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Chapter 4 

Observations and Proposed Algorithm 

This chapter will present the observations of an incremental privacy breach 

scenarios. We try to add all possible new datasets and observe the impact of adding. 

Then, the observations are evaluated from the impact. All observations indicate to the 

theorem that uses to conduct the propose algorithm for finding an optimal result of an 

incremental privacy breach scenarios. 

4.1 Observation of Incremental Privacy Breach Scenarios 

In this section, an observation on a privacy breach from P′[Dn]→(k,e)P′[Dn−1] 

where n > 0 is presented. These observations will help to develop an algorithm in the 

next section. Obviously, a naive approach to address the proposed problem is to verify a 

new version of the dataset against previous datasets to determine whether it leads to an 

incremental privacy breach, as discussed in the previous chapter. Evidently, such an 

approach can be costly as a result, the observations aim at reducing the computational 

cost while the result must be the same as in the naive approach. 

Before we provide further discussion, we note here that the result of the privacy 

preservation based on the (k, e)-Anonymous in [10] is optimal. In other words, the result 

partitions always generate minimum sum of errors. Obviously, such a partition cannot 

be split further; otherwise, the result cannot satisfy the k and e conditions. Additionally, 

this approach does not lead to any incremental privacy breach because it does not have 

any previous released dataset. 

Thus, we present an observation for the incremental privacy breaches from 

P′[D1] to P′[D0] as follows.  
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Figure 4.1: Overlapping between pa and pb 

Lemma 1. An incremental privacy breach occurs from P′[D1] to P′[D0], or 

P′[D1]→(k,e)P′[D0], if and only if any partition p′b[D1] exists in P′[D1] and any partition 

p′a[D0] exists in P′[D0] for which p′b[D1][S] does not fully cover p′a[D0][S], or p′b[D1][S] 

overlaps with p′a[D0][S].  

Note that p′b[D1] fully covers p′a[D0] covers if min(p′b[D1][S]) ≤ min(p′a[D0][S]) ∧ 

max(p′b[D1][S]) ≥ max(p′a[D0][S]) . 

Proof 1. Let p−
ab = p′a[D0] − p′b[D1], and p∩

ab = p′a[D0] ∩ p′b[D1]. Suppose that the top 

part of p′b[D1][S] is covered by some part of p′a[D0][S], or min(p′b[D1][S]) > 

min(p′a[D0][S]) ∧ min(p′b[D1][S]) < max(p′a[D0][S]) ∧ max(p′b[D1][S]) ≥ max(p′a[D0][S]) 

as shown in Figure 4.1 a). Then p−
ab contains some tuples from p′a[D0] such that the 

sensitive value of the tuples are less than min(p′b[D1][S]). The sensitive value of the 

covered tuples are at least min(p′b[D1][S]), and they can be obtained in p∩
ab . Thus, 

P′[D0] = p−
ab ∪ p∩

ab and p−
ab ∩ p∩

ab = ∅. Consider that there is a separation of p′a[D0] 

into p−
ab and p∩

ab in which the incremental privacy breach has occurred because the 

original partition p′a[D0] is a part of the optimal solution. Thus, the separated p−
ab and 

p∩
ab cannot satisfy the (k, e)-Anonymous condition. Therefore, P′[D1] →(k,e)P′[D0]. 

In the case where the bottom of p′b[D1][S] is covered by some part of p′a[D0][S], 

or max(p′b[D1][S]) < max(p′a[D0][S]) ∧ max(p′b[D1][S]) > min(p′a[D0][S]) ∧ 
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min(p′b[D1][S]) ≤ min(p′a[D0][S]), it is obvious that the incremental privacy breach has 

occurred in the same way. 

Last, in the case where the bottom of p′b[D1][S] shrinks from p′a[D0][S], or 

max(p′b[D1][S]) < max(p′a[D0][S]) ∧ min(p′b[D1][S]) > min(p′a[D0][S]), an incremental 

privacy breach has also occurred.  

To illustrate the observation, let us consider Figure 4.2. This figure shows a part 

of D0 and a part of D1, and it can be seen that the part of D0 has increased by some 

tuples to become the part of D1. In Figure 4.3, the partitions pa and pb before shuffling 

are shown for the readability. Let k = 3 and e = 2000, then, it can be seen that the top 

part of pb[D1][S] is covered by some part of pa[D0][S]. The result of the difference 

between pb[D1][S] and pa[D0][S], p−
ab, is the partition containing {Tom}. Additionally, 

the result of the intersection between pb[D1][S] and pa[D0][S], p∩
ab, is the partition 

containing {Mike, Bob}. Both partitions cannot satisfy the (3, 2000)-Anonymous 

condition. 

  

Figure 4.2: An example of two released datasets D0 and D1 
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Figure 4.3: An example situation in which the top part of pb[D1][S] is covered by some 

part of pa[D0][S] 

 

Figure 4.4: An example situation in which the bottom part of pb[D1][S] is covered by 

some part of pa[D0][S] 

 

Figure 4.5: An example situation in which the pb[D1][S] shrinks from pa[D0][S] 

Another example is shown in Figure 4.4. Let k = 3 and e = 2000; then, it can be 

seen that the bottom part of pb[D1][S] is covered by some part of pa[D0][S]. The result of 

the difference between pb[D1][S] and pa[D0][S], p−
ab, is the partition that contains {Tom, 

Mike} and the result of the intersection between pb[D1][S] and pa[D0][S], p∩
ab, is the 
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partition that contains {Bob}. It is not possible for both partitions to satisfy the (3, 

2000)-Anonymous condition.  

In the last case, from Figure 4.5, let k = 3 and e = 2000; then, it can be seen that 

the pb[D1][S] shrinks from pa[D0][S]. The result of the difference between pb[D1][S] and 

pa[D0][S], p−
ab, is the partition that contains {Tom, Bob} and the result of the 

intersection between pb[D1][S] and pa[D0][S], p∩
ab, is the partition that contains {Mike}. 

It is not possible for both partitions to satisfy the (3, 2000)-Anonymous condition.  

Next, an observation on the incremental privacy breach from P′[D1]→(k,e)P′[D0] 

in Lemma 1 is presented. Then, another observation for P′[D2] which is the foundation 

for P′[Dn] subsequently will be presented.  

Lemma 2. A partition p′c[D2] does not lead to an incremental privacy breach from 

P′[D2]→(k,e)P′[D0], if and only if p′c[D2][S] fully covers p′b[D1][S], p′b[D1][S] fully 

covers p′a[D0][S], and p′b[D1] does not lead to an incremental privacy breach from 

P′[D1]→(k,e)P′[D0].  

Proof 2. Suppose that p′c[D2][S] fully covers p′b[D1][S] and p′b[D1] fully covers p′a[D0], 

as shown in Figure 4.6, and that p′b[D1] does not lead to an incremental privacy breach 

with p′a[D0]. First, consider the intersection and the difference between p′a[D0] and 

p′b[D1], it can be seen that p′a[D0] = p∩
ab, and p′b[D1] = p∩

ab ∪ p−
ba. Additionally, p′b[D1] 

= p′a ∪ p−
ba. From the fact that p′b[D1] does not lead to an incremental privacy breach, 

while considering p′a[D0], p
−

ba satisfies the (k, e)-Anonymous condition. 
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Figure 4.6: Fully covered situation 

Next, consider the intersection and the difference between p′b[D1] and p′c[D2], it 

can be seen that p′b[D1] = p∩
bc, p′c[D2] = p∩

bc ∪ p−
cb. Additionally, p′c[D2] = p′b[D1] ∪ 

p−
cb. From p′b[D1] = p′a ∪ p−

ba, therefore, p′c[D2] = p′a ∪ p−
ba ∪ p−

cb.  

Finally, consider the intersection and the difference between p′a[D0] and p′c[D2], 

it can be seen that p′a[D0] = p∩
ac, p′c[D2] = p∩

ac ∪ p−
ca. Additionally, p′c[D2] = p′a[D0] ∪ 

p−
cb. From p′c[D2] = p′a ∪ p−

ba ∪ p−
cb , therefore, p−

cb = p−
ba ∪ p−

cb. 

However, p−
ba has already satisfied the (k, e)-Anonymous condition, therefore, 

p−
ba ∪ p−

cb or p−
cb satisfies the (k, e)-Anonymous condition, also. Thus, the separation of 

p′c[D2] into p∩
ac and p−

cb does not lead to an incremental privacy breach from 

P′[D2]→(k,e)P′[D0]. 

In Figure 4.7, let k = 3 and e = 2000, it can be seen that pc[D2][S] fully covers 

pb[D1][S], pb[D1] fully covers pa[D0], and pb[D1] does not lead to an incremental privacy 

breach with pa[D0]. The result of the difference between pc[D2][S] and pa[D0][S], p−
ab, is 

an empty partition, and the result of the intersection between pc[D2][S] and pa[D0][S], 

p∩
ab, is the partition that contains {Tom, Mike, Bob}. This partition satisfies the (3, 

2000)-Anonymous condition. 
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Figure 4.7: An example situation when the pb[D1][S] is fully covered by pa[D0][S] 

It can be seen in the Lemma 1 and Lemma 2, when the dataset Dn is partitioned, 

an incremental privacy breach can be discarded, from considering any partition that 

does not fully covers any partition in P′[Dn−1]. The cost of the intersection and the 

difference is more expensive than the cost of comparing the range between the 

partitions. Furthermore, if the partition fully covers any partition in P′[Dn−1] and the 

partition does not lead to an incremental privacy breach from P′[Dn] to P′[Dn−1], then, 

there is no need to determine the incremental privacy breach for such a partition with 

the dataset P′[Dn−2], P′[Dn−3], ..., P′[D0]. Subsequently, the execution time can be 

reduced.  

Afterwards, the optimal solution P′[Dn] is obtained. In some situations, there 

might exist a partition p′c[Dn] that fully covers a partition in the previous released 

dataset Dn−1, p′b[Dn−1] and such p′c[Dn] can be separated into many parts without leading 

to an incremental privacy breach from P′[Dn]→(k,e)P′[Dn−1]. However, the incremental 

privacy breach can still occur when considering the other previous dataset.   
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Figure 4.8: An example situation in which the pc[Dn][S] is separated into two parts 

Lemma 3. The separation of any partition p′c[Dn] in P′[Dn] leads to an incremental 

privacy breach from P′[Dn] to at least one of previous partitioned dataset, if and only if 

the partition p′c[Dn] fully covers any partition p′b[Dn−1] in P′[Dn−1], and P′[Dn] is 

optimal.  

Proof 3. The separation of any partition p′c[Dn] in P′[Dn] can be grouped into two 

situations, i.e. the partition p′c[Dn][S] fully covers any partition p′b[Dn−1][S] in P′[Dn−1], 

and the partition p′c[Dn][S] is equal to any partition p′b[Dn−1][S] in P′[Dn−1]. 

In the first situation, suppose that p′c[Dn][S] fully covers p′b[Dn−1][S], as shown 

in Figure 4.8 a), then, a partition p′c[Dn] can be considered in 3 parts, i.e., p′c1 , p′c2 , and 

p′c3 . Let p′c2 be equal to p′b[Dn−1], additionally, the partition p′c2 is equal to p∩
bc. 

Consider p′c1 and p′c3, if both of them satisfy the (k, e)-Anonymous condition, then they 

can be separated without leading to an incremental privacy breach from 

P′[Dn]→(k,e)P′[Dn−1]. However, if P′[Dn] is optimal, then at least one of them does not 

satisfy the (k, e)-Anonymous condition.  

Suppose that p′c[Dn] is separated into two parts, p′c1 and p′c2, as shown in Figure 

4.8 b). Consider p′c1 and p′c2, which differed by p′b[Dn−1], such results are p−
c1b and 

p−
c2b. From previous discussion, p−

c1b and p−
c1b are equal to p′c1 and p′c3 in Figure 4.8 a) 

respectively. Additionally, one of them does not satisfy the (k, e)-Anonymous condition, 
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and the separation of p′c[Dn] leads to an incremental privacy breach from P′[Dn]→(k,e) 

P′[Dn−1].  

In the second situation, suppose that p′c[Dn][S] is equal to p′b[Dn−1][S], as shown 

in Figure 4.9 a). Let p′c[Dn][S] be separated into two parts p′c1 and p′c2 where both 

satisfy the (k, e)-Anonymous condition. Therefore, the separation of p′c[Dn][S] does not 

lead to an incremental privacy breach from P′[Dn]→(k,e)P′[Dn−1]. Because the result of 

intersection of p∩
bc1 and p∩

bc2 are equal to p′c1 and p′c2 respectively, also, p∩
bc1 and p∩

bc2 

do not lead to an incremental privacy breach from P′[Dn]→(k,e)P′[Dn−1]. However, 

p′b[Dn−1][S] may fully covers to previous partition in P′[Dn−2], hence, separation of 

p′b[Dn−1][S] will lead to an incremental privacy breach from P′[Dn−1]→(k,e)P′[Dn−2], that 

is similar to the first situation. The partition p′c[Dn][S] is equal to p′b[Dn−1][S], 

additionally, the separation of p′c[Dn][S] will lead to an incremental privacy breach from 

P′[Dn]→(k,e)P′[Dn−2]. 

Figure 4.9: The examples of 2 situations on data scenarios when the pc[Dn][S] is 

separated into two parts 

Suppose that all of partitions are equal as shown in Figure 4.9 b), p′a[D0][S] to 

p′c[Dn][S]. The separation of p′c[Dn] will lead to an incremental privacy breach from 

P′[Dn]→(k,e)P′[D0], as well as Lemma 1. 

 From the first and the second situations, the separation of partition p′c[Dn] leads 

to an incremental privacy breach from P′[Dn] to at least one of the previously 

partitioned dataset, if p′c[Dn] fully covers p′b[Dn−1], and P′[Dn] is optimal. 
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Obviously, from Lemma 1, Lemma 2 and Lemma 3, we can generalize to the 

cases in which n > 2 as in the following theorem. This theorem will be applied to the 

proposed algorithm in the next section, to further improve its efficiency.  

Theorem 1. p′i[Dn] does not lead to an incremental privacy breach from 

P′[Dn]→(k,e)P′[Dn−2], P′[Dn]→(k,e)P′[Dn−3], . . ., P′[Dn]→(k,e)P′[D0], if p′i[Dn] fully covers 

to p′j[Dn−1] and p′j[Dn−1] does not lead to an incremental privacy breach from 

P′[Dn−1]→(k,e)P′[Dn−2], P′[Dn−1]→(k,e)P′[Dn−3], . . ., P′[Dn−1]→(k,e)P′[D0].  

4.2 Proposed Algorithm 

From the proposed theorem in the previous section, we can propose an algorithm 

that preserves the privacy in the incremental data scenarios as shown in Figure 4.10. 

This algorithm is based on the existing non-incremental privacy preservation proposed 

in [10]. However, not all previously released datasets are used as the input, only the 

previous version of the dataset. From Theorem 1, it can be seen that the current partition 

that is consideration, which is specified by indexes i and j, must fully cover a partition 

in the previous dataset P′[Dn−1], or the current partition cannot overlap with all of the 

partitions in P′[Dn−1]. Thus, before an incremental privacy breach is to be determined 

for the current partition, an overlapping condition for such a partition can be considered 

against all of the partitions in P′[Dn−1]. If any overlap is found with any partition in 

P′[Dn−1], then the current partition can be discarded. The overlap computing considers di 

and dj (the border of the current partition) with the first tuple and the last tuple of each 

partition in P′[Dn−1]. Thus, the complexity of the overlap consideration is O(p), where p 

is the number of partitions in P′[Dn−1].  
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Input: 

P′[Dn-1]: a partitioned dataset at time tn-1 
Dn: a dataset that tn, sorted by sensitive values 

k: a threshold for the minimum number of distinct values 

e: a minimum error of the threshold values 

Output: 

P′[Dn]: the portioned dataset, that does not have an incremental privacy breach with 

P′[D0],…, P′[Dn-1], and it has a minimum sum of error 

partition: the partition information 

error: the error information 

Method: 

25 error[0] = 0 

2   partition[0] = 0 

3   for I =1 to Dn.size 

4       error[i] = infinity 

5       partition[i] = partition[I – 1] 

6       for j = 1 to i 

7          if {di[Dn][S],…, dj[Dn][S]} satisfy k and e 

8            if {di[Dn][S],…, dj[Dn][S]} not overlaps with all of partitions in P′[Dn-1] 

9               if {di[Dn][S],…, dj[Dn][S]} doesn’t has an incremental breach with P′[Dn-1] 

10                current_error = di[Dn][S] – dj[Dn][S] 

11            else  

12                current_error = infinity 

13            end if  

14          else 

15            current_error = infinity 

16          end if 

17        else 

18          current_error = infinity 

19        end if 

20        temp = error[j – 1] + current_error 

21        if temp < error[i] 

22          error[i] = temp 

23          partition[i] = j 

24        end if 

25      end for 

26  end for 

Figure 4.10: The Proposed Algorithm 
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Obviously, if the current partition does not lead to an incremental privacy breach 

that is subjected to P′[Dn−1], then the current partition does not lead to an incremental 

privacy breach with all of the previous released datasets as well. The determination of 

the incremental privacy breach searches only in P′[Dn−1]. Thus, the complexity of the 

incremental privacy breach detection becomes O(n). In the worst case, the overlap 

determination cannot skip the incremental privacy breach determination within all of the 

current partitions, thus, the complexity of our proposed algorithm in the worst case 

becomes O(n3), and the complexity of our proposed algorithm in the best case becomes 

O(pn2). 

 

Figure 4.11: Illustration of proposed algorithm 
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 Figure 4.11 illustrates the proposed algorithm by example. Suppose that the 

dataset D1 is the current dataset, the dataset P[D0] is the previously released dataset that 

is considered for an incremental privacy breach condition. The proposed algorithm 

scans all possible partitions of D1 one by one. Each single partition for consideration is 

called current partition. This is execution of the for loop statements using variable i and 

j in the 3rd and 6th lines as shown in the algorithm in Figure 4.10. The steps of loop 

scanning are shown in the top of the example, Figure 4.11. Each step will consider the 

current partition, the current partition is evaluated by 3 conditions as show in the 7th, 8th, 

and 9th lines for the k and e condition, not overlapping of the current partition with all 

partitions in P[D0] condition, and an incremental breach with P[D0] condition 

respectively. If the current partition does not pass at least one of the conditions, a 

variable current_error is set to be infinity by the statement in the 12th, 15th, and 18th 

lines. In the case that the current partition pass all the conditions, the current_error is 

set to be di[Dn][S] – dj[Dn][S] by the statement in the 10th line.  

Next, the algorithm determines the summation of error at index i, and such value 

is stored in the temp variable as show in the statement in the 20th line of Figure 4.10. 

Then the algorithm maintains the minimum summation of error and partitioning index 

in error array and partition array by comparing temp and error at index i as show in the 

if statement in 21st line. If the temp value is less than the error at the index i, then the 

error value at index I is replaced by the temp value, and the partition value at index i is 

replaced by the j value as shown in the 22nd and 23rd lines respectively.  After the error 

array and partition array are updated, the algorithm proceeds to the next partition until 

the end of the loops. 
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Table 4.1: An example of the two datasets, to illustrate the algorithm

 

Let us consider the efficiency of our proposed algorithm by another example. 

Suppose that the datasets D0 and D1 are given as shown Figure 4.12. The algorithm 

begins with scanning all of the possible partitions in D1. Let us discuss the situation 

when i = 5 and j = 1, evidently, the maximum value of the current partition (86,000 in 

D1) is less than the maximum value of the first partition of D0 (87,000). The current 

partition can be discarded for any further computation. Then, when i = 6 and j = 1, it can 

be seen that the current partition fully covers the first partition in D0, thus the 

incremental privacy breach is to be determined. In this case, there is no the incremental 

privacy breach, so the algorithm continues to determine whether the current partition 

leads to the privacy breach when subjected to the k and e condition. On the other hand, 

when i = 7 and j = 3, the current partition also fully covers the first partition in D0, 

however, an incremental privacy breach occurs. Thus, this consideration is discarded. In 

the end, the optimal solution without any privacy breach of D1 is partitioned as show in 

the outline of D1 in Figure 4.12. 

In order to present the partitioning information, the partition array is to be 

scanned backward as shown in Figure 4.12. The first partition can be determined by 

scanning at the last tuple. In the figure, the last tuple of D1 has its index number equal to 
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9, and the value in the partition array of such index is 7 as shown in the right-most 

column in Figure 4.12. Therefore, the first partition is the set of tuples {d9, d8, d7}. 

Then, the second partition can be determined by scanning the tuple of index number 6 

(the most index number less than the previous partition, i.e. 7), it can be seen that the 

value in partition array of the tuple index is 1. Hence, the second partition is the set of 

tuples {d6, d5, d4, d3, d2, d1}. 

4.3 Summary  

This chapter discusses the incremental privacy breach situations, the theorems 

that are conducted by consideration of the situations, and the proposed algorithm that is 

conducted by the theorems. The proposed algorithm considers only one version of 

previously released dataset and the current dataset as the inputs for finding an optimal 

solution dataset for releasing. The efficiency of the proposed algorithm will be 

presented in the next chapter. 


