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Chapter 3 

Basic Definition and Problem statement 

In this chapter, the basic definitions and the problem statement focused in this 

thesis are presented.  

3.1 Basic Definition  

We first present the basic definitions including dataset, (k, e)-Anonymous 

definitions, our objective function i.e. minimum summation error (MSE), and 

incremental data privacy breach.  

Definition 1 (Dataset). Let a dataset D = {d1, d2,..., dn} be a collection of tuples that 

have a set of quasi-identifier attribute Q and a sensitive attribute S. D can be 

continuously increased with new records. The state of D at time i is denoted as Di. A 

projection over the quasi identifier attributes in Di is denoted as Di[Q]. A projection 

over the sensitive attributes in Di is denoted as Di[S].   

Definition 2 ((k, e)-Anonymous partition). Let a set of partitions in dataset Di be P[Di] 

= {p1[Di], p2[Di], . . ., pm[Di]} where the partition is pj[Di] ⊆ Di, ⋃ 𝑝𝑚
𝑗=1 j[Di] = Di, 

⋂ 𝑝𝑚
𝑗=1 j[Di] = ∅ and j =1,2,...,m.  

In addition, let pj[Di][Q] and pj[Di][S] be a projection over the quasi-identifiers 

attributes and the sensitive attribute in partition pj of dataset Di respectively.  

P[Di] satisfies (k, e)-Anonymous condition when the following conditions are 

satisfied. 

1. For all pj[Di], distinct(pj[Di][S]) ≥ k, where distinct(pj[Di][S]) is the number of 

distinct sensitive values in pj[Di][S].  

2. For all pj[Di], error(pj[Di][S]) ≥ e where error(pj[Di][S]) = max(pj[Di][S]) − 

min(pj[Di][S]), max and min are the maximum and minimum of sensitive values 

from pj[Di][S], respectively.  
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Figure 3.1: The illustration for the definition of dataset and the definition of  

(k, e)-Anonymous partition dataset where k = 3 and e = 2,000. 

 Figure 3.1 a) shows the illustration of the dataset at time 0, D0, which has been 

defined in Definition 1. That is the collection of tuples from d1 to d7. The dataset has the 

attributes “Age” and “Gender” as the quasi-identifier attributes, D0[Q], and the attribute 

“Salary” as the sensitive attribute D0[S]. The dataset is partitioned into 2 partitions, 

p1[D0] and p2[D0] as shown in Figure 3.1 b). As k is set at 3 and e is set at 2,000 in this 

example, both partitions are satisfied the condition of (k, e)-Anonymous partition that 

has been defined in Definition 2.  

Not only the privacy is to be protected with the k and e parameters, but also the data 

utility issue must be addressed. In [10], an optimal condition for the (k, e)-Anonymous, 

i.e. minimizing the sum of errors, has been proposed which is as follows.  

Definition 3 (Minimum Summation Error). For a dataset at time i, Di, an error of the set 

of partitions P[Di] is minimized, if the summation of error(pj[Di][S]) of all of partitions 

is minimum.  
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Figure 3.2: Two versions of partitioned dataset of dataset D0 

From the running example in Figure 3.1 a), there could be at least two versions 

of the set of partitions in dataset D0, P[D0] as illustrated in Figure 3.2. Both versions are 

satisfied (3, 2,000)-Anonymous condition. However, the a set of partitions in dataset D0 

version 2 in Figure 3.2 b) have sum of error less than the other version in Figure 3.2 a). 

In fact the 2nd version of the partitioned dataset is the optimal answer to the partitioning 

because there is no other way to the set of partitions in dataset D0 which is smaller than 

its summation error. 

After the dataset is partitioned to satisfy the (k, e)-Anonymous condition, and 

the error is minimized, the data within each partition are shuffled as in [10].  

Definition 4 (k, e)-Anonymous shuffle. Let P′[Di] be a random shuffle over a sensitive 

attribute S of partitioned dataset P[Di]. P[Di] = {p1[Di], p2[Di], . . ., pm[Di]}. P′[Di] = 

{p′1[Di], p′2[Di], ..., p′m[Di]}, p′j[Di] is denoted as a set of tuples {d′k | d′k[Q] = dk[Q] and 

d′k[S] = random(pj[Di][S])}, where the random function provides a value in dk[S] 

randomly without repeated value.  
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Figure 3.3: The illustration of the (3, 2,000)-Anonymous model 

The illustration of the (k, e)-Anonymous model of the running example is shown 

in Figure 3.3. Suppose that the k value is set to 3 and the e value is set to 2000. Then, 

the dataset in Figure 3.3 a) can be partitioned to be P[D0] with respect to the k and the e 

values, as shown in Figure 3.3 b). As a matter of fact, the number of distinct sensitive 

values in each partition is at least 3, and the error of each partition, i.e. difference 

between the maximum and minimum value of each partition, is at least 2000. After the 

shuffling from P[D0]  to be P′[D0] by shuffle function that has been defined in 

Definition 4, it can be seen that the associations between the sensitive attribute and the 

quasi-identifier attributes are un-linked, and thus the privacy can be preserved. 

Then, we continue defining the definitions for a kind of privacy breach when 

additional data are appended as follows.  

Definition 5 (Incremental Privacy Breach). Given any two the sets of partitions in 

dataset P′[Di], and P′[Dj] where j > i. The (k, e)-Anonymous incremental privacy breach 

from P′[Dj] to P′[Di] is denoted as P′[Dj] →(k, e) P′[Di]. Such a breach can be categorized 

into two cases as follows.  

Difference privacy breach. For any partition p′a[Di] and p′b[Dj], let p−
ab be a 

pair of p−
ab[Q] and p−

ab[S] where p−
ab[Q] = p′a[Di][Q]−p′b[Dj][Q], and p−

ab [S] = 

p′a[Di][S] − p′b[Dj][S]. 
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a. P′[Dj] →(k, e) P′[Di], if(∃p′a[Di] and ∃p′b[Dj] in which |p−
ab[Q]| > 0) ∧ 

(distinct(p−
ab[S]) < k ∨ error(p−

ab[S]) < e).  

b. P′[Dj] →(k, e) P′[Di], if(∃p′a[Di] and ∃p′b[Dj] in which |p−
ba[Q]| > 0) ∧ 

(distinct(p−
ba[S]) < k ∨ error(p−

ba[S]) < e).  

Note that ∧ represents the conjunction operator, and ∨ represents the disjunction.   

Intersection privacy breach. Let p∩
ab be a pair of p∩

ab[Q] and p∩
ab[S] where 

p∩
ab[Q] = p′a[Di][Q] ∩ p′b[Dj][Q], and p∩

ab[S] = p′a[Di][S] ∩ p′b[Dj][S]. 

P′[Dj]→(k,e)P′[Di], if(∃p′a[Di] ∧ ∃p′b[Dj] in which |p∩
ab[Q]| > 0) ∧ (distinct(p∩

ab[S]) < k ∨ 

error(p∩
ab[S]) < e).  

 

Figure 3.4: The shuffled dataset at time 0 and 1 that are satisfied  

(3, 2000)-Anonymous which minimum summation error  

Before further discussion on the incremental privacy breach issues will be 

presented, let us consider the example in Figure 3.4 for the understanding of the 

incremental privacy breach. Figure 3.4 a) illustrates P′[D0], that is the shuffled dataset at 

time 0, and Figure 3.4 b) illustrates P′[D1], that is the shuffled dataset at time 1. Note 

that P′[D1] is the result of adding 3 new tuples to D0. It can be seen that both shuffled 
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datasets satisfied (3, 2000)-Anonymous condition, also, they are the optimal solution 

that is subjected to the summation errors. Next, let us illustrate the incremental privacy 

breach for this example. 

A method to break the privacy protection based on (k, e)-Anonymous model, 

when considering P′[D0] together with P′[D1], P′[D0] →(3, 2000) P′[D1], is to determine 

the difference and intersection privacy breach between each partition in P′[D0] and each 

partitions in P′[D1], one by one. According to the difference and intersection privacy 

breach definitions in Definition 5, the set of pair of partitions to find out an incremental 

privacy breach in the example in Figure 3.4 is {(p′a[D0], p′c [D1]), (p′a[D0], p′d [D1]), 

(p′a[D0], p′e [D1]), (p′b[D0], p′c [D1]), (p′b[D0], p′d [D1]), (p′b [D0], p′e [D1])}. If at least 

one of them has an incremental privacy breach then it can conclude this 2 version of 

datasets have an incremental privacy breach from P′[D0] to P′[D1], P′[D0] →(3, 2000) 

P′[D1].  

 

Figure 3.5: Difference privacy breach from p′a[D0] to p′c [D1], p
-
ac 

An example of such difference privacy breach from  p′a[D0] to p′c[D1] shows in 

Figure 3.5. The illustration starts by difference calculation p-
ac[Q] between p′a[D0][Q] 

and p′c[D1][Q] and it calculates p-
ac[S] from the difference of p′a[D0][S] and p′c[D1][S]. 

Then, p-
ac[Q] and p-

ac[S] are composed to p-
ac. The result of composing, p-

ac, are the 2 

tuples indicating (3, 2000)-Anonymous condition is not satisfied. So, this can conclude 

P′[D0] →(3, 2000) P′[D1]. 
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Figure 3.6: Difference privacy breach from p′c [D1] to p′a[D0], p
-
ca 

The other way to determine a difference privacy breach by reverse different is 

illustrated in Figure 3.6. That is the difference privacy breach from p′c[D1] to p′a[D0]. 

The illustration starts by calculating p-
ca [Q] from the difference between p′c[D1][Q] and  

p′a[D0][Q], and calculating of p-
ca[S] from the difference between p′c[D1][S] and 

p′a[D0][S]. Then, p-
ca[Q] and p-

ca[S] are composed to p-
ca. The result is, p-

ca, which 

composed of the 2 tuples that are not satisfied (3, 2000)-Anonymous condition. So, it 

can be concluded that P′[D0] →(3, 2000) P′[D1]. 

 

Figure 3.7: Intersection privacy breach between p′a[D0] and p′c [D1], p
∩

ac 

Last, Figure 3.7 illustrates an intersection privacy breach between p′a[D0] and 

p′c[D1]. From the calculation of p∩
ac[Q] from p′a[D0][Q] intersecting with p′c[D1][Q] 

and calculation of  p∩
ac[S] from p′a[D0][S] intersecting with p′c[D1][S], we can 

determine p∩
ac from p∩

ac[Q] and p∩
ac[S]. It shows that p∩

ac has only 1 tuple that is not 

satisfied (3, 2000)-Anonymous condition. So, it can conclude that 

P′[D0] →(3, 2000) P′[D1]. 
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It can be seen from the examples that the incremental privacy breaches occur 

because of the difference and the intersection conditions. The new partitions p−
ac, p

∩
ac, 

and p−
ca in the examples lead to an incremental privacy breach to the previous dataset in 

terms of the two types of condition: the number of distinct values and the errors bound. 

Furthermore, such a problem can be escalated when there are multiple versions of 

datasets and not only two versions.  

3.2 Problem Definition 

Now, we are ready to define our problem to be addressed in this thesis as follow.  

Given a set of released datasets P = {P′[D0], P′[D1], . . ., P′[Dn−1]}, the current 

dataset Dn to be released, the value of k, and the value of e. The incremental (k, e)-

Anonymous privacy preservation problem is to determine the P′[Dn] that satisfies (k, e)-

Anonymous condition as well as to prevent the incremental privacy breach against all of 

the previous released datasets, and the sum of the errors of P′[Dn] is minimized. 

3.3 Existing Issues  

 From the problem definition in the previous section, it can be seen that there are 

a few issues aside from the privacy preservation in order to solve such problem.  

3.3.1 Efficiency issue 

An approach to solve the problem is brute force process to find the optimal 

partitioned dataset that is subjected to the summation errors. The illustration of brute 

force process is shown in Figure 3.8. The brute force could starts by partitioning the 

current dataset to find all possible partitioned dataset. The complexity of the partitioning 

process is O(2n) where n is the number of tuples of current dataset. Next, each version 

of partitioned dataset are examined for (k, e)-Anonymous conditions, and an 

incremental privacy breach conditions with all previously released datasets. After the 

examination, it leaves some partitioned datasets that have no breach. Last, the dataset 

with minimum sum of error is to be chosen as the solution. It can be seen that, only 

partitioning process in the brute force has in fact, exponential complexity. So, the brute 
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force process might not be appropriate to use in the real world scenarios where the size 

of the dataset is rather large.  

 

 

Figure 3.8: Brute force of incremental process 

The other solution is a naïve re-applying algorithm that re-applies the existing 

static algorithm proposed in [10], the minimum summation of error algorithm which has 

been already discussed in Chapter 2. We present it here again in Figure 3.9 for the sake 

of illustration. 
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Input: 

{ P′[D0],…, P′[Dn-1]}: a set of all previously released datasets  
Dn: a dataset that tn, sorted by sensitive values 

k: a threshold for the minimum number of distinct values 

e: a minimum error of the threshold values 

Output: 

P′[Dn]: the portioned dataset, that does not have an incremental privacy breach with 

P′[D0],…, P′[Dn-1], and it has a minimum sum of error 

partition: the partition information 

error: the error information 

Method: 

1   error[0] = 0 

2   partition[0] = 0 

3   for i =1 to Dn.size 

4       error[i] = infinity 

5       partition[i] = partition[i - 1] 

6       for j = 1 to i 

7          if {di[Dn][S],…, dj[Dn][S]} satisfy k and e 

8            if {di[Dn][S],…, dj[Dn][S]} doesn’t has an incremental breach with P′[Dn-1] 

9              current_error = di[Dn][S] – dj[Dn][S] 

10          else  

11            current_error = infinity 

12          end if 

13        else 

14          current_error = infinity 

15        end if 

16        temp = error[j - 1] + current_error 

17        if temp < error[i] 

18          error[i] = temp 

19          partition[i] = j 

20        end if 

21      end for 

22  end for 

Figure 3.9: The Naïve Re-Applying Algorithm  

From Figure 3.9, the idea of the algorithm is as follows. First, for each 

considered partition of the dataset to be released Dn, the (k, e)-Anonymous condition is 

evaluated. If it satisfies the condition, then the partition is considered for any 

incremental privacy breach occurs against all of the released datasets. If such a partition 

has an incremental privacy breach with at least one of the released datasets, then the 

current partition can be discarded. For the incremental privacy breach determination, the 
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algorithm must compute the difference and the intersection results between the current 

considered partition and each partition for each released dataset. For simplicity, suppose 

that the number of tuples in each released dataset is n, and the number of released 

datasets is m. The complexity of this computing as well as the whole algorithm is 

O(mn3). However, a naïve re-applying algorithm is not proper to use in a long run. 

Because, when the number of released datasets, m, is increased, the algorithm will be 

very inefficient.  

3.3.2 Effectiveness issue 

However, it is not trivial to re-apply a naïve algorithm by considering only one 

previous released dataset for efficiency issue. As the solution dataset has also to be 

optimal subjected to the summation of error. And the solution dataset must not have an 

incremental privacy breach with all previously released datasets. Nevertheless, the re-

applying a naïve algorithm by considering only one previous released dataset may give 

the solution dataset that have an incremental privacy breach from solution dataset to 

another previously released dataset.  

 

Figure 3.10: 3 versions of the solution dataset from naïve re-applying algorithm by 

considering one version of previously released dataset 
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Figure 3.11: Results of an intersection and a difference between a partition in D0 and a 

partition in D2 

The Figure 3.10 illustrates such scenario where an incremental privacy breach 

occurs from using a naïve re-applying algorithm by considering only single version of 

previously released dataset. All solution datasets in this figure are satisfied (3, 2000)-

Anonymous conditions. The algorithm generates the solution dataset, P′[D1], by 

considering P′[D0]. It can be seen, the solution dataset P′[D1] does not have an 

incremental privacy breach with P′[D0], i.e. p-
ac, p-

ca, and p∩
ac satisfy (3, 2000)-

Anonymous conditions. Now consider the solution dataset P′[D2], the algorithm 

generates P′[D2] by considering only P′[D1]. It can be seen that, the solution dataset 

P′[D2] does not have an incremental privacy breach with P′[D1], i.e. p-
ce, p

-
ec, p

∩
ce, p

-
cf,  

p-
fc, and p∩

cf satisfy (3, 2000)-Anonymous conditions. However, an incremental privacy 

breach is occurred between P′[D2] and P′[D0] or P′[D2] →(3, 2000) P′[D0], p
-
ae, p

-
ea, p

∩
ae, 

p-
af, p

-
fa, and p∩

af do not satisfy (3, 2000)-Anonymous conditions as shown in the Figure 

3.11. 

3.4 Summary 

This thesis aims to develop an algorithm that considers only one version of 

previously released dataset and the current dataset as the inputs for finding an optimal 

solution dataset for releasing. Such work will be presented in the next chapter.  

 

Quasi-identifiers Sensitive 

Age Gender Salary 

21 male 82,000 

a) Result of intersection between p′a 

and p′e 

Quasi-identifiers Sensitive 

Age Gender Salary 

23 male 85,000 

52 male 84,000 

b) Result of difference between p′a 

and p′e 

Quasi-identifiers Sensitive 

Age Gender Salary 

29 female 81,000 

30 female 80,000 

c) Result of difference between p′e 

and p′a 

Quasi-identifiers Sensitive 

Age Gender Salary 

23 male 85,000 

52 male 84,000 

d) Result of intersection between p′a 

and p′f 

Quasi-identifiers Sensitive 

Age Gender Salary 

21 male 82,000 

e) Result of difference between p′a 

and p′f 

Quasi-identifiers Sensitive 

Age Gender Salary 

23 female 83,000 

f) Result of difference between p′f 

and p′a 


