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Chapter 5 

Experiment 

 In this chapter, the experimental results are presented for evaluating the 

efficiency of the proposed algorithm in Chapter 4. First, the experiment preparation 

process is presented. Next, the experiment results are presented, they are categorized to 

4 parts to evaluate an effect of value of k, an effect of value of e, an effect of the number 

of partitions, and an effect of cardinality of an incremental dataset (|∆D|)  

5.1 Experiment Preparation 

The experiments are conducted using the Adult dataset from the UCI repository 

[29], which has been used to evaluate the (k, e)-Anonymous approach [10] and an 

incremental breach prevention algorithm in [11]. The dataset contains 14 attributes over 

48,000 tuples. The “capital-loss” attribute is selected to be the sensitive values. Eight of 

the attributes are selected to be the quasi-identifier, as in [10]. Thus, the remaining 

number of tuples in the dataset is 1427 tuples. The range of the “capital-loss” values is 

155 to 3900, with 89 distinct values. For each experiment, the dataset will be divided 

into two equal parts, the first part is used as the static part of the data, while the latter 

will be used as the incremental data. For the incremental part of a dataset, it will be 

divided further into ten equal parts, for appending to the dataset. Once all of the parts of 

the data are appended to the dataset, the execution time is subsequently reported. The 

efficiency is evaluated in terms of the execution time when the four parameters are 

changed, i.e. the k value, the e value, the size of the incremental dataset |ΔD|, and the 

number of partitions of the static dataset. Additionally, the percentage of discarded 

rounds for the incremental privacy breach determination is reported to present its 

relationship with the efficiency. A high percentage reflects the high efficiency that the 

algorithm can obtain. The resulting numbers that are reported here are five times the 

average. 

We compare our proposed algorithm to a naive re-applying algorithm that re-

applies the existing static algorithm proposed in [10], to further prevent an incremental 

privacy breach. To recall, the idea of the algorithm is as follows. First, for each 
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considered partition of the dataset to be released Dn, the (k, e)-Anonymous condition is 

evaluated. If it satisfies the condition, then the partition is considered for any 

incremental privacy breach occurs against all of the released datasets. If such a partition 

has an incremental privacy breach with at least one of the released datasets, then the 

current partition can be discarded. For the incremental privacy breach determination, the 

algorithm must compute the difference and the intersection results between the current 

considered partition and each partition for each released dataset. For simplicity, suppose 

that the number of tuples in each released dataset is n, and the number of released 

datasets is m. The complexity of this computing as well as the whole algorithm is 

O(mn3). 

The comparing characteristics of our proposed algorithm and the comparing 

algorithm in [10] are shown in Table 5.1. 

Table 5.1: The characteristics of proposed algorithm and naïve re-applying algorithm 

 Proposed algorithm Naïve re-applying algorithm 

Complexity O(n3) O(mn3) 

Number of released 

datasets to be input 
1 m 

(k, e)-Anonymous 

protection 
Satisfied k and e conditions Satisfied k and e conditions 

Incremental privacy 

breach protection 

An output does not have an 

incremental privacy breach 

with all previous released 

dataset 

An output does not have an 

incremental privacy breach 

with all previous released 

dataset 

 

5.2 Effects of the value of k 

In the first experiment, we evaluate the efficiency of the proposed algorithm 

when the value of k is varied. Such a value is varied from 3 to 15, to evaluate its effect. 

As in previous work, we set the value of e to be 20 and the incremental part to be 10 

percent of the size of the static dataset. 
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Figure 5.1: Execution time of the proposed algorithm and the naïve re-applying when 

the k value is varied 

 

Figure 5.2: Proposed algorithm's execution time and the percentage of discard when the 

value of k is varied 

The execution time of the proposed algorithm and the naive re-applying 

algorithm is presented in the Figure 5.1. Note that the result is shown on the logarithmic 

scale. The average execution time of the naive re-applying algorithm is 29,715 seconds. 

At the same time, the execution time of the proposed algorithm is in the range of 17 - 64 

seconds. Clearly, the proposed algorithm is highly efficient because of the theoretical 

studies.  
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In the Figure 5.2, the experimental result of the proposed algorithm is presented 

in detail. It can be seen that the execution time of the proposed algorithm decreases 

when the values of k is increased. The reason behind the decrease is that all partitions in 

the previous dataset depend on the k value. The range of some partitions in the previous 

partitioned dataset can be expanded when the value of k is increased. Therefore, the 

proposed algorithm can discard an incremental privacy breach determination 

increasingly well. 

5.3 Effects of the value of e 

In this experiment, we evaluate the efficiency of the proposed algorithm when 

the value of e is varied. Such an e value is varied from 20 to 500, to evaluate its effect. 

We set the k value at 2, and the size of the incremental part is set at 10 percent of the 

size of the static dataset. 

 

Figure 5.3: Execution time of the proposed algorithm and the naive  

re-applying algorithm when the e value is varied 
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Figure 5.4: Proposed algorithm’s execution time and percentage of discard when  

the e value is varied 

The execution time of the proposed algorithm and the naive algorithm is 

presented in the Figure 5.3. The execution time of the naive algorithm is 5374 seconds. 

At the same time, the execution time of the proposed algorithm is in the range of 14 - 65 

seconds. The result is similar to the previous experiment, i.e., the execution time of the 

proposed algorithm is much less than that of the naive algorithm. 

The detailed experiment results when the e value is varied are presented in the 

Figure 5.4. Obviously, when the e value is increased, the execution time of the proposed 

algorithm decreases. The reason behind this decrease is that all of the partitions in the 

previous dataset depend on the value of e. The range of some of the partitions in the 

previous partitioned dataset can be expanded when the value of e is increased. Thus, the 

proposed algorithm can discard an incremental privacy breach determination better 

when the value of e is increased. 

5.4 Effects of the Number of Partitions 

In this experiment, we evaluate the efficiency of the proposed algorithm when 

the number of partitions in the static dataset is varied to see its effect. The variation is 

set at 3 to 22. We set the k value at 2, and the e value is changed to relate the numbers 

of the partitions. 
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Figure 5.5: Execution time of the proposed algorithm and the naive re-applying 

algorithm when the number of partitions is varied 

 

Figure 5.6: Proposed algorithm's execution time and the percentage of discard when the 

number of partitions is varied 

From the results in the Figure 5.5 and the Figure 5.6, we can see that when the 

number of the partitions in the static part of the dataset is increased, the execution time 

of the proposed algorithm is also increased. The reason behind the increase is that the 

number of partitions is in reverse proportion to the parameters k and e. When the k and e 

values are decreased, the number of partitions is increased. Additionally, the ranges of 

some of the partitions in the previous partitioned dataset are reduced when the k and e 

values are decreased. Thus, the proposed algorithm can discard an incremental privacy 
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breach determination less when the number of the partitions is increased. However, 

compared with the naive algorithm, the proposed algorithm is still clearly efficient. 

5.5 Effects of |∆D| 

In the last experiment, we evaluate the efficiency of the proposed algorithm 

when the size of the incremental dataset (|∆D|) is varied. The variation in the set at the 

percentage of the whole data to be appended is 6, 8, 10, 12, and 14 percent of the size of 

the static dataset. We set the k value and the e value at 5 and 100, respectively. 

 

Figure 5.7: Execution time of the proposed algorithm and the naive re-applying 

algorithm when the size of the incremental part (%) value is varied 

 

Figure 5.8: Proposed algorithm’s execution time and the percentage of discard when the 

size of the incremental part (%) value is varied 
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The execution time of the proposed algorithm and the naive algorithm is 

presented in the Figure 5.7. The execution time of the proposed algorithm is in the range 

of 13 - 23 seconds. At the same time, the average execution time of the naive re-

applying algorithm is 7190 seconds. 

The Figure 5.8 shows the detailed execution time of the proposed algorithm in 

addition to the percentage of the incremental privacy breach determination discard. 

Obviously, when the size of the incremental part is increased, the execution time of the 

proposed algorithm increases. Additionally, the percentage of the discard is also 

decreased. This finding means that the proposed idea is less efficient when the size of 

the incremental part increases. However, considering that optimal solutions without any 

privacy breach can still be always guaranteed, and the high percentage of the discard of 

the privacy breach determination. It can still be claimed that the proposed algorithm is 

highly efficient and effective. 

5.6 Summary 

The efficiency of the proposed algorithm was presented in this chapter by the 

experiments that conducted to illustrate the real world situation. In all experiments, the 

proposed algorithm has more efficient than the naïve approach algorithm. The proposed 

algorithm can discard incremental privacy breach determination more than 99 

percentages in the all of experimental cases. In the experiments of k and e values, the 

proposed algorithm can discard an incremental privacy breach determination better 

when the value of k and e are increased. In the experiments of the number of partition 

and the size of the incremental part, the proposed algorithm can discard an incremental 

privacy breach determination better when the value of the number of partition and the 

size of the incremental part are decreased. 


