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STATEMENT OF ORIGNALITY 

A proposed algorithm for preventing an incremental privacy breach on (k, e)-

Anonymous with all versions of dataset, this algorithm needs to consider only one 

previous version of the dataset. At the same time, the privacy of all of the released 

datasets as well as the optimal solution can be always guaranteed. 
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ข้อความแห่งการริเร่ิม 

ขั้นตอนวิธีส ำหรับปกป้องกำรละเมิดควำมเป็นส่วนตวัของขอ้มูลในตน้แบบ 
(k, e)-Anonymous โดยข้อมูลอยู่ในสถำนเพ่ิมข้ึนตลอดเวลำ ขั้นตอนวิธีท่ี
น ำเสนอน้ีพิจำรณำเพียงขอ้มูลฉบบัก่อนหน้ำเพียงหน่ึงฉบบัเท่ำนั้นและยงั
สำมำรถใหผ้ลลพัธ์ท่ีเหมำะสมท่ีสุดในทุกช่วงเวลำ 

 

 

 


