

41

Chapter 4

Observations and Proposed Algorithm

This chapter will present the observations of an incremental privacy breach

scenarios. We try to add all possible new datasets and observe the impact of adding.

Then, the observations are evaluated from the impact. All observations indicate to the

theorem that uses to conduct the propose algorithm for finding an optimal result of an

incremental privacy breach scenarios.

4.1 Observation of Incremental Privacy Breach Scenarios

In this section, an observation on a privacy breach from P′[Dn]→(k,e)P′[Dn−1]

where n > 0 is presented. These observations will help to develop an algorithm in the

next section. Obviously, a naive approach to address the proposed problem is to verify a

new version of the dataset against previous datasets to determine whether it leads to an

incremental privacy breach, as discussed in the previous chapter. Evidently, such an

approach can be costly as a result, the observations aim at reducing the computational

cost while the result must be the same as in the naive approach.

Before we provide further discussion, we note here that the result of the privacy

preservation based on the (k, e)-Anonymous in [10] is optimal. In other words, the result

partitions always generate minimum sum of errors. Obviously, such a partition cannot

be split further; otherwise, the result cannot satisfy the k and e conditions. Additionally,

this approach does not lead to any incremental privacy breach because it does not have

any previous released dataset.

Thus, we present an observation for the incremental privacy breaches from

P′[D1] to P′[D0] as follows.

42

Figure 4.1: Overlapping between pa and pb

Lemma 1. An incremental privacy breach occurs from P′[D1] to P′[D0], or

P′[D1]→(k,e)P′[D0], if and only if any partition p′b[D1] exists in P′[D1] and any partition

p′a[D0] exists in P′[D0] for which p′b[D1][S] does not fully cover p′a[D0][S], or p′b[D1][S]

overlaps with p′a[D0][S].

Note that p′b[D1] fully covers p′a[D0] covers if min(p′b[D1][S]) ≤ min(p′a[D0][S]) ∧

max(p′b[D1][S]) ≥ max(p′a[D0][S]) .

Proof 1. Let p−
ab = p′a[D0] − p′b[D1], and p∩

ab = p′a[D0] ∩ p′b[D1]. Suppose that the top

part of p′b[D1][S] is covered by some part of p′a[D0][S], or min(p′b[D1][S]) >

min(p′a[D0][S]) ∧ min(p′b[D1][S]) < max(p′a[D0][S]) ∧ max(p′b[D1][S]) ≥ max(p′a[D0][S])

as shown in Figure 4.1 a). Then p−
ab contains some tuples from p′a[D0] such that the

sensitive value of the tuples are less than min(p′b[D1][S]). The sensitive value of the

covered tuples are at least min(p′b[D1][S]), and they can be obtained in p∩
ab . Thus,

P′[D0] = p−
ab ∪ p∩

ab and p−
ab ∩ p∩

ab = ∅. Consider that there is a separation of p′a[D0]

into p−
ab and p∩

ab in which the incremental privacy breach has occurred because the

original partition p′a[D0] is a part of the optimal solution. Thus, the separated p−
ab and

p∩
ab cannot satisfy the (k, e)-Anonymous condition. Therefore, P′[D1] →(k,e)P′[D0].

In the case where the bottom of p′b[D1][S] is covered by some part of p′a[D0][S],

or max(p′b[D1][S]) < max(p′a[D0][S]) ∧ max(p′b[D1][S]) > min(p′a[D0][S]) ∧

43

min(p′b[D1][S]) ≤ min(p′a[D0][S]), it is obvious that the incremental privacy breach has

occurred in the same way.

Last, in the case where the bottom of p′b[D1][S] shrinks from p′a[D0][S], or

max(p′b[D1][S]) < max(p′a[D0][S]) ∧ min(p′b[D1][S]) > min(p′a[D0][S]), an incremental

privacy breach has also occurred.

To illustrate the observation, let us consider Figure 4.2. This figure shows a part

of D0 and a part of D1, and it can be seen that the part of D0 has increased by some

tuples to become the part of D1. In Figure 4.3, the partitions pa and pb before shuffling

are shown for the readability. Let k = 3 and e = 2000, then, it can be seen that the top

part of pb[D1][S] is covered by some part of pa[D0][S]. The result of the difference

between pb[D1][S] and pa[D0][S], p−
ab, is the partition containing {Tom}. Additionally,

the result of the intersection between pb[D1][S] and pa[D0][S], p∩
ab, is the partition

containing {Mike, Bob}. Both partitions cannot satisfy the (3, 2000)-Anonymous

condition.

Figure 4.2: An example of two released datasets D0 and D1

44

Figure 4.3: An example situation in which the top part of pb[D1][S] is covered by some

part of pa[D0][S]

Figure 4.4: An example situation in which the bottom part of pb[D1][S] is covered by

some part of pa[D0][S]

Figure 4.5: An example situation in which the pb[D1][S] shrinks from pa[D0][S]

Another example is shown in Figure 4.4. Let k = 3 and e = 2000; then, it can be

seen that the bottom part of pb[D1][S] is covered by some part of pa[D0][S]. The result of

the difference between pb[D1][S] and pa[D0][S], p−
ab, is the partition that contains {Tom,

Mike} and the result of the intersection between pb[D1][S] and pa[D0][S], p∩
ab, is the

45

partition that contains {Bob}. It is not possible for both partitions to satisfy the (3,

2000)-Anonymous condition.

In the last case, from Figure 4.5, let k = 3 and e = 2000; then, it can be seen that

the pb[D1][S] shrinks from pa[D0][S]. The result of the difference between pb[D1][S] and

pa[D0][S], p−
ab, is the partition that contains {Tom, Bob} and the result of the

intersection between pb[D1][S] and pa[D0][S], p∩
ab, is the partition that contains {Mike}.

It is not possible for both partitions to satisfy the (3, 2000)-Anonymous condition.

Next, an observation on the incremental privacy breach from P′[D1]→(k,e)P′[D0]

in Lemma 1 is presented. Then, another observation for P′[D2] which is the foundation

for P′[Dn] subsequently will be presented.

Lemma 2. A partition p′c[D2] does not lead to an incremental privacy breach from

P′[D2]→(k,e)P′[D0], if and only if p′c[D2][S] fully covers p′b[D1][S], p′b[D1][S] fully

covers p′a[D0][S], and p′b[D1] does not lead to an incremental privacy breach from

P′[D1]→(k,e)P′[D0].

Proof 2. Suppose that p′c[D2][S] fully covers p′b[D1][S] and p′b[D1] fully covers p′a[D0],

as shown in Figure 4.6, and that p′b[D1] does not lead to an incremental privacy breach

with p′a[D0]. First, consider the intersection and the difference between p′a[D0] and

p′b[D1], it can be seen that p′a[D0] = p∩
ab, and p′b[D1] = p∩

ab ∪ p−
ba. Additionally, p′b[D1]

= p′a ∪ p−
ba. From the fact that p′b[D1] does not lead to an incremental privacy breach,

while considering p′a[D0], p
−

ba satisfies the (k, e)-Anonymous condition.

46

Figure 4.6: Fully covered situation

Next, consider the intersection and the difference between p′b[D1] and p′c[D2], it

can be seen that p′b[D1] = p∩
bc, p′c[D2] = p∩

bc ∪ p−
cb. Additionally, p′c[D2] = p′b[D1] ∪

p−
cb. From p′b[D1] = p′a ∪ p−

ba, therefore, p′c[D2] = p′a ∪ p−
ba ∪ p−

cb.

Finally, consider the intersection and the difference between p′a[D0] and p′c[D2],

it can be seen that p′a[D0] = p∩
ac, p′c[D2] = p∩

ac ∪ p−
ca. Additionally, p′c[D2] = p′a[D0] ∪

p−
cb. From p′c[D2] = p′a ∪ p−

ba ∪ p−
cb , therefore, p−

cb = p−
ba ∪ p−

cb.

However, p−
ba has already satisfied the (k, e)-Anonymous condition, therefore,

p−
ba ∪ p−

cb or p−
cb satisfies the (k, e)-Anonymous condition, also. Thus, the separation of

p′c[D2] into p∩
ac and p−

cb does not lead to an incremental privacy breach from

P′[D2]→(k,e)P′[D0].

In Figure 4.7, let k = 3 and e = 2000, it can be seen that pc[D2][S] fully covers

pb[D1][S], pb[D1] fully covers pa[D0], and pb[D1] does not lead to an incremental privacy

breach with pa[D0]. The result of the difference between pc[D2][S] and pa[D0][S], p−
ab, is

an empty partition, and the result of the intersection between pc[D2][S] and pa[D0][S],

p∩
ab, is the partition that contains {Tom, Mike, Bob}. This partition satisfies the (3,

2000)-Anonymous condition.

47

Figure 4.7: An example situation when the pb[D1][S] is fully covered by pa[D0][S]

It can be seen in the Lemma 1 and Lemma 2, when the dataset Dn is partitioned,

an incremental privacy breach can be discarded, from considering any partition that

does not fully covers any partition in P′[Dn−1]. The cost of the intersection and the

difference is more expensive than the cost of comparing the range between the

partitions. Furthermore, if the partition fully covers any partition in P′[Dn−1] and the

partition does not lead to an incremental privacy breach from P′[Dn] to P′[Dn−1], then,

there is no need to determine the incremental privacy breach for such a partition with

the dataset P′[Dn−2], P′[Dn−3], ..., P′[D0]. Subsequently, the execution time can be

reduced.

Afterwards, the optimal solution P′[Dn] is obtained. In some situations, there

might exist a partition p′c[Dn] that fully covers a partition in the previous released

dataset Dn−1, p′b[Dn−1] and such p′c[Dn] can be separated into many parts without leading

to an incremental privacy breach from P′[Dn]→(k,e)P′[Dn−1]. However, the incremental

privacy breach can still occur when considering the other previous dataset.

48

Figure 4.8: An example situation in which the pc[Dn][S] is separated into two parts

Lemma 3. The separation of any partition p′c[Dn] in P′[Dn] leads to an incremental

privacy breach from P′[Dn] to at least one of previous partitioned dataset, if and only if

the partition p′c[Dn] fully covers any partition p′b[Dn−1] in P′[Dn−1], and P′[Dn] is

optimal.

Proof 3. The separation of any partition p′c[Dn] in P′[Dn] can be grouped into two

situations, i.e. the partition p′c[Dn][S] fully covers any partition p′b[Dn−1][S] in P′[Dn−1],

and the partition p′c[Dn][S] is equal to any partition p′b[Dn−1][S] in P′[Dn−1].

In the first situation, suppose that p′c[Dn][S] fully covers p′b[Dn−1][S], as shown

in Figure 4.8 a), then, a partition p′c[Dn] can be considered in 3 parts, i.e., p′c1 , p′c2 , and

p′c3 . Let p′c2 be equal to p′b[Dn−1], additionally, the partition p′c2 is equal to p∩
bc.

Consider p′c1 and p′c3, if both of them satisfy the (k, e)-Anonymous condition, then they

can be separated without leading to an incremental privacy breach from

P′[Dn]→(k,e)P′[Dn−1]. However, if P′[Dn] is optimal, then at least one of them does not

satisfy the (k, e)-Anonymous condition.

Suppose that p′c[Dn] is separated into two parts, p′c1 and p′c2, as shown in Figure

4.8 b). Consider p′c1 and p′c2, which differed by p′b[Dn−1], such results are p−
c1b and

p−
c2b. From previous discussion, p−

c1b and p−
c1b are equal to p′c1 and p′c3 in Figure 4.8 a)

respectively. Additionally, one of them does not satisfy the (k, e)-Anonymous condition,

49

and the separation of p′c[Dn] leads to an incremental privacy breach from P′[Dn]→(k,e)

P′[Dn−1].

In the second situation, suppose that p′c[Dn][S] is equal to p′b[Dn−1][S], as shown

in Figure 4.9 a). Let p′c[Dn][S] be separated into two parts p′c1 and p′c2 where both

satisfy the (k, e)-Anonymous condition. Therefore, the separation of p′c[Dn][S] does not

lead to an incremental privacy breach from P′[Dn]→(k,e)P′[Dn−1]. Because the result of

intersection of p∩
bc1 and p∩

bc2 are equal to p′c1 and p′c2 respectively, also, p∩
bc1 and p∩

bc2

do not lead to an incremental privacy breach from P′[Dn]→(k,e)P′[Dn−1]. However,

p′b[Dn−1][S] may fully covers to previous partition in P′[Dn−2], hence, separation of

p′b[Dn−1][S] will lead to an incremental privacy breach from P′[Dn−1]→(k,e)P′[Dn−2], that

is similar to the first situation. The partition p′c[Dn][S] is equal to p′b[Dn−1][S],

additionally, the separation of p′c[Dn][S] will lead to an incremental privacy breach from

P′[Dn]→(k,e)P′[Dn−2].

Figure 4.9: The examples of 2 situations on data scenarios when the pc[Dn][S] is

separated into two parts

Suppose that all of partitions are equal as shown in Figure 4.9 b), p′a[D0][S] to

p′c[Dn][S]. The separation of p′c[Dn] will lead to an incremental privacy breach from

P′[Dn]→(k,e)P′[D0], as well as Lemma 1.

 From the first and the second situations, the separation of partition p′c[Dn] leads

to an incremental privacy breach from P′[Dn] to at least one of the previously

partitioned dataset, if p′c[Dn] fully covers p′b[Dn−1], and P′[Dn] is optimal.

50

Obviously, from Lemma 1, Lemma 2 and Lemma 3, we can generalize to the

cases in which n > 2 as in the following theorem. This theorem will be applied to the

proposed algorithm in the next section, to further improve its efficiency.

Theorem 1. p′i[Dn] does not lead to an incremental privacy breach from

P′[Dn]→(k,e)P′[Dn−2], P′[Dn]→(k,e)P′[Dn−3], . . ., P′[Dn]→(k,e)P′[D0], if p′i[Dn] fully covers

to p′j[Dn−1] and p′j[Dn−1] does not lead to an incremental privacy breach from

P′[Dn−1]→(k,e)P′[Dn−2], P′[Dn−1]→(k,e)P′[Dn−3], . . ., P′[Dn−1]→(k,e)P′[D0].

4.2 Proposed Algorithm

From the proposed theorem in the previous section, we can propose an algorithm

that preserves the privacy in the incremental data scenarios as shown in Figure 4.10.

This algorithm is based on the existing non-incremental privacy preservation proposed

in [10]. However, not all previously released datasets are used as the input, only the

previous version of the dataset. From Theorem 1, it can be seen that the current partition

that is consideration, which is specified by indexes i and j, must fully cover a partition

in the previous dataset P′[Dn−1], or the current partition cannot overlap with all of the

partitions in P′[Dn−1]. Thus, before an incremental privacy breach is to be determined

for the current partition, an overlapping condition for such a partition can be considered

against all of the partitions in P′[Dn−1]. If any overlap is found with any partition in

P′[Dn−1], then the current partition can be discarded. The overlap computing considers di

and dj (the border of the current partition) with the first tuple and the last tuple of each

partition in P′[Dn−1]. Thus, the complexity of the overlap consideration is O(p), where p

is the number of partitions in P′[Dn−1].

51

Input:

P′[Dn-1]: a partitioned dataset at time tn-1
Dn: a dataset that tn, sorted by sensitive values

k: a threshold for the minimum number of distinct values

e: a minimum error of the threshold values

Output:

P′[Dn]: the portioned dataset, that does not have an incremental privacy breach with

P′[D0],…, P′[Dn-1], and it has a minimum sum of error

partition: the partition information

error: the error information

Method:

25 error[0] = 0

2 partition[0] = 0

3 for I =1 to Dn.size

4 error[i] = infinity

5 partition[i] = partition[I – 1]

6 for j = 1 to i

7 if {di[Dn][S],…, dj[Dn][S]} satisfy k and e

8 if {di[Dn][S],…, dj[Dn][S]} not overlaps with all of partitions in P′[Dn-1]

9 if {di[Dn][S],…, dj[Dn][S]} doesn’t has an incremental breach with P′[Dn-1]

10 current_error = di[Dn][S] – dj[Dn][S]

11 else

12 current_error = infinity

13 end if

14 else

15 current_error = infinity

16 end if

17 else

18 current_error = infinity

19 end if

20 temp = error[j – 1] + current_error

21 if temp < error[i]

22 error[i] = temp

23 partition[i] = j

24 end if

25 end for

26 end for

Figure 4.10: The Proposed Algorithm

52

Obviously, if the current partition does not lead to an incremental privacy breach

that is subjected to P′[Dn−1], then the current partition does not lead to an incremental

privacy breach with all of the previous released datasets as well. The determination of

the incremental privacy breach searches only in P′[Dn−1]. Thus, the complexity of the

incremental privacy breach detection becomes O(n). In the worst case, the overlap

determination cannot skip the incremental privacy breach determination within all of the

current partitions, thus, the complexity of our proposed algorithm in the worst case

becomes O(n3), and the complexity of our proposed algorithm in the best case becomes

O(pn2).

Figure 4.11: Illustration of proposed algorithm

53

 Figure 4.11 illustrates the proposed algorithm by example. Suppose that the

dataset D1 is the current dataset, the dataset P[D0] is the previously released dataset that

is considered for an incremental privacy breach condition. The proposed algorithm

scans all possible partitions of D1 one by one. Each single partition for consideration is

called current partition. This is execution of the for loop statements using variable i and

j in the 3rd and 6th lines as shown in the algorithm in Figure 4.10. The steps of loop

scanning are shown in the top of the example, Figure 4.11. Each step will consider the

current partition, the current partition is evaluated by 3 conditions as show in the 7th, 8th,

and 9th lines for the k and e condition, not overlapping of the current partition with all

partitions in P[D0] condition, and an incremental breach with P[D0] condition

respectively. If the current partition does not pass at least one of the conditions, a

variable current_error is set to be infinity by the statement in the 12th, 15th, and 18th

lines. In the case that the current partition pass all the conditions, the current_error is

set to be di[Dn][S] – dj[Dn][S] by the statement in the 10th line.

Next, the algorithm determines the summation of error at index i, and such value

is stored in the temp variable as show in the statement in the 20th line of Figure 4.10.

Then the algorithm maintains the minimum summation of error and partitioning index

in error array and partition array by comparing temp and error at index i as show in the

if statement in 21st line. If the temp value is less than the error at the index i, then the

error value at index I is replaced by the temp value, and the partition value at index i is

replaced by the j value as shown in the 22nd and 23rd lines respectively. After the error

array and partition array are updated, the algorithm proceeds to the next partition until

the end of the loops.

54

Table 4.1: An example of the two datasets, to illustrate the algorithm

Let us consider the efficiency of our proposed algorithm by another example.

Suppose that the datasets D0 and D1 are given as shown Figure 4.12. The algorithm

begins with scanning all of the possible partitions in D1. Let us discuss the situation

when i = 5 and j = 1, evidently, the maximum value of the current partition (86,000 in

D1) is less than the maximum value of the first partition of D0 (87,000). The current

partition can be discarded for any further computation. Then, when i = 6 and j = 1, it can

be seen that the current partition fully covers the first partition in D0, thus the

incremental privacy breach is to be determined. In this case, there is no the incremental

privacy breach, so the algorithm continues to determine whether the current partition

leads to the privacy breach when subjected to the k and e condition. On the other hand,

when i = 7 and j = 3, the current partition also fully covers the first partition in D0,

however, an incremental privacy breach occurs. Thus, this consideration is discarded. In

the end, the optimal solution without any privacy breach of D1 is partitioned as show in

the outline of D1 in Figure 4.12.

In order to present the partitioning information, the partition array is to be

scanned backward as shown in Figure 4.12. The first partition can be determined by

scanning at the last tuple. In the figure, the last tuple of D1 has its index number equal to

55

9, and the value in the partition array of such index is 7 as shown in the right-most

column in Figure 4.12. Therefore, the first partition is the set of tuples {d9, d8, d7}.

Then, the second partition can be determined by scanning the tuple of index number 6

(the most index number less than the previous partition, i.e. 7), it can be seen that the

value in partition array of the tuple index is 1. Hence, the second partition is the set of

tuples {d6, d5, d4, d3, d2, d1}.

4.3 Summary

This chapter discusses the incremental privacy breach situations, the theorems

that are conducted by consideration of the situations, and the proposed algorithm that is

conducted by the theorems. The proposed algorithm considers only one version of

previously released dataset and the current dataset as the inputs for finding an optimal

solution dataset for releasing. The efficiency of the proposed algorithm will be

presented in the next chapter.

