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Chapter 2 

 

Theoretical Foundation and Literature Review 

 

2.1 Extreme Value Theory 

 

Extreme value theory (EVT) has been one of the most significant statistical disciplines 

for the applied sciences for a long period of time. EVT is mainly used for modeling 

and analysis of the extreme values of the data of interest with a very low probability to 

happen (Alves and Neves, 2010). There are two approaches for finding the extremes 

of the data of interest.  

 1. Block Maxima (BM).  

 2. Peaks-Over Threshold (POT).  

 

BM and POT are the statistical analyses of maxima or minima, and exceed over a 

upper or a lower threshold (Lai and Wu, 2007). Pokrivcak and Rajcaniova (2011) 

analyzed the statistical relationship between ethanol, gasoline, and crude oil prices by 

evaluating the relationship between the variables in the Impulse Response Function 

(IRF) and the Vector Autoregression (VAR). The result shows that oil prices have no 

co-integration between ethanol, and ethanol and gasoline, but that oil and gasoline 

prices have co-integration in the relationship. Price of oil has a shock effect on the 

price of gasoline.  

 

This paper aims to study the tail dependence between the price of crude oil and the 

price of ethanol in the spot market by using bivariate extreme value copulas.  

 

2.2 Generalized Extreme Value (GEV) Distribution 

 

For a single margin, abstract is the maxima sequence, which is the same as defined 

before, and “i” is the number of blocks. F is the general price distribution, and G is the 
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asymptotic extreme value distribution. The EVT shows that by founding a series of 𝑎𝑛 

and 𝑏𝑛, the maxima can be converted to be the general extreme value distribution 

(GEV) G (Coles, 2001; Beirlant, 2004):              

 

𝐺(𝑥; 𝑏, 𝑎, 𝜉) = 𝑒𝑥𝑝 {− [1 + 𝜉 (
𝑥−𝑏

𝑎
)]

−1/𝜉

}.                           (2.1) 

 

Where 𝜉 is the shape parameter explaining the behavior of the tail of the distribution. 

When 𝜉 < 0 the distribution is the Weibull, 𝜉 > 0 the Fréchet, and 𝜉 = 0 the Gumbel. 

 

2.3 Bivariate block maxima 

 

The bivariate block maxima model could be investigated using the non-parametric and 

parametric approaches. We use the parametric approach in this study to investigate the 

tail dependence between the prices of crude oil and ethanol with the bivariate BM, 

which is provided below (Chuangchid et al, 2012):  

 

Let (𝑋, 𝑌) be a bivariate random vector of the maxima which is an i.i.d. sequence for a 

certain time period. Let the distribution of (𝑋, 𝑌) be the bivariate extreme value 

distribution (BEVD) that is approximated with the cumulative distribution function 

(cdf) G. The BEVD is investigated by margins G1 and G2, which are necessarily EVD, 

by using its Pickands dependence function A (Rakonzai and Tajvidi, 2010): 

 

𝐺(𝑥, 𝑦) = exp {log(𝐺1(𝑥)𝐺2(𝑦))𝐴 (
log(𝐺2(𝑦))

log(𝐺1(𝑥)𝐺2(𝑦))
)}.              (2.2)  

 

Let, A(t) be the stracture of the dependence of the margins. The Pickands dependence 

function A is necessarily convex and is inside the triangle assigned by the points (0, 

1), (1, 1), and (1/2, 1/2). A(t) shows the following:  

 1) 𝐴(𝑡) is convex; 

 2) 𝑚𝑎𝑥{(1 − 𝑡), 𝑡}  ≤ 𝐴(𝑡)  ≤  𝑡; and 

 3) 𝐴(0) = 𝐴(1) = 1.  
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In the second property of A, 𝐺(𝑥, 𝑦) = 𝑚𝑖𝑛{𝐺1(𝑥), 𝐺2(𝑦)}, whereas the upper bound 

corresponds to (complete) independence. 

 

2.4 Parametric Models of Copulas 

 

 2.4.1 Gumbel copula (logistic copula) 

 Invented by Gumbel (1960), the Gumbel or logistic, copula is the oldest of the 

EVC models. It belongs to both the extreme value and the Archimedean copulas. The 

dependence function A(w) is given as follws: 

 

1/( ) [(1 ) ]r r rA w w w  
,                                                 (2.3) 

 

 Where 1r  . The parameter r is the degree of dependence, ranging from 

complete independence ( 1r  ) to complete dependence (r). Therefore, the 

Gumbel extreme value copula is given as 

 

 1/

1 2 1 2( , ) exp [( ln ) ( ln ) )
r r rC u u u u    

.                             (2.4) 

 

 2.4.2 Galambos copula (negative logistic model) 

 Let, 
Ĉ  be the distribution of the (1-U1,…, 1-Ud) random vector. The tail 

dependence function could be written as follow: 

 

𝐶∗(𝑢1, … , 𝑢𝑘) = 𝑒𝑥𝑝

[
 
 
 
 

− ∑ (−1)|𝐽|

𝐽⊂{1,…,𝑘} 
|𝐽|≥2

{∑(−𝑙𝑜𝑔𝑢𝑗)
−𝛼

𝑗∈𝐽

}

−1/𝛼

]
 
 
 
 

∏𝑢𝑗,   

𝑘

𝑗=1

 𝛼 > 0,.    

          (2.5) 
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 2.4.3 Tawn copula (asymmetric logistic copula) 

 The Tawn copula, or the (asymmetric logistic copula,) is much more flexible 

and combine several existing models such as the logistic(∅ = 𝜃 = 1), a mixture of 

logistic and independence models. Complete dependence corresponds to ∅ = 𝜃 = 1 

and 𝑟 = ∞, whereas complete independence corresponds to ∅ = 0 or 𝜃 = 0 or r=1. 

The dependence function is as follows:                     

 

𝐴(𝑤) =  [𝜃𝑟(1 − 𝑤)𝑟 + ∅𝑟𝑤𝑟 ]1/𝑟 + (0 − ∅)𝑤 + 1 − 𝜃,                 (2.6) 

with ∅ ≤ 1 or 𝜃 ≥ 0 and  𝑟 ≥ 1, and the copula function 

 

 1 1 1/

1 2 1 2 1 2( , ) exp ln ln [( ln ) ( ln ) ]r r rC u u u u u u         
.               (2.7) 

 

 2.4.4 Husler-Reiss (HR) copula 

 The drawbacks of the logistic and the negative logistic copulas are that they 

are too limited for large dimensional problems since the dependence is described only 

by a single parameter𝜃.  However, the HR copula does not have this problem; we give 

the corresponding distribution of the bivariate case: 

 

𝐶∗(𝑢1, 𝑢2) = 𝑒𝑥𝑝 [Φ {
𝑎

2
+

1

𝑎
log (

𝑙𝑜𝑔𝑢2

𝑙𝑜𝑔𝑢1
)} log 𝑢1 + Φ{

𝑎

2
+

1

𝑎
log (

log𝑢1

log𝑢2
)} log 𝑢2], (2.8) 

where Φ is the standard normal cumulative distribution function. 

 

 In our case, specifically, let 𝑢1 be the ethanol price return marginal and “v” be 

the crude oil price marginal. We apply from the above mentioned discussion the four 

EV copulas to calculate the dependence of the two energy prices.  

 

2.5 Kendall tau Dependence Measure 

 

The Kendall tau can be expressed uniquely in terms of the copula; it is in the range [-

1, 1]. 

                         𝜏 = 4∫ ∫ 𝐶(𝑢, 𝑣)
1

0
𝑑𝐶(𝑢, 𝑣) − 1

1

0
.                                  (2.9) 
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Especially, in terms of the dependence function A, the particular Kendall tau is given 

as follows: 

 

                        𝜏 =  ∫
𝑡(1−𝑡)

𝐴(𝑡)

1

0
𝐴′′(𝑡)𝑑𝑡.                                             (2.10) 

 

For the EV copula, the Kendall tau can be explicated to be the best choice for the 

dependence function and the linear correlation coefficient. 

 

2.6 Extreme Value Copulas  

 

Extreme value copulas could be analyzed to find suitable models to obtain the 

dependence structure of the extreme values, with the presence of the component wise 

maxima. Here, we consider the bivariate case for our specific problem. Let 

1 2( , ), {1,..., }i i iX X X i n 
 be an i.i.d. sample random vectors with general 

distribution function F, margins 𝐹1, 𝐹2, and copula  𝐶𝐹. F is assumed to be continuous. 

Consider the vector of the component wise maxima: 

 

,1 ,2 ,
1

( , ),
n

n n n n j ij
i

M M M where M X


 
.                           (2.11) 

 

Because the joint functions of 𝑀𝑛 are given by 𝐹𝑛 and the marginal distributions are 

expressed by 𝐹1
𝑛, 𝐹2

𝑛, the copula is 𝐶𝑛 of 𝑀𝑛: 

 

1/ 1/

1 2 1 2( , ) ( , )n n n

n FC u u C u u .                                                 (2.12) 

 

It is clear that the extreme value copula is the same as the Generalized Extreme Value 

(GEV) distribution, which shares the max-stable property (Gudendorf and Segers, 

2009). Therefore, the simple of extreme- value copulas could be obtained by 

employing the max-stability. Also, we can see from the literature studies that copula is 

max-stable if and only if it is an extreme- value copula. The understanding of extreme 

value copula is when we know the maxima distribution; here, we know the joint 
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maxima distribution. This is the point at which the extreme value copula is different 

from other copulas, and also gives the evidence to use the GEV as the margin. 

 

2.7 Literature Review 

 

Martin Schlather (2001) studied those bivariate distributions that have their focus on 

the tail behavior by using Frechet margins, which can be distinguished by the 

coefficient about tail dependence and a weakened varying function. The feature is 

possible sometimes, and it is not denoted by the fact that the domain of attraction is 

focused on the distribution location of a bivariate extreme value distribution. 

 

Results have shown that bivariate distributions, whose intensities are provided as a 

mixture of the densities of two Frechet variables in two, are completely independent 

and have two independent variables. The four members of this level have illustrated 

that the coefficient about tail dependence and the membership in the dominion of 

temptation of an extreme value distribution have two undiagnosed properties of 

distributions upon using unit Frechet margins. 

 

SimlaTokgoz and Amani Elobeid (2006) studied the effect of price shocks in three 

output and input markets that are significant to ethanol: corn, sugar, and gasoline. The 

work examined the impact of shocks of these markets on ethanol and correlated 

agricultural markets in Brazil and the United States. 

 

Their results show that the constituent of a country is a vehicle that defines the 

guidance for explaining ethanol consumption to the differentiation in gasoline price. 

Changes in feedstock costs influence the profitability of ethanol production and the 

household price of ethanol. In Brazil, commodities are influenced by sugarcane; thus, 

any changes in the sugar market influence the competing ethanol market. 

 

Erik Brodin and Holger Rootzén (2008) studied hurricane and wind storm risks. 

This study developed extreme value methods that can be made applicable to storm 

insurance. The methods were used for the losses from 1982 to 2005 incurred by the 



 

11 

biggest Swedish insurance company by using both a new bivariate and a univariate 

Generalized Pareto Distribution (GPD). The bivariate model led to reduced measures 

of risk, except for extreme events.  

 

Their results demonstrate that the bivariate model offered a more substantive picture 

of real inaccuracies. Moreover, this model enabled the analysis of the effects of 

changes in the insurance portfolio, and showed that losses are somewhat unlinked to 

portfolio changes. In addition, it was observed that there was a low trend in the sizes 

of small personal claims. 

 

Pa ́l Rakonczai and Nader Tajvidi (2010) studied the modeling of extremes values, 

that is, multivariate peaks over threshold and extreme value distribution models, using 

multivariate generalized Pareto distributions. These models were compared in their 

ability to forecast extremes in wind speed data in many German cities. When using 

such extreme cases, fitting univariate margins requires some knowledge about the 

dependence structure.  

 

Their results show that parametric cases of the bivariate maxima are completely 

developed. Another alternative way to model the dependence was gotten from non-

parametric dependence functions. Investigating only the maxima can conceal the time 

feature inside the given period. Both exceedances and maxima have been used for 

bivariate datasets occurring from the wind time series that was estimated in northern 

Germany.  

 

Kantaporn Chuangchid, Aree Wiboonpongse, Songsak Sriboonchitta and 

Chukiat Chaiboonsri (2012) studied the dependence structure of the extreme value 

of growth rate between factors having an effect on palm oil prices, which are crude oil 

price and soybean oil price, by using the Bivariate Extreme Value method. The data 

were taken from the daily soybean oil, crude oil, and palm oil prices ranging from July 

1988 to January 2012. 
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Results show that the relationship between palm and soybean prices has some 

dependence at extreme price levels. But the growth rates of crude oil price and palm 

oil prices have only weak dependence at extreme price levels. 

  

Mutita Kaewkheaw, Pisit Leeahtam, and Chukiat Chaiboosri (2012) studied the 

behavior of the U.S. dollar index and gold price. Their work employed bivariate 

extreme value copulas for illustrating the dependence structure between the return of 

the U.S. dollar index and gold price. 

  

The results show that the returns on the U.S. dollar index and gold price are 

independent.  

  

Ribatet Mathieu and Sedki Mohammed (2012) studied max-stable processes and 

extreme value copulas. The problem encountered was in modeling extreme values. 

The extreme value theory shows how to analyze max-stable distributions and set some 

limitations on the copulas to be managed. While the theory for multivariate extremes 

is well defined, it’s normally guided outside the copula framework. Their paper 

focused on an application of modeling on extreme temperatures in Switzerland.  

  

Valeri Natanelov, Andrew M. McKenzie, and Guido Van Huylenbroeck (2013) 

examined the relationships between ethanol, crude oil and corn prices during the 

period between 2006 and 2011 by using a holistic mapping of the present market 

situation and a contextual analytical design. 

  

The results showed that the corn and crude oil markets have a strong relationship on 

one side, and the ethanol and crude oil markets on the other. Moreover, the price 

relationship between ethanol and corn is driven by the U.S. government fuel policy. 

Their analysis indicates that the corn market fluctuates in tandem with the levels of 

ethanol production. Therefore, when crude oil and/or corn prices are high, the 

situation leads to a competitive market for ethanol. 

 

 


