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Chapter 2 

Related Work 

The beginning of this chapter discusses about surveying the privacy problems in 

real world. Then the principle privacy preservation models will be discussed. Next, this 

thesis highlights the (k, e)-anonymous model [10] with the purpose of the minimum 

summation of error. Thus, the minimum summation of error algorithm is discussed. At 

last, some incremental privacy preservation problems and the solutions will be 

discussed. 

2.1 Privacy Breach Problems. 

From the time that the Internet has been invented, its usage has increased from 

time to time. In March 2013, the number of users is 2,749 million that is 38.8% of the 

world population [32]. Indeed, data privacy is one of the important topics to be 

addressed currently because the social network is growing up at vary fast speed with 

many activities are involved, such as, work collaboration, family communication, or 

even commercial advertiser. These activities may increase the quantity of the data 

collection and sharing of specific personal information for improving the convenience 

of an information management and access. However, the privacy problem has been 

increased because of the convenience for the data acquisition.  

There are quite a few countries that have not concerned about privacy issues in 

the Internet environment as much as the other developed countries.  Generally, in some 

developed countries, they have the act of legislation for a long time such as, Privacy Act 

of 1974 (US), Electronic Communications Privacy Act (US), Privacy Act 1988 (AUS), 

Data Protection Directive (EU), Data Protection Act 1998 (UK), and Data protection 

(privacy) laws in Russia. 

However, those developed countries still have privacy problems. From the 

survey on anonymity, privacy, and security from the Pew Research Center’s Internet 

Project Survey in America by Carnegie Mellon University in [33], there are some 

interesting statistics about the privacy problem such as 21% of emails or social network 
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accounts was controlled or accessed by someone else, 12% of online users was tracked 

or annoyed, 11% of important personal information was stolen online, and 6% of the 

internet users was cheated and lost some money. These statistics are shown that the 

privacy breach problems occur in the real world. Next, there were some interesting 

cases of privacy breaches from news that happen in the year 2009-2014 as follows. 

The first case happened in Canada. In March 2014, a man living in a Saskatoon 

city was asked to register a medical card of another city that he had not been there 

before. Next, that man received social insurance information of a stranger. It seems that 

personal information was breached by the government. After the case, he started to 

protect of his data privacy and worry about the government operation [34].  

The second case has occurred since December 2009. A laptop of a Florida-based 

health insurer (AvMed) was lost. The laptop contains the unencrypted patient 

information about tens of thousands AvMed customers. This case was discussed on the 

district court. After that, AvMed has agreed to be responsible for victims who lost their 

money involving the breach. Additionally, the firm promised to improve the security 

system such as new password protocols, install disk encryption and GPS tracking tools 

on its laptops [35]. 

The last example case occurred in Australia, the privacy of the customers of a 

telephone organization named Telstra was compromised. The personal information of 

15,775 customers ware showed up with a Google search between February 2012 and 

May 2013. The disclosed information was the customer names, telephone numbers, and, 

in some cases, home and business addresses. Following the breach, Telstra agreed to 

replace the software platform for handling the privacy information, and they will change 

some contracts with third-parties that relate with this privacy breach [36]. 
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2.2 Principle privacy preservation models 

The previous section indicated that the privacy policy of the organizations must 

be managed carefully. However, the best practice in term of the policy might not be 

enough. Therefore, some technology should be introduced to overcome the issue. 

Firstly, security view management [38, 40] could address this problem. Creating 

different views for different usages is one of approaches to overcome this issue. For 

example, when dissemination is required, not all the data are released, and only part 

which is safe from the privacy breaches.  

When the security mechanism is concerned, the access-control methods [38, 40] 

are employed and have been proposed substantially, among database security research 

community. These methods are based on the authorization mechanisms that are positive 

authorization and negative authorization. For the positive authorization, database 

administrators require to specify which group of the users can access to the data, while 

the negative authorization demands the administrator to specify which group of the 

users can “not” access the data. 

Statistical security-control [28, 38] is another approach for addressing the 

privacy problems. Before the data are to be published for any purpose, noise values are 

added into the original dataset to make the data different from the original data. While 

some specific statistical values, for instance, the mean or variance, relied on the noise, 

added data must be maintained as close to the values in the original data as possible. 

A basic method to protect the privacy of information is removing the identifiers 

such as ID or name. However, when all identifiers have been removed, unfortunately, 

there could be other data from other source that can link or overlap together to identify 

individuals. The linking or overlapping can be established by common attributes 

between the two data. For example, consider the dataset in Table 2.1. Suppose that the 

dataset is published carefully by a hospital to be analyzed via a data analysis company. 

By considering this dataset alone could misjudge that the privacy of the individuals has 

been already preserved by the removal of the identifiers. However, suppose that there is 
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another dataset that is released publicly for voting purpose as shown in Table 2.2. If an 

adversary get private information about a man named “Somchai” who lives in an area 

with postal code “50200”, and his age is approximately 50 years-old. The opponent can 

merge the two datasets together using postal code and age attributes, subsequently, his 

medical condition will be disclosed. 

Table 2.1: Linkable dataset 

Postal Code Age Sex Disease 

50211 20 Female Fever 

50211 24 Female Fever 

50211 32 Female Flu 

50202 41 Male Flu 

50200 50 Male Cancer 

Table 2.2: Published dataset 

Name Postal Code Age Sex 

Ratanapat 50211 20 Female 

Ratchaneekorn 50211 24 Female 

Wichaya 50211 32 Female 

Chontipan 50202 41 Male 

Somchai 50200 50 Male 

So, we review some of the techniques with regard to this situation where the 

privacy can be compromised, that is k-Anonymity, l-diversity, t-closeness and (k, e)-

anonymity [3, 4, 6, 7, 8, 10]. Each model has advantages and disadvantages for this 

issue. In addition to the conditions of such model and the transformation must consider 

the tradeoff between privacy and utility. So, each model will be presented with its 

utility, such as information lossy and lossless conditions [14], the data mining workload 

[2, 15, 16], classification [17, 18], and aggregation query answering [10].  

k-Anonymity model [1, 7, 8] 

k-Anonymity [1, 7, 8] is first well-known privacy model which can prevent the 

disseminated data to be linked. A dataset is said to satisfy the anonymity, if for every 

tuple in the dataset, there are another k-1 tuples which are indistinguishable from the 

tuple for all “linkable” attributes. The examples of the linkable attributes in the previous 

case are postal code, age, and sex. If a dataset does not satisfy the standard, the dataset 
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can be generalized, using the attribute’s generalization tree (called hierarchy or 

taxonomy for some works) to generalize, that dataset until the standard is reached. For 

example, from Table 2.1, the dataset can be generalized into a 2-Anonymity dataset by 

generalizing the last digit of the postal code to be unreadable as shown in Table 2.3. 

Nevertheless, data quality issue in the transformation processes is required to be 

addressed, i.e. the generalized dataset is supposed to have enough “quality” to be used 

by the designate data processing. 

Table 2.3: 2-Anonymity dataset 

Postal Code Age Sex Disease 

5021* 20-35 Female Fever 

5021* 20-35 Female Fever 

5021* 20-35 Female Flu 

5020* 36-50 Male Flu 

5020* 36-50 Male Cancer 

Sweeney [7] has defined first information theoretic metric for quantifying the 

data quality of the generalized datasets, i.e. the amount of distortion in a generalized 

dataset by using the ratio of the number of level of the generalized value in the dataset 

to the height of the attribute’s hierarchy, which reports the amount of generalization and 

measures the value distortions. Precision of a generalized dataset is one minus by the 

sum of all values distortions that is normalized (divided) by the total number of values, 

named a precision metric. This metric has been applied to many works that use the k-

Anonymous model.  

Many metrics were developed for evaluating the quality of generalized dataset, 

such as the average q*-block size metric [3, 4, 9] that evaluates the quality using the 

average number of size of the generalized quasi-identify block, and the discernibility 

metric is equals to the summation of squares of the q*-block size. Some metrics were 

created for evaluating the utility of generalized dataset, such as the classification metric 

CM [14, 16] was defined for measuring the utility of the classification workload by 

using the summation of the individual penalties of majority class for each tuple in the 

generalized dataset normalized by the total number of tuples, and the CFCM [18, 21] that 

was applied from CM for measuring the utility of associative classification computing. 
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l-diversity model [4] 

This model uses generalization for privacy preserving. The approach of this 

model is to generalize the tuple values of quasi-identifier attributes to the same value by 

partitioning a set of data tuples into partitions. Sensitive value in the partition also has 

minimum l distinct value. This model appropriates for the scenarios that the sensitive 

value is categorical. 

Table 2.1: 3-diverse dataset after generalization 

Quasi-identifiers Sensitive 

Age Zip code Gender Disease 

30-40 271** * Gastritis ulcer 

30-40 271** * Gastritis 

30-40 271** * Stomach cancer 

41-50 272** * Gastritis 

41-50 272** * Flu 

41-50 272** * Bronchitis 

51-60 276** * Bronchitis 

51-60 276** * Pneumonia 

51-60 276** * Stomach cancer 

 A disadvantage of l-diversity moreover using generalization is when the 

sensitive attribute is skewed. If the sensitive value has 2 distinct values, one has large 

frequency and another one has low frequency. Amount of partition that is satisfied 2-

diversity will depend on the frequency of the low one. Thus, some partitions may have 

too many tuples and they can be over-generalized. 

Table 2.5 shows the skewed sensitive values dataset. The dataset can derive that 

who has age between 30 and 40 and has his/her three-first character of zip code equal to 

271, then he/she can have HIV at 7/9 percent. This is happened because a frequency of 

HIV tuples is very high. 

 

 

 



 

15 

 

Table 2.2: l-diversity skewed sensitive attribute values 

Quasi-identifiers Sensitive 

Age Zip code Gender Disease 

30-60 271** * HIV 

30-60 271** * HIV 

30-60 271** * HIV 

30-60 271** * HIV 

30-60 271** * HIV 

30-60 271** * HIV 

30-60 271** * HIV 

30-60 271** * Pneumonia 

30-60 271** * Stomach cancer 

(c, l)-diversity model [4] 

This model had added c value to l-diversity model. The c value is used to control 

the frequency of the first sensitive value (after sort frequency decreasingly) that has 

maximum frequency of each partition. The condition is that the frequency of the first 

sensitive value must be equal or less than c time of the sum of another sensitive value 

frequency. Table 2.6 show the generalized dataset that satisfies (0.5, 3)-diversity. This 

dataset have 3 distinct values i.e. HIV, Flu, and Gastritis. And each distinct value have 

frequency at most 0.5, for example, frequency of “HIV” is 4/9, 4 is number of “HIV”, 9 

is number of total values.  

Table 2.3: (0.5, 3)-diversity dataset after generalization 

Quasi-identifiers Sensitive 

Age Zip code Gender Disease 

30-40 271** Man HIV 

30-40 271** Man HIV 

30-40 271** Man HIV 

30-40 271** Man HIV 

30-40 271** Man Flu 

30-40 271** Man Flu 

30-40 271** Man Flu 

30-40 271** Man Gastritis 

30-40 271** Man Gastritis 

t-closeness model [3] 

t-closeness is another model that can solve the skew of sensitive attribute 

problem. With this model, the distributions of a sensitive attribute in any quasi–
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identifier group are required to be close to the distribution of the attribute in the whole 

dataset. The t-closeness model uses the Earth Mover Distance (EMD) function [3, 19] to 

measure the closeness between two distributions of sensitive values, and demands the 

closeness to be at most t. 

Nevertheless, t-closeness has several limitations and weaknesses. First, it lacks 

of flexibility of specifying different protection levels for different sensitive values as in 

[3]. Second, the EMD function is not suitable for preventing attribute linkage on 

numerical sensitive attributes. Third, enforcing t-closeness would greatly degrade the 

data utility because the distribution of sensitive values is required to be the same in all 

QID partition [3, 19]. 

For the data quality after transformation, l-diversity, (c, l)-diversity, and the t-

closeness model, use the same utility measurements that are the generalization height 

metric [7], average of q*-block size [3, 4], and discernibility metric [3, 4]. 

(k, e)-anonymous model [10] 

The overview of this model, which our work is based on it, is to disassociate the 

relationship between a quasi-identifier and a numerical sensitive attribute value by 

partitioning a set of data tuples into partitions and shuffling their sensitive values with 

each partition. By the k value is minimum distinct value of sensitive attribute in every 

partitions, the e value is minimum length (maximum – minimum) of sensitive values in 

every partition. 

Table 2.7: An example dataset 

 ID Quasi-identifiers Sensitive 

Tuple ID Name Age Zip code Gender Salary 

1 Alex 35 27101 M 54000 

2 Bob 38 27120 M 55000 

3 Carol 40 27130 M 56000 

4 Debra 41 27229 F 65000 

5 Evan 43 27269 F 75000 

6 Frank 47 27243 M 70000 

7 Gary 52 27656 M 80000 

8 Henry 53 27686 F 75000 

9 Ina 58 27635 M 85000 



 

17 

 

Table 2.8: An example (k, e)-anonymous dataset after permutation 

 Quasi-identifiers Sensitive 

Tuple ID Age Zip code Gender Salary 

1 35 27101 M 55000 

2 38 27120 M 55000 

3 40 27130 M 54000 

4 41 27229 F 65000 

5 43 27269 F 70000 

6 47 27243 M 75000 

7 52 27656 M 75000 

8 53 27686 F 80000 

9 58 27635 M 85000 

 

Table 2.7: An example  in Table 2.7, Tuple ID that is key attribute, and Name is 

identifier attribute. In addition, age, Zip code and Gender are quasi-identifier attribute, 

and Salary is sensitive attribute. The figure shows 9 tuples in this dataset. The dataset 

was transformed before reveal to be a dataset in Table 2.8, which is an sample dataset 

transformed by permutation after removing Name attribute, and this dataset satisfies (k, 

e)-anonymity when k is 3 and e is 2000. 

The Minimum Summation of Error Algorithm for (k, e)-anonymous model 

Based on (k, e)-anonymous model, an aggregation query answering is the main 

utility. An acceptable result of aggregation query answering depends on the partitioning 

step, which can be seen in the Chapter 1. The partitioning with minimum of summation 

of error purpose is one from two proposed solutions in [10]. The minimum summation 

of error algorithm complexity is O(n2), and the algorithm gives the partitioned dataset 

that has relative error of range queries and error of arbitrary queries to close with 

another algorithm (minimum maximum of error algorithm).  The another algorithm 

complexity, however, is O(n6). Hence, this study aims to advance the minimum 

summation of error algorithm for incremental privacy breach problem. 
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Input: 
D: a dataset that is sorted by sensitive values 
k: a minimum number of distinct values threshold 
e: a minimum error of values threshold 
Output: 
partition: the partition information 
error: the error information 
Method: 
1     error[0] = 0 
2     partition[0] = 0 
3     for i =1 to D.size 
4        error[i] = infinity 
5        partition[i] = partition[i - 1] 
6        for j = 1 to i 
7              if distinct({dj,…,di}) ≥ k and (di – dj) ≥ e then 

8                  current_error = (di – dj) 

9              else 

10                 current_error = infinity 

11            end if 

12            temp = error[j - 1] + current_error 
13            if temp < error[i] then 

14                error[i] = temp 

15                partition[i] = j 

16            end if 

17        end for 

18    end for 

Figure 2.1: Minimum Summation of Error Algorithm 

The algorithm is presented in Figure 2.1. In the method, let D be an input dataset 

that has been sorted by sensitive values increasingly. Let k be a minimum number of 

distinct values threshold. Let e be a minimum error of values threshold. Let partition be 

an integer array variable that contains information of partitioning index. Let error be an 

integer array variable that contains information of accumulated error values, error is 

result of maximum sensitive value decreased by minimum sensitive value in a partition. 

The dataset D, e value, and k value are the inputs of the algorithm. The error array and 

partition array are output of the algorithm. After the algorithm is applied to the dataset, 

the partition array will be used to partition the input dataset D. 

The algorithm computes the optimal summation of error in each i-loop. The 

error value is maintained in the error variable. The error[D.size] contains the 
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summation error of the optimal solution. The algorithm applies a greedy approach 

which can be seen in the j loop. The current partition ({dj,…,di}) subjected to the k and 

e values will be compared to the best-known error for such index i. If the current error is 

less than the existing value, it is stored as the new error in error[i]. Also, the index j 

which led to the lower error is held in partition[i]. This comparison will contribute to 

the sub-loop O(n) for each i loop. The complexity of the algorithm, thus, becomes 

O(n2). 

 

Figure 2.2: Illustration of the minimum summation of error algorithm 

 Figure 2.2 illustrates the minimum summation of error algorithm. The dataset D1 

are the original dataset. The algorithm scans all possible partition of D1 one by one. 

Each single partition for consideration is called current partition. This is execution of 
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the for loop statements using variable i and j in the 3rd and 6th lines as shown in the 

algorithm in Figure.2.1. The steps of loop scanning are shown in the top of the example. 

Each step will consider the current partition, the current partition is the current partition 

is evaluated by k and e conditions. If the current partition does not pass the conditions, a 

variable current_error is set to be infinity by the statement in the 10th line. In case that 

the current partition pass the conditions, the current_error is set to be di[Dn][S] – 

dj[Dn][S] by the statement in the 8th line.  

Next, the algorithm determines the summations of error at index i, and such 

value is stored in the temp variable as show in the statement in the 12th line of Figure 

2.1. Then the algorithm maintains the minimum summation of error and partitioning 

index in error array and partition array by comparing temp and error at index i as show 

in the if statement in 13th line. If the temp value is less than the error at the index i, then 

the error value at index I is replaced by the temp value, and the partition value at index i 

is replaced by the j value as shown in the 14th and 15th lines respectively. After the error 

array and partition array are updated, the algorithm proceeds to the next partition until 

the end of the loops. 

Table 2.9: An Example dataset to demonstrate minimum summation of error algorithm 

D 

Error Partition 
Index 

Sensitive 

Value 

1 84,000 Infinity 0 

2 86,000 Infinity 0 

3 87,000 3,000 1 

4 88,000 4,000 1 

5 89,000 5,000 1 

6 90,000 5,000 4 

An example dataset to demonstrate the minimum summation of error algorithm 

is shown in Table 2.9. The quasi-identifier attribute is hidden. Suppose that the k and e 

values are set at 3 and 2000. After the algorithm is applied to the dataset, result of error 

and partition is shown in third and fourth columns of Table 2.9. In order to present the 

partitioning information, the partition array is to be scanned backward as shown in the 
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figure. The first partition can be determined by scanning at the last tuple. In the figure, 

the last tuple of D1 has its index number equal to 6, and the value in the partition array 

of such index is 4 as shown in the right-most column in the figure. Therefore, the first 

partition is the set of tuples {d6, d5, d4}. Then, the second partition can be determined by 

scanning the tuple of index number 3 (the most index number less than the previous 

partition, i.e. 4), it can be seen that the value in partition array of the tuple index is 1. 

Hence, the second partition is the set of tuples {d3, d2, d1}. 

2.3 Incremental privacy preservation problems and the solutions 

An incremental data processing problem on the privacy preservation can be 

described as follows. In general, when the new data are added to the original data, the 

whole data should update with respect to the conditions of a privacy preservation 

model. The re-process of privacy reservation algorithm with whole data are one choice 

of the solution but this could be inefficiency. This section is going to introduce ideas 

and methods to solve efficiently with the privacy preservation in case of an incremental 

data issue. 

Incremental processing and indexing for (k, e)-anonymization 

Based on (k, e)-Anonymous model, after a dataset was transformed with respect 

to k and e conditions, and the minimum summation of error purpose. A new tuple may 

be added to the dataset. The added dataset can be re-processed by the minimum 

summation of error algorithm, but the re-processing is inefficient. Natwichai et al. [25] 

improved an efficient algorithm for reducing an execution time and the result still is 

optimal for the purpose. The method for observation is discussed as follows. First, all 

potential new tuples are defined, and then an impact of each added tuple is observed. 

The idea for improving an efficient algorithm comes from the conclusion of 

observations. The impacts indicate that the new tuple can be categorized into two cases. 

For the first case, a new tuple can be added to the “in-range” of any partition. 

The Table 2.10 shows the example of adding in in-range case, i.e. the new tuple is 

added to a partition, inserted after the begin tuple and before the end tuple of a partition. 



 

22 

 

There might be two impacts after adding new tuple in the first case. Firstly, the borders 

of close partitions are unchanged as shown in Table 2.10. Secondly, the borders of 

previous partition are changed as shown in Table 2.11. 

Table 2.10: An example dataset demonstrates a border unchanged impact of adding new 

tuple in an in-range case 

D 

Error Error' Partition Partition' 
Index 

Sensitive 

Value 

1 84,000 Infinity Infinity 0 0 

2 85,000 Infinity Infinity 0 0 

3 86,000 2,000 2,000 1 1 

4 88,000 4,000 4,000 1 1 

5 89,000 5,000 5,000 1 1 

new tuple 90,000 - 4,000 - 4 

6 91,000 5,000 5,000 4 4 

7 94,000 8,000 8,000 4 4 

8 96,000 10,000 9,000 4 - 

9 97,000 8,000 8,000 7 7 

Table 2.10 demonstrates the impact of adding new tuple in an in-range case 

which the borders of closed partitions are unchanged. In the Table 2.10, error′ and 

Partition' contain the information after re-processes the minimum summation of error 

algorithm. That can be seen, that the information before the added tuple is stable. 

Table 2.11 demonstrates the impact of adding a new tuple in an in-range case 

which the borders of closed partitions are changed. However, after partitioning, the end 

border of first partition is move below. 

For the second case, a new tuple is added at the border of any partition. The 

figure 2.6 illustrates an instance of such case, i.e. the new tuple is added at between two 

partitions. After the adding, the added tuple will be merged with nearest partition by 

decided on sensitive values of close tuples. If the added tuple merged with previous 

partition, there is no impact on the rest of partitions.  In contrast, if the added tuple 

merged with next partition, the borders of further partitions may be impacted. 
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Table 2.11: An example dataset demonstrates a borders changed impact of adding new 

tuple in in-range case 

D 

Error Error' Partition Partition' 
Index 

Sensitive 

Value 

1 83,000 Infinity Infinity 0 0 

2 84,000 Infinity Infinity 0 0 

3 85,000 2,000 2,000 1 1 

4 87,000 4,000 5,000 1 1 

5 90,000 5,000 7,000 1 1 

new tuple 91,000 - 6,000 - 4 

6 92,000 5,000 7,000 4 5 

7 94,000 8,000 9,000 4 5 

8 96,000 10,000 11,000 4 - 

9 97,000 8,000 10,000 7 7 

Table 2.12: An example dataset demonstrates a previous marge impact of adding new 

tuple in border case 

D 

Error Error' Partition Partition' 
Index 

Sensitive 

Value 

1 83,000 Infinity Infinity 0 0 

2 84,000 Infinity Infinity 0 0 

3 85,000 2,000 2,000 1 1 

new tuple 86,000 - 3,000 - 1 

4 90,000 7,000 7,000 1 1 

5 92,000 9,000 8,000 1 - 

6 94,000 6,000 7,000 4 4 

7 95,000 7,000 8,000 4 4 

8 96,000 8,000 10,000 4 6 

9 97,000 8,000 9,000 7 7 

Table 2.12 demonstrates the impact of adding new tuple in a border case which 

new tuple is merged to the previous partition. That can be seen, that the information 

before the added tuple is stable and the borders of other partitions are stable. 
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Table 2.13: An example dataset demonstrates a next marge impact of adding new tuple 

in border case 

D 

Error Error' Partition Partition' 
Index 

Sensitive 

Value 

1 83,000 Infinity Infinity 0 0 

2 84,000 Infinity Infinity 0 0 

3 85,000 2,000 2,000 1 1 

new tuple 89,000 - 6,000 - 1 

4 90,000 7,000 7,000 1 1 

5 92,000 9,000 8,000 1 - 

6 94,000 6,000 7,000 4 - 

7 95,000 7,000 8,000 4 - 

8 96,000 8,000 10,000 4 6 

9 97,000 8,000 9,000 7 6 

Table 2.13 demonstrates the impact of adding new tuple in a border case which 

new tuple is merged to the next partition. That can be seen, the information before the 

added tuple is stable. But the end border of merged partitions is moved up. 

According to Minimum Summation of Error Algorithm from Figure 2.1, the 

algorithm improved the efficiency based on the observations. The algorithm starts the 

scanning not at the beginning, but it begins at the position of a new tuple. The algorithm 

then scans until the borders of further partitions are complete-alignment comparing with 

the original. Therefore, there is a possibility that algorithm may not scan until the end 

tuple.  

Furthermore, this study introduced an index of the partitions for improving the 

efficiency of the algorithm. Each index composed of two components. The first 

component describes the range of the positions with respect to the key (sensitive data 

value) starting from the first tuple of the partition. The second component can be 

divided into 2 parts. First part shows the sensitive values that are sorted in sequence 

with respect to the key. The second part explains quantity of the values in the partition. 

For example, from Table 2.13, the index of first partition is <(1, 3), ((54, 55, 56), 3)>. 
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This index can be useful when comparing the new partition to the original partition for 

being complete-alignment condition. 

Incremental privacy preservation for associative classification 

Bowonsak and Juggapong [21] studied on preserving an incremental-data 

scenario problem of k-Anonymity model with regard to a data mining task, i.e. 

associative classification. Such classification model works on support and confidence 

scheme as association rules, but having a designate attribute as class label. The study 

focused on the characteristics of a proven heuristic algorithm, Minimum Classification 

Correction Rate Transformation (MCCRT) [12, 18] in the data incremental scenarios 

theoretically.  

This study discovered a few techniques to reduce the computational complexity 

for the incremental problem comparing with the re-processing of MCCRT’s algorithm. 

The proposed techniques not only reduce the complexity, but they also can generate 

exactly the same outputs as the MCCRT's. The introduced techniques generalized only 

additional tuples, and then added them into the original generalized dataset. After 

adding generalized tuples, the whole dataset might be adjusted generalization level. 

From now on, the MCCRT’s algorithm is going to be discussed for the basic 

understanding of proposed technique. 

First, the concept of Classification Correction Rate value (CCR) which is being 

used in MCCRT’s algorithm, is described. The CCR of each attribute is determined as 

follows. For each attribute, the set of one-literal classification rules is derived for 

satisfying minsup and minconf. Subsequently, each tuple is classified into the predicted 

class label from the derived rules, comparing the predicted class label with the actual 

class label. Next, the ratio between the number of the correct prediction and the total 

number of the tuples is computed as the CCR of such attribute. 

For the first step of MCCRT’s, the algorithm calculates CCR of each attribute.  

Next, an attribute will be generalized by own generalization tree from the bottom level 

to the top level of the tree. The sequence of attributes to be generalized is ordered from 
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the minimum to maximum CCR values respectively. Generalizing process is going to be 

stopped when the dataset satisfied k condition. 

It is supposed to be noted that when adding new tuples, CCR value of each 

attribute may be changed, so the order of generalizing attributes may be varied on 

changed CCR value for each attribute. After an impact of adding tuples that 

affected/unaffected CCR values is evaluated, there are two effects on the order of 

generalizing attributes. First effect, the order of generalizing attributes is unchanged. It 

can point out at two cases. For the first case, if the whole dataset does not satisfy k 

condition, generalization level will be increased with respect to MCCRT’s algorithm. 

The latter case, if the whole dataset satisfies k condition, generalization level may be 

decreased. Second effect, the order of generalizing attributes is changed. If the order is 

changed in further part of the last generalized attribute, and in previous part of the last 

generalized attribute, there is no impact. However, the whole dataset has to be checked 

to satisfy k condition as same as first effect. In the other hand, if the order is changed 

not same as the above, the changed order is focused on first attribute having 

generalization level that is not at the top. Former generalization levels of further 

attributes cannot be used. Thus, the generalization levels are set to be bottom or zero 

level. Nevertheless, the whole dataset has to be checked to satisfy k condition as same 

as first effect. 

An efficient quasi-identifier index based approach for privacy preservation 

over incremental datasets on cloud. 

In [37], According to the technique based on k-Anonymity model, after a dataset 

is satisfied k condition, a group of tuples having same values is called “quasi-identifier 

group”. Based on cloud computing, if the whole dataset is distributed randomly to each 

node in the cloud, some tuples are added into the system inefficiently because all nodes 

have to compute for constrains of the model. This study indicated that if the whole 

dataset is distributed properly to each node in the cloud, and creating the approach 

index, incremental process is more efficient because the computation may occur in 

some nodes; do not occur in all nodes. 



 

27 

 

The proposed technique of distributing can be done by each node in the cloud 

containing similar quasi-identifier group. By similar quasi-identifier group, it can be 

calculated by Equation 1. 

𝑑𝑖𝑠𝑡(𝑞𝑖𝑑𝑥, 𝑞𝑖𝑑𝑦) ≜ √∑ 𝑑2(𝑞𝑖
𝑥, 𝑞𝑖

𝑦
)𝑚

𝑖=1         (1) 

Where 𝑑𝑖𝑠𝑡(𝑞𝑖𝑑𝑥, 𝑞𝑖𝑑𝑦) is the distance between 𝑞𝑖
𝑥 and 𝑞𝑖

𝑦
 in the generalization 

tree of attribute i. The distance between 𝑞𝑖
𝑥 and 𝑞𝑖

𝑦
 can be defined as the length of the 

path (number of edges) between two domain nodes with values 𝑞𝑖
𝑥 and 𝑞𝑖

𝑦
.  

After the dataset is distributed, the new tuple is added into the cloud system. If 

the whole dataset in all nodes is re-generalized, this process is inefficient. The technique 

is using past generalization levels to generalize the additional tuples, and then assigning 

proper node to insert them. 

The effect of adding tuples is that additional tuples may cause the whole dataset 

unsatisfying k condition. The technique for overcoming this issue is to consider which 

attribute is supposed to be generalized by comparing additional tuples with other tuples 

in the same node. An attribute to be generalized which increases generalization levels 

minimally, is selected for satisfying k condition. 

Another effect of adding tuples is that additional tuples may lead to the whole 

dataset satisfying k condition. There is a possibility that generalization levels can be 

decreased and the whole dataset still satisfy k condition. If the case is occurred, the 

nodes (that new tuples are added) test to decrease generalization level one by one 

attribute. If all attributes cannot be decreased, the rest of nodes unnecessarily are 

computed. Meanwhile, if generalization level any attribute can be decreased, the rest 

node will test to decrease generalization level on same attribute. However, if any node 

unsatisfied k condition, the former generalization level is re-assigned to all nodes. 
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2.4 Summary 

This chapter has shown some real world cases of the privacy problem, the 

privacy preservation models, the (k, e)-anonymous model and the algorithm that the 

thesis based on, and then some ideas and methods to solve the problem in cases of 

incremental data are discussed.  

The basic definitions, problem definition, the observations, and algorithm that is 

conducted from observations, which is focused in this thesis, will be presented in next 

chapter. 


