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Chapter 3 

 

Methodology 

 

3.1 Data 

 

The data have been gathered from the Chicago Ethanol Spot data (USD per barrel) 

and the North Sea (Forties) spot Crude Oil (USD per barrel). The data are collected 

from EcoWin. The data span is from November 4, 2005, to December 26, 2013, at a 

daily frequency, which amounts to a total of 1,188 observations. The daily return was 

computed as , , , 1ln( / )i t i t i tR p p  , where 𝑃𝑖,𝑡 and 𝑃𝑖,𝑡−1 are the daily spot prices for 

days “t” and “t-1” for market i. 
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3.2 Conceptual Framework 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 The conceptual framework 
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3.3 Research Methodology 

 

      3.3.1 Generalized Extreme Value (GEV) distribution 

 For a single margin, 𝑀𝑖 is the maxima sequence, which is the same as defined 

before, and “i” is the number of blocks. F is the general price distribution, and G is the 

asymptotic extreme value distribution. The EVT shows that by founding a series of 𝑎𝑛 

and 𝑏𝑛, the maxima can be converted to the general extreme value distribution (GEV) 

G (Coles, 2001; Beirlant, 2004), given as follows: 

 

𝐺(𝑥; 𝑏, 𝑎, 𝜉) = 𝑒𝑥𝑝 {− [1 + 𝜉 (
𝑥−𝑏

𝑎
)]

−1/𝜉

}.                                  (3.1) 

 

 Where 𝜉 is the shape parameter explaining the behavior of the tail of the 

distribution. When 𝜉 < 0 the distribution is the Weibull, 𝜉 > 0 the Fréchet, and 𝜉 = 0 

the Gumbel. 

 

 3.3.2 Bivariate block maxima 

 The bivariate block maxima model is investigated with non-parametric and 

parametric cases. The parametric models that can summarize the bivariate BM are 

provided below (Chuangchid et al, 2012):  

 

𝐺(𝑥, 𝑦) = 𝑒𝑥𝑝 {log(𝐺1(𝑥)𝐺2(𝑦))𝐴 (
log(𝐺2(𝑦))

log(𝐺1(𝑥)𝐺2(𝑦))
)},                     (3.2)  

 

where x = ethanol price, y = crude oil price 

𝐺1 = margin of ethanol price 

𝐺2 = margin of crude oil price 

A(t) = dependence structure between the margins of  ethanol price and crude oil price, 

which is as follows:  

1) A(t) is convex: 

2) 𝑚𝑎𝑥{(1 − 𝑡), 𝑡}  ≤ 𝐴(𝑡)  ≤  𝑡; and 

3) A(0) = A(1) = 1. 
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The second property shows that the lower bound corresponds to the complete 

dependence 𝐺(𝑥, 𝑦) = min(𝐺1(𝑥)𝐺2(𝑦)), whereas the upper bound corresponds to 

(complete) independence 𝐺(𝑥, 𝑦) = (𝐺1(𝑥)𝐺2(𝑦)).  

 For A(t), this paper chose one parametric model from nine models, using 

minimum Akaike Information Criterion (AIC) in the bivariate block maxima case. 

The nine parametric models are given in the following discussion, where “x” is the 

ethanol price, “y” is crude oil price, and “r” is the parameter of dependence between 

the ethanol price and the crude oil price (Stephenson, 2011).  

 

1. Model Number 1 = "log" (Gumbel, 1960).   

 

𝐺(𝑥, 𝑦) = exp [−(𝑥
1

𝑟 + 𝑦
1

𝑟)
𝑟

],                                         (3.3) 

 

 where 0 < 𝑟 ≤ 1. Complete independence is obtained when r = 1. Complete 

dependence is when 𝑟 → 0.  

 

 2. Model Number 2 = "alog" (Tawn, 1988) 

 

𝐺(𝑥, 𝑦) = exp{−(1 − 𝑡1)𝑥 − (1 − 𝑡2)𝑦 − [(𝑡1𝑥)1 𝑟⁄ + (𝑡2𝑦)1 𝑟⁄ ]𝑟} ,    (3.4) 

 

 where 0 < 𝑟 < 1 and 0 ≤ 𝑡1, 𝑡2 ≤ 1. When 𝑡1 = 𝑡2 = 1, the asymmetric 

logistic model becomes equivalent to the logistic model. When r = 1, and either t1 = 0 

or t2 = 0, there is said to be complete independence. When t1 = t2 = 1 and,  𝑟 → 0, 

there is said to be complete dependence.  

 

3. Model Number 3 = "hr" (Husler and Reiss, 1989)  

 

𝐺(𝑥, 𝑦) = exp (−𝑦1Φ{𝑟−1 +
1

2
𝑟[𝑙𝑜𝑔(𝑥 𝑦⁄ )]} − 𝑦2Φ{𝑟−1 +

1

2
𝑟[𝑙𝑜𝑔(𝑦 𝑥⁄ )]})(3.5) 
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 Φ(∙) is the standard normal distribution function and r > 0.  

 When r reaches zero ( 𝑟 → 0), there is said to be independence. 

 When r moves to infinity, it can be said that there is complete dependence. 

 

 4. Model Number 4 = "neglog" (Galambos, 1975) 

 

𝐺(𝑥, 𝑦) = exp[−(𝑥 − 𝑦 + [𝑥−𝑟 + 𝑦−𝑟])−1 𝑟⁄ ],                                (3.6) 

 

 where r > 0. In the limit, as 𝑟 → 0, it denotes complete independence. 

 When r moves to infinity, there is said to be complete dependence. 

 

 5. Model Number 5 = "aneglog" (Joe, 1990) 

 

𝐺(𝑥, 𝑦) = exp[−𝑥 − 𝑦 + [(𝑡1𝑥)−𝑟 + (𝑡2𝑦)−𝑟]−1 𝑟⁄ ]                    (3.7) 

 

 where r > 0 and 0 < 𝑡1, 𝑡2 ≤ 1. When either 𝑡1= 0 or 𝑡2 =0, and r reaches 1, 

there is said to be complete independence. When t1 = t2 = 1 and r moves to infinity, it 

can be said that there is complete dependence. When t1 and t2 = are fixed, and r moves 

to infinity, then these are different limits. 

 

 6. Model Number 6 = "bilog" (Smith, 1990) 

 The equation foe the parameters 𝛼 and  𝛽 is 

 

𝐺(𝑥, 𝑦) = exp{−𝑥𝑞1−𝛼 − 𝑦(1 − 𝑞)1−𝛽},        (3.8) 

 

 where𝑞 = 𝑞(𝑥, 𝑦;  𝛼, 𝛽) is the root of the equation  

 

(1 − 𝛼)𝑥(1 − 𝑞)𝛽 − (1 − 𝛽)𝑦𝑞𝛼 = 0,                          (3.9) 
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 and 0 < 𝛼, 𝛽 < 1. When 𝛼 = 𝛽, the bilogistic model equals the logistic model 

with the dependence parameter, dependence =  𝛼 =  𝛽. When 𝛼 = 𝛽 reaches 0, there 

is said to be complete dependence. When one of 𝛼, 𝛽 is fixed and the other reaches 1, 

difference limits are said to happen. Independence is obtained as 𝛼 = 𝛽 approaches 1.

  

 7. Model Number 7 = "negbilog" (Coles and Tawn, 1994) 

 The equation for 𝛼 and 𝛽 is 

 

𝐺(𝑥, 𝑦) = exp{−𝑥 − 𝑦 + 𝑥𝑞1+𝛼 + 𝑦(1 − 𝑞)1+𝛽},                    (3.10) 

 

 where 𝑞 = 𝑞(𝑥, 𝑦;  𝛼, 𝛽) is the root of the equation 

 

(1 + 𝛼)𝑥𝑞𝛼 − (1 + 𝛽)𝑦(1 − 𝑞)𝛽 = 0,                     (3.11) 

 

 and 𝛼 > 0 and 𝛽 > 0. When 𝛼 =  𝛽, the negative bilogistic model equals the 

negative logistic model with dependence parameter = 1 α⁄ = 1 β⁄ . In the limit, as 𝛼 =

 𝛽 reaches 0, there is said to complete dependence. When 𝛼 =  𝛽 moves to infinity, 

and when one of 𝛼, 𝛽 is fixed and the other moves to infinity, it can be said that there 

is independence. 

 

8. Model Number 8 = "ct" (Coles and Tawn, 1994) 

 Let the parameters be 𝛼 > 0 and 𝛽 > 0 

 

𝐺(𝑥, 𝑦) = exp[−𝑥[1 − 𝐵𝑒(𝑞; 𝛼 + 1, 𝛽)] − 𝑦[1 − 𝐵𝑒(𝑞; 𝛼 + 𝛽, 1)]],         (3.12) 

 

 where 𝑞 =  𝛼𝑦 (𝛼𝑦 + 𝛽𝑥)⁄  and 𝐵𝑒(𝑞; 𝛼, 𝛽) is the beta distribution function 

evaluated at q with shape 1 = 𝛼 and shape 2 = 𝛽. In the limit, as 𝛼 =  𝛽 moves to 

infinity, there is said to be complete dependence. When 𝛼 =  𝛽 reaches zero, and 

when one of 𝛼, 𝛽 is fixed and the other reaches 0, it can be said that there is 

independence. 
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9. Model Number 9 = "amix" (Tawn, 1988) 

 Let the parameters 𝛼 and 𝛽 have a dependence function in the following cubic 

polynomial form: 

 

𝐴(𝑡) = 1 − (𝛼 + 𝛽)𝑡 + 𝛼𝑡2 + 𝛽𝑡3,                                (3.13) 

 

 where 𝛼 ≥ 0 and (𝛼 + 3𝛽) ≥ 0,(𝛼 + 𝛽) ≤ 1 and (𝛼 + 2𝛽) ≤ 1. The beta 

then lies in the interval [-0.5, 0.5] and the alpha in [0, 1.5]. The alpha could be larger 

than 1 if 𝛽 < 0. When both the parameters are zero, it can be said that there is 

independence.  

 

 3.3.3 Parametric models of copulas 

3.3.3.1 Gumbel copula (logistic copula) 

Invented by Gumbel (1960), the Gumbel or logistic, copula is the oldest of 

the EVC models. It belongs to both the Archimedean and the extreme value copulas. 

The dependence function A(w) is given as follows: 

 

1/( ) [(1 ) ]r r rA w w w  
,                                                 (3.14) 

 

 where 1r  . The parameter r measures the degree of dependence, ranging 

from complete independence ( 1r  ) to complete dependence (r). Therefore, the 

Gumbel extreme value copula is given as 

 

 1/

1 2 1 2( , ) exp [( ln ) ( ln ) )
r r rC u u u u    

.                             (3.15) 

 

3.3.3.2 Galambos copula (negative Logistic Model) 

Let, 
Ĉ  be the distribution of the (1-U1,…, 1-Ud) random vector. The tail 

dependence function could be written as follow: 
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𝐶∗(𝑢1, … , 𝑢𝑘) = 𝑒𝑥𝑝

[
 
 
 
 

− ∑ (−1)|𝐽|

𝐽⊂{1,…,𝑘} 
|𝐽|≥2

{∑(−𝑙𝑜𝑔𝑢𝑗)
−𝛼

𝑗∈𝐽

}

−1/𝛼

]
 
 
 
 

∏𝑢𝑗,   

𝑘

𝑗=1

 𝛼 > 0. 

 (3.16) 

 

3.3.3.3 Tawn copula (asymmetric logistic copula) 

The Tawn copula, or (asymmetric logistic copula), is much more flexible 

and combine several existing models such as the logistic model (∅ = 𝜃 = 1), and a 

mixture of logistic and independence models. Complete dependence corresponds to 

∅ = 𝜃 = 1 and 𝑟 = ∞, whereas complete independence corresponds to ∅ = 0 or 𝜃 =

0 or r=1. The dependence function is as follows:      

                

𝐴(𝑤) =  [𝜃𝑟(1 − 𝑤)𝑟 + ∅𝑟𝑤𝑟 ]1/𝑟 + (0 − ∅)𝑤 + 1 − 𝜃,                 (3.17) 

 

 with ∅ ≤ 1 or 𝜃 ≥ 0 and  𝑟 ≥ 1, and the copula function 

 

 1 1 1/

1 2 1 2 1 2( , ) exp ln ln [( ln ) ( ln ) ]r r rC u u u u u u         
.               (3.18) 

 

3.3.3.4 Husler-Reiss (HR) copula 

The drawbacks of the logistic and  the negative logistic copulas are that they 

are too limited for large dimensional problems since the dependence is described only 

by a single parameter 𝜃.  However, the HR copula does not have this problem; we 

give the corresponding distribution of the bivariate case: 

 

𝐶∗(𝑢1, 𝑢2) = 𝑒𝑥𝑝 [Φ {
𝑎

2
+

1

𝑎
log (

𝑙𝑜𝑔𝑢2

𝑙𝑜𝑔𝑢1
)} log 𝑢1 + Φ{

𝑎

2
+

1

𝑎
log (

log𝑢1

log𝑢2
)} log 𝑢2], (3.19) 

 

 where Φ is the standard normal cumulative distribution function. 

 In our case, specifically, let u1 be the ethanol price return marginal and “v” be 

the crude oil price marginal. We apply from the above mentioned discussion the four 

EV copulas to calculate the dependence of the two energy prices.  
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 3.3.4 Kendall tau Dependence Measure 

 The Kendall tau can be expressed uniquely in terms of the copula; it is in the 

range [-1, 1]. 

 

                         𝜏 = 4∫ ∫ 𝐶(𝑢, 𝑣)
1

0
𝑑𝐶(𝑢, 𝑣) − 1

1

0
.                                  (3.20) 

 

 Especially, in terms of the dependence function A, the particular Kendall tau is 

given as follows: 

 

                        𝜏 =  ∫
𝑡(1−𝑡)

𝐴(𝑡)

1

0
𝐴′′(𝑡)𝑑𝑡.                                             (3.21) 

 

 3.3.5 Extreme value copulas  

 Extreme value copulas could be analyzed to find suitable models to obtain the 

dependence structure of the extreme values, with the presence of the component wise 

maxima. Here, we consider the bivariate case for our specific problem. Let 

1 2( , ), {1,..., }i i iX X X i n 
 be an i.i.d. sample random vectors with general 

distribution function F, margins 𝐹1, 𝐹2, and copula  𝐶𝐹. F is assumed to be continuous. 

Consider the vector of the component wise maxima: 

 

,1 ,2 ,
1

( , ),
n

n n n n j ij
i

M M M where M X


 
,                             (3.22) 

 

 Because the joint functions of 𝑀𝑛 are given by 
nF , and the marginal 

distributions are expressed by 1

nF
and 2

nF
, the copula is 𝐶𝑛 of 𝑀𝑛: 

 

1/ 1/

1 2 1 2( , ) ( , )n n n

n FC u u C u u .                                                 (3.23) 

 

 

 



 

22 

 It is clear that the extreme value copula is the same as the Generalized 

Extreme Value (GEV) distribution, which shares the max-stable property (Gudendorf 

and Segers, 2009). Therefore, the simple of extreme- value copulas could be obtained 

by employing the max-stability. Also, we can see from the literature studies that 

copula is max-stable if and only if it is an extreme- value copula. The understanding 

of extreme value copula is when we know the maxima distribution; here, we know the 

joint maxima distribution. This is the point at which the extreme value copula is 

different from other copulas, and also gives the evidence to use the GEV as the 

margin. 

 

 

 

 

 

 

 

 

 

 

 

 


