetin 3-O-(6"-p-coumaroyl)- β -D-glucopyranoside-3'-O- β -D-glucopyranoside (122)

Kaempferol 4'-methyl ether 3-O-(6"-p-coumaroyl)- β -D-glucopyranoside (123)

Quercetin 3,5,7-trimethyl ether $3'-O-\beta$ -D-glucopyranoside (124)

3,7,3',5'-Tetrahydroxy-4'-methoxyflavone $3-O-\beta$ -D-glucopyranoside (125)

Figure 1.12 (Continued)

1.3 Cleistocalyx nervosum var. paniala

Cleistocalyx nervosum var. *paniala* (Makiang), an edible fruit found in some parts of Southeast Asia including Thailand, is found growing in scatter locations in some villages of the northern provinces of Thailand such as Chiang Rai, Chiang Mai, Lamphun, Lumpang and Mae Hong Son [25, 26]. Makiang fruit is sour and slightly astringent with scant smell. The rich purplish red color of Makiang is characterized by an anthocyanin profile [26]. Makiang seed is extracted for food flavors. The contribution of plant seed to a flavor can be related to terpene alcohol [27]. In *C. nervosum* var. *paniala* wine, the active compounds were identified as hydrolysable tannins and their derivative i.e. caffeoylquinic acid, gallic acid, ellagic acid and methoxymethylgallate [28].

For the *Cleistocalyx* genus, there were a few phytochemical investigations carried out on this genus. In this study, we will focus on investigation of chemical composition and bioactive substances from *C. nervosum* var. *paniala* seeds.

1.3.1 The botany of Cleistocalyx nervosum var. paniala

Kingdom:	Plantae
Phylum:	Tracheophyta
Class:	Magnoliosida
Order:	Myrtineae
Family:	Myrtaceae
Genus:	Cleistocalyx [29]

Fruits of *C. nervosum* var. *paniala* were collected from Chiang Mai Horticulture Research Center, Office of Agricultural Research and Development Region 1, Department of Agriculture, Lampang, Thailand, in July-August, 2009. Morphological illustration of *C. nervosum* var. *paniala* is shown in Figure 1.13 [30].

(a)

Figure 1.13 Morphological illustration of *C. nervosum* var. *paniala*; a) Fruits, b) Flowers, and c) Leaves

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม Copyright[©] by Chiang Mai University All rights reserved

1.4 Reviews of chemical constituents of *Cleistocalyx* genus

The phytochemical constituents have been reported from the *Cleistocalyx* genus in a few. The flavonoids were found that main group in this genus as shown in Table 1.6 and Figure 1.14, respectively.

Compounds	Part of plants	Biological	Year
[Species]	[Solvent]	activities	[Ref.]
3'-Formyl-4',6'-dihydroxy-2'-	Buds	5 2	2004[31]
methoxy-5'-methylchalcone	[MeOH-H ₂ O		
(126)	(7:3)]		
[C. operculatus]			
(2S)-8-Formyl-5-hydroxy-7-	Buds	-	2004[31]
methoxy-6-methylflavone	[MeOH-H ₂ O		
(127)	(7:3)]		
[C. operculatus]			
2',4'-Dihydroxy-6'-methoxy-	Buds ^{a,b}	Antitumor in SMMC-7721	2004[32] ^a
3',5'-dimethylchalcone (128)	[MeOH-H ₂ O	with IC50 32.3±1.13 µM	2005[33] ^b
[<i>C. operculatus</i>] ^{a,b}	(7:3)] ^{a,b}	and EC ₅₀ 9.0±0.36 µM,	
		8898, HeLa, SPC-A-1, 95-	
		D and GBC-SD cell ^a	
		Cytotoxic for K562 cell	
		with IC ₅₀ 14.2±0.45 µM	
		and EC ₅₀ 3.3 \pm 0.14 μ M ^b	
Cyanidine 3-glucoside (129)	Ripe berries	Antioxidant	2008[26]
[C. nervosum var. paniala]	[EtOH]		
3'-Formyl-4',6',4-trihydroxy-	Buds	Exhibited DPPH radical	2008[34]
2'-methoxy-5'-methylchalcone	[MeOH]	scavenging activity with	-
(130)		IC ₅₀ 22.8 μM	
[<i>C. operculatus</i>]			

Table	1.6	Flavoniods	from	Cleistocalyx	genus

Compounds	Part of plants	Biological	Year
[Species]	[Solvent]	activities	[Ref.]
3'-Formyl-6',4-dihydroxy-2'-	Buds	Exhibited DPPH radical	2008[34]
methoxy-5'-methylchalcone 4'-	[MeOH]	scavenging activity with	
O - β -D-glucopyranoside (131)		IC ₅₀ 117.2 μM	
[C. operculatus]			
(2S)-8-Formyl-6-methyl	Buds	Exhibited DPPH radical	2008[34]
naringenin (132)	[MeOH]	scavenging activity with	
[C. operculatus]		IC ₅₀ 27.1 μM	
(2S)-8-Formyl-6-methyl	Buds	Exhibited DPPH radical	2008[34]
naringenin 7- <i>O</i> -β-D-gluco-	[MeOH]	scavenging activity with	
pyranoside (133)		IC ₅₀ 105.8 μM	
[C. operculatus]			

Table 1.6 (Continued)

HO

3'-Formyl-4',6'-dihydroxy-2'-methoxy-5'-methylchalcone (**126**)

(2*S*)-8-Formyl-5-hydroxy-7-methoxy-6-methylflavone (**127**)

2',4'-Dihydroxy-6'-methoxy -3',5'dimethylchalcone (**128**)

OF

о́сн₂о́

Cyanidine 3-glucoside (129)

Figure 1.14 Flavonoids from *Cleistocalyx* genus

3'-Formyl-4',6',4-trihydroxy-2'-methoxy-5'-methylchalcone (130)

3'-Formyl-6',4-dihydroxy-2'-methoxy-5'-methylchalcone 4'-O- β -D-glucopyranoside

(131)

(2S)-8-Formyl-6-methyl naringenin (132)

(2*S*)-8-Formyl-6-methyl naringenin 7-O- β -D-glucopyranoside (133) Figure 1.14 (Continued)

1.5 Objectives of the study

1.5.1 To isolate and identify the chemical constituents of *V. scandens* aerial parts and *C. nervosum* var. *paniala* seeds

1.5.2 To investigate the biological activities of crude extracts and the isolated constituents from *V. scandens* aerial parts and *C. nervosum* var. *paniala* seeds

1.5.3 To synthesize derivatives of 2',4'-dihydroxy-6'-methoxy-3',5'-dimethylchalcone or DMC