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CHAPTER 3 

Data and Methodology 

3.1 Data 

The main purpose of this study is to dating the effect of volatility as well as identifies 

Quantitative easing factors that lead a Thailand, Indonesia and Philippines markets 

(exchange rate market, stock market and bond market) from one regime to another 

regime and also signal ahead a turbulent regime as an early warning systems. 

To understand an impact of U.S. Quantitative Easing to Thailand ,Indonesia and 

Philippines currencies ,stock and bond market, the raw monthly data, purchasing U.S.’s 

Mortgage back securities (MBS), purchasing U.S.’s Treasury securities (TS), Fed’s 

balance sheet (FB), Stock exchange of Thailand  index (SET), Jakarta Composite Index 

(JKSE), Philippine Stock Exchange composite index (PSEi), THB/USD (Exth), 

IDR/USE (Exind), PHP/USD (Exphp), Thai government bond yield (THY), Indonesia 

government bond yield (INDY) and Philippines government bond yield (PHY) are 

collected from Thomson Reuters DataStream, from Financial Investment Center (FIC), 

Faculty of economics, Chiang Mai University and www.federalreserve.gov, for the 

period 14 January 2009 to 10 July 2014. Whereas, all of these observation have been 

transform to the first difference of logarithm form in order to make them stationary 

because the stationary time series could avoid the spurious regression problem which 

obtain when using non-stationary time series (Gujarati, 2003).   

 The first difference of logarithms form of variable i  at time t  are calculated as follows: 

                                            , , , 1(ln( ) ln( ))i t i t i tRY Y Y                                                   (3.1) 

where ,i tRY  is the expected return on variable i  at time t , ,i tY  and , 1i tY   are the closing 

prices or index of the variable i for weeks t  and 1t  , respectively, and ln is natural 

logarithm.  
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Thus, the expected return of each variable are denote as follows: 

RMBS  =  the rate of return on Mortgage back securities.  

RTS   =  the rate of return on US’s Treasury securities. 

RFB   =  the rate of return on Fed’s balance sheet. 

RSET   =  the rate of return on Stock exchange of Thailand index. 

REXth  =  the rate of return on Thai baht against US dollar. 

indREX  =  the rate of return on Indonesia rupee against US dollar. 

REXph  =  the rate of return on Philippines peso against US dollar. 

RJKSE  =  the rate of return on Jakarta Composite Index. 

RPSEi  =  the rate of return on Philippine Stock Exchange composite  

   index.  

RTHY   =  the rate of return on Thai government bond yield. 

RINDY  =  the rate of return on Indonesia government bond yield. 

RPHY  =  the rate of return on Philippines government bond yield.  

3.2 Model of Study 

The MS-BVAR model is estimated using block EM algorithm where the blocks are 

Bayesian Vector Autoregressive (BVAR) regression coefficients for each regime 

(separating for intercepts, AR coefficient, and error covariance) and transition matrix.  

Sim, Waggoner, and Zha (2008) provided tools to estimate and conduct inference on 

MS-BVAR models of lag length p as follow: 
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  (3.2) 

whereas  
 

  
'

tY  = n –dimensional column vector of endogenous variables 

    at time t including RMBS, RTS, RFB, RSET, RJKSE, 

    PSEi, REXth, REXind, REXph, RTHY, RINDY and 

    RPHY            
 

  0A  = n×n non singular matrix 

 
 ts  = h dimension vector of regimes (unobserved variable) 

  h = the finite set of integers H 

            
 jA  = n×n matrix coefficient 

  C = vector of intercept terms 

            
 t  = the vector of n unobserved shocks 

    = n×n diagonal matrix of the elements of t  

  p  = the number of lag 
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3.3 Methodology 

Before estimating the parameter, the researcher separates the parameter into 3 groups as 

follows 

1) TIP stock markets consisting of RFB, RTS, RMBS, RSET, RJKSE and RPHEi. 

2) TIP exchange markets consisting of RFB, RTS, RMBS, RExth, RExind, and 

RExph. 

3) TIP bond markets consisting of RFB, RTS, RMBS, RTHY, RINDY, and 

RPHY 

I use the following techniques to estimate each groups using MS-BVAR method as 

follows: 

1. Stationary of the data is tested by using the Augmented Dickey-Fuller (ADF) 

test, which is given as follows: 

tRY  is a random walk:        

                                                
1

2

p

t t i t i t

i

RY RY RY u  



                                     (3.3) 

tRY  is a random walk with drift:             

                                                
0 1

2

p

t t i t i t

i

RY RY RY u   



                               (3.4) 

tRY  is a random walk with drift and trend: 

                                               
0 1 1

2

p

t t i t i t

i

RY t RY RY u    



                        (3.5) 

whereas 

  tRY   = the endogenous variable including RMBS, RTS,RFB,  

    RSET,  RJKSE,RPSEi,R EXth ,R EXind ,REXph, RTHY, 

    RINDY and RPHY 
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  0  =  the constant term  

  
1  =  the coefficient time trend ( t ) 

    =  the coefficient of lagged value (
1tY 
) 

   
tu  =  error term 

By lagged term ( )p , I add a number of lag terms until the data have no autocorrelation. 

Then, I test all these equations using Ordinary Least Square (OLS) in order to the 

estimated a value of  and standard error. Compare the resulting of t-statistic value with 

critical t-statistic value in the ADF tables. If the value of t-statistic exceeds the ADF t-

statistic value, we can reject the null hypothesis, in which case the time series is 

stationary. On the other hand, if the value of t-statistic does not exceeds the ADF t-

statistic value we do not reject the null hypothesis, in which case the time series is non-

stationary whereas, the null hypothesis and alternative hypothesis presents as follows 

    0 : 0H    ( tRY  is non-stationary) 

 
                    0 : 0H    ( tRY is stationary) 

2. Estimating MS-BVAR(p) of Nason and Tallman (2013) which provided by 

Sim, Waggoner, and Zha (2008) to estimate and conduct inference on MS-BVAR 

models of lag length k using multi-step procedure  as follows:  

2.1 Setting the random walk, smoothness, duration prior on the MS-

BVAR(p)  

Sims and Zha (1998) suggested the prior parameters that we believe are about the 

conditional mean of the coefficients of the lagged effects, as specified by the following 

beliefs: 

1) There are proportional standard deviations around the first lag 

coefficients for those of the coefficients of all the other lags. This belief indicates that if 

the standard deviation around the first lag coefficients 
1  is to be small, then that would 

imply a strong belief of random walks and the variables are non-stationary 
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2) The weight of each variable’s own lags
2 , which explains its 

variance is the same as the weights of the other variables’ lags in an equation.  

3) 3  indicates that the proportionate of standard deviation of the 

coefficients in the longer lags are smaller than the coefficients of the earlier lags. Lag 

coefficients will shrink to zero over time; also, higher lags have smaller variance. 

4)
4  indicates that the proportionate of the standard deviation of the 

intercept is based on the standard deviation of the residuals for the equation. 

5) Sum of Autoregressive Coefficients Component ( 5 ): This hyper-

parameter implies the accuracy of the belief that the average lagged value of a variable i 

predicts a better variable i than the averaged lagged values of a variable i j . Larger 

values of 5  indicate higher accuracy (smaller variance) of this belief. As 5  , the 

model interprets that the endogenous variables are described in terms of  their  first 

differences and that there is no co-integration. 

6) Correlation of coefficients/Initial Condition Component ( 6 ) 

supposes the level and variance of variables in the system should be proportionate to 

their means. If this parameter is greater than zero, then we believe that the accuracy of 

the coefficients in the model is proportionate to the sample correlation of the variables. 

As 6  , this means that the prior has more weight on the model with a single 

common trend representation and that the intercepts close to zero.  

In this study, I proposes Normal-wishart prior, Normal-flat prior and Flat-flat prior as 

prior in MS-BVAR(p) model. These priors have a different distribution which is 

inferred as an economic condition, including normal economy, volatile economy, and 

high volatile economy. Therefore, the result of posterior estimation via Gibbs sampler 

will be sensitive to these priors and the value of hyper-parameter that we believe. These 

priors are used for the independent Dirichlet process for MS process.  Table 3.1 will 

interpret the value of hyper-parameters for each prior as follows: 
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Table 3.1 Hyper-parameters of Sims–Zha Reference Prior 

Prior Range 

Hyper-Parameter Normal-wishart normal-flat flat-flat 

0  0.6 0.8 1 

1  0.1 0.15 1 

3  2 1 1 

4  0.25 0.25 1 

5  0 1 0 

1u  0 0 0 

2u  0 0 0 

Adapted from, Brandt, Patrick T (2013) 

2.2 Given estimates of 0 1( , ,... ; (1),.... ( ), ), 1,...,j hA A A h C j h     of the 

MS-BVAR(p), employing the Markov chain Monte Carlo(MCMC) integration method 

of  Gibbs sampler in obtaining the marginal likelihoods and bayes factor or marginal 

posterior distribution on interest for inference by running 1,000 steps of MCMC 

simulator 

The following describes the Gibbs sampler procedure: 

Given 0 1, ,..., hA A A A and 0 1, ,..., h     . Then, let  0A and 0  be two arbitrary 

starting values of A and .The Gibbs sampler proceeds as follows: 

1) Draw 1A from 
1 1 2,0 3,0( , , , )t if A A A Y M . 

2) Draw 1 from 
2 2 3,0 1,1( , , , )t if Y M   .  

3) Draw 1C  from 
3 3 1,1 2,1( , , , )t if C C C Y M .  
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This completes a Gibb iteration and these parameters become 1A , 1 and 
1C . 

Next, using the new parameters as starting values and repeating the prior iteration of 0A

, 0 and C draws, complete another Gibbs iteration to obtain the updated parameters 1,2

, 2,2 and 3,2 . Repeating the previous iterations for 1,000 times to obtain a sequence of 

random draws: 

1 1 1 1,000 1,000 1,000( , , ),...., ( , , )A C A C   

2.3 Constructing the posterior of an MS-BVAR(p) ( )iM by drawing  5,000 

times from the Starting form 
1 1 1 1,000 1,000 1,000( , , ),...., ( , , )A C A C   for Gibbs sampling the 

posterior is as follows: (Braunt, 2009) 

Process 1: Filter/smooth/sample Run the forward filter to get estimates of 1Pr( )i

t tS Y   

from 1, 2,...t T Then backwards sample Pr( , )i i

t t TS Y S from , 1,t T T  2,.....,1T  using 

multi-move steps to get posterior sample of the states.  

Process 2: Sample MS process Draw iQ from the Dirichlet distribution with prior for the 

state-space transitions iQ in the marginal conditional distributions for posterior 

distribution.  

Process 3: Sample h regressions Subject to step 1, classify the observations for tY and 

t pY  and run the multivariate regressions to estimate 
i

j  for 1,....,j h . Repeating step 

1-3, 5,000 times. 

2.4 Choosing among the competing MS-BVAR(p) models by calculating 

posterior odds ratio using log marginal data densities computed on the posterior 

distributions of the previous step 

2.5 Determine the lag length of the MS-BVAR model because the inference 

in the MS-BVAR model also depends on the correct lag length specification. If the 

model has not correct lag length, it will face with the mean square forecast errors VAR 

and also generates autocorrelated errors          
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2.6 Chib (1997) purposed estimation and comparison of multiple change point models. 

He provided 3 models of change point case as follows: 

    1M is the model with no change point. 

2M is the model with one change point. 

3M is the model with two change point.    

Therefore, this model also examines the number of change point as well. Let sum up the 

above information, including prior, lag length and number of change point, we have to 

estimate.In comparing these 21 models, the model with the highest value of log 

marginal likelihood preferred. 

Table 3.2 Competing MS-BVAR Model 

 

Prior 

 

MS-BVAR model 

No-change 

point 

One change 

point 

Two change 

point 

Normal-wishart Lag 1 Model1   

Normal-flat Lag 2 Model2 Model3 Model4 

Flat-flat Lag 3 Model5 Model6 Model7 

Normal-wishart Lag 1 Model8 Model9 Model10 

Normal-flat Lag 2 Model11   

Flat-flat Lag 3 Model12 Model13 Model14 

Normal-wishart Lag 1  Model15 Model16 Model17 

Normal-flat Lag 2 Model18 Model19 Model20 

Flat-flat Lag 3 Model21   

 

4. Rerunning the MS-BVAR(p) models which achieves the best fit to the data 

with the highest value of log marginal likelihood  to produce the transition probabilities 

1,..., hQ Q  

5. The estimated MS-BVAR(p) model produce probabilities of regime 

, 1,....,j j h  at date t . 

6. Constructing an Impulse response and error band s are all based on a Monte 

Carlo sample of 10,000 draws. For all the moving average responses, the same 

procedure is used to draw the sample of impulse responses. A sample is taken from the  
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posterior of BVAR models coefficients. Then, the draw is used to compute the error 

bands for that draws. (Brandt and Freeman,2005) 

7. Forecasting is an under emphasized goal of many researchers because it is the 

most important and powerful tools of inference and policy analysis. To forecast the MS-

BVAR model, there were the basic algorithm given by both Krolzig (1997) and 

Fruhwirth-Schnatter (2006) as follow: 

1) Simulating the regime conditional on 
tS  sample the hidden Markov path 

recursively for 
t hS 

 for 1,....,h s . These are based on a MS-BVAR(p) forecast of the 

Markov transition probabilities for 1Pr( )T h T hS s    

2) Simulating the forecasts conditional on the regimes drawn in the previous 

steps, use the parameters from the 
thi draw of the posterior to construct a reduced form 

MS-BVAR(p) forecast for period T+h. Formally, consider an h-step forecast equation 

for the reduced form MS-BVAR(p) model 

Iterating the algorithm returns a posterior sample of the forecasts where the forecasts 

account for the regime prediction uncertainty in the MS process. Generate the 

distribution of the conditional forecasts from MS-BVAR(p) using Gibbs sampler. Then, 

use this conditional forecast to augment the data and resample the parameters. 


