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CHAPTER 3 

Data Selection and Econometric Models 

3.1 Data Selection 

Among economic statistics on international tourism demand, international tourist 

arrivals is the key indicator required by the tourism industry, in particular for policy 

makers, marketers, and researchers. It is used in monitoring and assessing international 

tourism trends. 

The number of tourist arrivals is the most common unit of measure used to quantify 

the volume of international tourism. Over the past few years, the international tourist 

arrivals variable is the most popular measure of tourism demand (Song and Li, 2008). 

Hence, this study use the number of tourist arrivals as the measure of tourism demand. 

In the first case in my study, four variables were designated. There is the number of 

China’s tourist arrivals to the following four destinations: Thailand, Singapore, South 

Korea, and Japan. The monthly data is from January 1993 to October 2011, yielding a 

total of 178 observations. The purpose of the first purpose is to estimate the volatility 

and dynamic dependent structure of tourism demand among the four destinations. The 

names of variables are listed in Table 3.1. 

In the second case, we apply twelve variables, which are the number of China’s 

inbound tourist arrivals from six top source countries and corroding exchange rate, 

namely South Korea, Japan, Russia, USA, Malaysia and Singapore, to examine the 

dependence between tourism demand and exchange rate. Monthly tourist arrivals and 

exchange rate are from January 1994 to December 2011, yielding a total of 216 

observations. The names of variables are listed in Table 3.2. 

Three variables are used in the third case, which are the number of Chinese tourist 

arrivals to three Southeast Asia destinations: Singapore, Thailand, and Malaysia, 

respectively. The sample period is from January 1998 to June 2012, which gives 174 
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observations for each destination. This case examines the volatility and co-movement 

between tourism demands in three China’s outbound tourism markets. Table 3.3 shows 

the name of variable. 

3.2 The copula function 

A copula function is a statistical tool which can capture enables a flexible 

dependence structure between two (or more) random variables to be represented 

(Reboredo, 2011). In 1959, Sklar proved that a joint distribution can be separated into 

the marginal and a dependence function, which called a copula. According to the 

Sklar’s (1959) theorem, the copula can be constructed as follow: 

FXY(x, y) = C(FX(x), FY(y))                                                                                                 (3.1) 

 where FX,Y(x, y)s a joint distribution of two continuous random variables X and Y, 

with marginal functions FX(x)  and FY(y) . The copula is a multivariate cumulative 

distribution function with uniform marginal U [0, 1] and V [0, 1], which relates the 

quantiles of the marginal distributions rather than the original variables. And it is also 

defined by 

c(u, v) = Pr[U ≤ u, V ≤ v]                                                                                                    (3.2) 

where u =  FX(x) and v =  FY(y). Dependence (Eq. (3.2)) is invariant under strictly 

monotonic transformation of the variables u and v. 

Subsequently, Patton (2006) presented the conditional copula function, which can 

be written as: 

FXY|W(x, y|w) = C(FX|W(x|w), FY|W(y|w)|w)                                                                 (3.3) 

where W is the conditioning variable, FX|W(x|w) is the conditional distribution of X|W 

= w, FY|W(y|w)is the conditional distribution of Y|W= w and FXY|W(x, y|w) is the joint 

conditional distribution of (X, Y)|W =w. 

Differentiate Eq. (3.1) and Eq. (3.3), the corresponding unconditional and 

conditional joint densities are obtained: 
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fX,Y(x, y) = fX(x)fY(y)
∂2C(u, v)

∂u∂v
= fX(x)fY(y)c(u, v)                                                     (3.4) 

fXY|W(x, y|w) = fX|W(x|w)fY|W(y|w)
∂2C(u, v|w)

∂u ∂v
 

= fX|W(x|w)fY|W(y|w)c(u, v|w)                                                               (3.5) 

where c(u, v)  and c(u, v|w) are the densities of unconditional and conditional copula , 

respectively. Hence, the conditional joint density of the two variables X and Y is 

represented by the product of the conditional copula density and the two conditional 

marginal densities, fX|W(x|w) and fY|W(y|w). 

There are two kinds of copula: tail independence and tail dependence. The tail 

dependence of copula can measure the dependence of the probability that two variables 

are in the lower or upper joint tails of bivariate distributions. We express the coefficient 

of right (upper) and left (low) tail dependence in terms of the copula between X and Y 

as: 

λR = limu→1Pr[X ≥ FX
−1(u)|Y ≥ FY

−1(u)] = limu→1

1 − 2u + c(u, u)

1 − u
                      (3.6) 

λL = limu→0Pr[X ≥ FX
−1(u)|Y ≥ FY

−1(u)] = limu→0

1 − 2u + c(u, u)

1 − u
                      (3.7) 

where λR  and λL  belong to [0,1] and FX
−1(u  ) and FY

−1(u)are the marginal quantile 

functions. If λR  and λL  are positive, then there are right and left tail dependence, 

otherwise there is right and left tail independence. 

3.3 ARMAX-GARCH model 

The ARMAX(γ,m)—GARCH (1,1) model can be described as follows: 

rs,t = c0 +∑ϕs,irs,t−i

r

i=1

+∑θs,jes,t−j

m

j=1

+∑φs,nDn

12

n=1

+ es,t                                          (3.8) 

es,t = √hs,tzs,t                                                                                                                           (3.9) 
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hs,t = ωs + αse
2
s,t−1

+ βshs,t−1                                                                                        (3.10) 

where ϕs,i is the autoregressive (AR) parameters,  θs,j  denotes moving average (MA) 

parameters, and γ and m are positive integers. And αs and βs are associated with the 

degree of innovation (ARCH effect) and volatility spillover effect (GARCH effect) 

from previous period, respectively. And the restrictions in the variance equation include 

ωs > 0,αs, βs ≥ 0, and αs+βs < 1. Dn denotes the 12 month seasonal dummy variables 

and φs,n is seasonal coefficient. zs,t is the standardized residual. It can be assumed to 

Gaussian distribution, Student-t distribution, GED, skewed-t distribution and so on. 

3.4 The marginal distribution 

According to the descriptive of the data, we choose the suitable distribution in 

different case. William (1908) discovered the student-t distribution, density of function 

is 

student − t(zs,t, λs) = f(zs,t) =
Γ (
λs + 1
2 )

√λsπΓ (
λs
2 )

(1 +
zs
2

λs
)

−
λs+1
2

                                  (3.11) 

where λ is the number of degrees of freedom and Γis the gamma function. 

Hansen (1994) proposed a kind of skewed t distribution, which the density of 

function is 

skewed − t(zs,t|ηs, λs) =

{
 
 

 
 
nd(1 +

1

η
s
− 2

(
nx + m

1 − λs
)
2

)

−
ηs+1

2

, x < −
m

n

nd(1 +
1

η
s
− 2

(
nx + m

1 + λs
)
2

)

−
ηs+1

2

, x ≥ −
m

n

              (3.12) 

The value of m,n and d are defined as: m ≡ 4λd
η−2

η−1
, n2 ≡ 1 + 2λ

2 − n2 and d ≡

ℸ(η+1/2)

√π(η−2)ℸ(η/2)
, where λ and η are the asymmetry and kurtosis parameters, respectively. λ 

is restricted within (-1,1). 
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Fernandez and Steel (1998) proposed another kind of the skewed-t distribution, 

the skewed-t distribution λs degrees of freedom (df) has the following density: 

skewed − t(zs,t|vs, λs) = f(zs,t) =

{
 
 

 
 

2

vs +
1
vs

f(vszs), zs < 0,

2

vs +
1
vs

f (
zs
vs
) , zs ≥ 0,

                                   (3.13) 

where vsis the skewness parameter and λs is the degrees of freedom. Whenvs is smaller 

(greater) than one, it is skewed to the left (right). If  vs =1, the skew-t distribution turn 

to be the usual Student's t distribution. 

3.5 Static copula 

We will use several copula models to measure the static dependence structure in 

China tourism market and capture the following patterns of dependence: static tail 

independence, symmetric and asymmetric tail dependence. In this subsection we will 

briefly describe these copula models and the statistical inference derived from them. 

Followed by Jondeau and Rockinger (2002), the Gaussian Copula is  

Cρ
Gau(u, v|ρ) = Φρ (ϕ

−1(u),ϕ−1(v) ) ,                                                                            (3.14) 

where Φρ is the bivariate standardard normal cdf with the correlation ρ between u and v. 

And  ϕ−1(u)  and ϕ−1(v) are standard normal quantile functions. ρ ∈ (−1,1) is the 

dependence between u and v. 

The Student-t copula (Jondeau and Rockinger, 2002) is defined by  

Cρ
Stu(u, v|ρ, n) = Tρ,n [tn

−1(u), tn
−1(v)],                                                                             (3.15) 

where Tρ,n is the bivariate Student-t cdf with with a degree-of-freedom parameter n and 

correlation ρ.  tn
−1(u) and tn

−1(v)are the univariate Student-t quantile functions, with n 

as the df parameter. ρ ∈ (−1,1), when n → ∞, the Student-t copula converges to the 

Gaussian with zero dependence on the two side tails. Both Gaussian and Student-t 
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copulas describe the symmetric dependence. But there is different feature. The feature 

of Gaussian copula does not have either left tail or right tail (λL = λR = 0). While the 

characteristic of the Student-t copula has non-zero dependence (or extreme-value 

dependence) in right and left tail, λL = λR = 2tn+1(−√n + 1√1 − ρ/√1 + ρ) > 0 

(see Embrechts, Lindskog and McNeil, 2003). 

The Gumbel and Clayton copulas reflect the asymmetric dependence. To capture 

the right (is also called upper tail, it means upper side tail not equal to zero λR = 2 −

21/τ, while low side tail equal to zero λL = 0  ) tail dependence, the Gumbel copula 

(Gumbel, 1960) is defined as  

Cτ
Gum(u, v|τ) = exp{−(ũτ + ṽτ)1/τ},                                                                               (3.16) 

where  ũ = −ln (u)  and  ṽ = −ln (v) , and τ ∈ [1,+∞)  is the dependence between 

u and v. τ = 1 shows no dependence and  τ → ∞  represents a fully dependence 

relationship betweenu and v.   

The Clayton copula captures the left tail dependence (is also called low tail, it 

means upper side tail equal to zero λR = 0, while low side tail not equal to zero λL =

2−1/τ ), and we follow the Clayton (1978) and define as  

Cτ
Clay(u, v|τ) = (u−τ + v−τ − 1)  −1/τ ,                                                                            (3.17) 

where  τ ∈ [0, +∞)  is the degree of dependence between u and v.  τ = 0 shows no 

dependence and the increase of the value of τ indciate the increase of the dependence 

between u and v. 

The Plackett copula is followed by Nelsen (1999) and given by  

Cτ
Pla(u, v|τ) =

1

2(τ − 1)
(1 + (τ − 1)(u + v))

− √(1 + (τ − 1)(u + v))
2
− 4τ(τ − 1)uv ,                                      (3.18) 

does not capture the tail dependence. The degree of dependence τ  belongs to [0, +∞). 

If τ = 1 means independence between u and v; if τ → 0 represents perfectly negative 
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dependence, if τ → ∞ indicates perfectly positive dependence. 

The Frank copula (Nelsen, 1999) is defined as  

Cτ
Fra(u, v|τ) = −

1

τ
ln (1 +

(e−τu − 1)(e−τv − 1)

e−τ − 1
),                                                    (3.19) 

measures the symmetric dependence. τ ∈ [−∞,+∞) , when τ = 0, u and v  are 

independent; when  τ > 0 , they are positively dependent; and when  τ < 0 , they are 

negatively dependent. 

3.6 Dynamic copula 

In the dynamic Gaussian and Student-t copulas, the Pearson correlation coefficient 

ρt is commonly used to describe the dependence structure. In this paper we assume that 

the dependence relies on the one lag dependence ρt−1  and historical 

information |(μt−1 − μt−2)(vt−1 − vt−2)|  (Patton, 2006) in the dynamic Gaussian 

copula. Thus, the dynamic dependence process of the Gaussian follows  

ρt = Λ(αc + βcρt−1 + γc|(μt−1 − μt−2)(vt−1 − vt−2)|) ,                                         (3.20) 

While in the dynamic Student-t copula, we follow Wu et al. (2012). The dynamic 

dependence process of the Student-t is  

ρt = Λ(αc + βcρt−1 + γc(μt−1 − 0.5)(vt−1 − 0.5)) ,                                                   (3.21) 

The conditional dependence, ρt  determined from ρt−1 captures the persistence 

effect. The products (μt−1 − μt−2)(vt−1 − vt−2) and (μt−1 − 0.5)(vt−1 − 0.5)  capture 

historical information while Λ = −ln [(1 − xt)/(1 + xt)]is the logistic transformation, 

which is used to ensure the dependence parameters fall within the interval (-1, 1). 

 The dynamic dependence process of the Gumbel (Wu et al., 2012) is  

τt = Λ(αc + βcτt−1 + γc(ut−1 − 0.5)(vt−1 − 0.5) )                                                  (3.22) 

Followed Patton (2006), we change the historical information  to 
1

 10
∑ |at−1 −
10
i=1

bt−1|. We proposed dynamic dependence processes for Clayton copula as: 
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τt = Π(αc + βcτt−1 + γc
1

10
∑ |ut−1 − vt−1|

10

i=1
)                                                   (3.23)  

In the dynamic Gumbel and Clayton copula, the conditional dependence, τt 

determined from τt−1 captures the persistence effect. In the dynamic Gumbel 

copula, (ut−1 − 0.5)(vt−1 − 0.5) apply to capture historical information. In the Clayton 

dynamic copula, we use 
1

10
∑ |ut−1 − vt−1|
10
i=1  to capture historical information. And Π is 

also the logistic transformation, which is used to ensure the dependence parameters fall 

within the interval (-1, 1). 

3.7 Estimation and calibration of the copula 

The inference function for margins (IFM) method, full maximum likelihood 

estimation method (FML), Canonical Maximum Likelihood (CML) method and Non-

parametric kernel density estimation-ML method are the methods to estimate and 

calibrate of the copula. The optimization procedure will confront problems in terms of 

extensive computation and estimate accuracy. To sum up, CML are superior to the 

other method. Therefore, we employ IFM and CML in this study. 

Followed Jeo and Xu (1996), the two-step ML procedure (called inference function 

for marginal (IFM) method) is used in our study. In the procedure, the first step is to use 

the maximum likelihood (ML, Eq. (23)) to estimate the parameters of the marginal 

distribution while the second step is to use Eq. (24) to estimate the parameters of 

copula.  The efficiency equations are  

θ̂st = argmax∑ lnfst(
T

t=1
zs,t, θst), s = 1,2                                                                    (3.24) 

and 

θ̂IFM = argmax∑ lncst(
T

t=1
Fst(z1,t), F2t(z2,t), θct, θ̂st)                                             (3.25) 

Standard maximum likelihood estimation CML (Canonical Maximum Likelihood 

method) is applied in our study. In the procedure, there are two steps. First step, after 

estimated the parameters of ARMA-GARCH model, the standardized innovations from 
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the model of each variable are computed. Thus, we transform the standardized 

innovations series zs,t  into uniform variate  ûi,t  and v̂j,t (i, j = s, but i ≠ j)  using the 

ECDF, which such that: 

û = F̂1(x1) =
1

T + 1
∑Ixs≤x1

T

s=1

                                                                                           (3.26) 

v̂ = F̂2(x2) =
1

T + 1
∑Ixs≤x2

T

s=1

                                                                                           (3.27) 

where T is the number of observations and I is the indicator function with I(expression) 

={
1  if expression is true
0  if expression is false

. 

Second, we apply the following equation to obtain the following CML estimate 

θ̂CML, of the parameter, θ: 

θ̂CML = arg max∑ lnc(
T

t=1
û, v̂; θ)                                                                                   (3.28) 

where  θ is unknown parameter of the copula. 

3.8 Uniform Distribution Test and Autocorrelation Test 

Given the availability of the estimates of GARCH models, we turn to estimate copula 

functions for each pair of electricity price. For that, we transform the standardized 

residuals zs,t from GARCH model into the variatesûi,t and v̂j,t (i, j = s, but i ≠ j), using 

the ECDF. Each variates  ui,t(or v̂j,t, )i, j = s, but i ≠ j  should be uniform (0, 1), 

otherwise the copula model could be mis-specified. Following Patton (2006) and 

Reboredo (2011) this paper uses two steps to examine uit(or v̂j,t, ). The first test is to 

examine the serial correlation under the null hypothesis of serial independence, which is 

named a Ljung-Box (LB) test. Secondly, the Kolmogorow- Smirnov (KS) test is used to 

test the null hypothesis that the  ui,t(or v̂j,t, ) are uniform (0, 1). The test statistic is 

defined as: 
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𝐾𝑖 = |𝐴𝑖 −𝑂𝑖|                                                                                                                       (3.29) 

where Ai is the cumulative relative frequency for the theoretical distribution within 

each category, Oi is the corresponding value of the sample frequency 

3.9 Goodness of Fit Test 

The evaluations of the copula model have become a crucially important step. 

Therefore, Goodness-of-Fit (GOF) test was applied to the copula, based on the 

empirical process comparing the empirical copula with a parametric estimate of the 

copula derived under the null hypothesis. This paper used Genest, Remillard and 

Beaudoin’s (2009) way to compute approximate P-values for statistics derived from this 

process consisting of using a parametric bootstrap procedure. The test statistic is the 

Cramer-von Mises functional: 

Sn = ∫ Cn(x)
2

[0,1]d
dCn(x) = ∑ {Cn(X̂i) − Cθn

(X̂̂i)}
n
i=1                                               (3.30)   

which is from Genest, Remillard and Beaudoin (2009). And Cn is the empirical copula 

and Cθn
 is an estimator of C under the hypothesis that H0: C ∈  {Cθ} holds. A p-value is 

less than 0.05, which indicate a rejection of the null hypothesis that the model is well 

specified. 
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Table 3.1 The name of variable in the first case 

Variable Name 

South Korea the number of China’s tourist arrivals to South Korea 

Japan the number of China’s tourist arrivals to Japan 

Thailand the number of China’s tourist arrivals to Thailand 

Singapore the number of China’s tourist arrivals to Singapore 

 

Table 3.2 The name of variable in the third case 

Variable Name 

South Korea the number of South Korea’s tourist arrivals to China 

Japan the number of Japan’s tourist arrivals to China 

Russia the number of Russia’s tourist arrivals to China 

USA the number of USA’s tourist arrivals to China 

Malaysia the number of Malaysia’s tourist arrivals to China 

 

Table 3.3 The name of variable in the third case 

Variable Name 

South Korea the number of tourism arrivals to China from South Korea 

Japan the number of tourism arrivals to China from Japan 

Russia the number of tourism arrivals to China from Russia 

USA the number of tourism arrivals to China from USA 

Malaysia the number of tourism arrivals to China from Malaysia 

Singapore the number of tourism arrivals to China from Singapore 

CNY/KRW Exchange rate between CNY and KRW 

CNY/JPY Exchange rate between CNY and JPY 

CNY/SUR Exchange rate between CNY and SUR 

CNY/USD Exchange rate between CNY and USD 

CNY/MYR Exchange rate between CNY and MYR 

CNY/SGD Exchange rate between CNY and SGD 

 

 

 


