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CHAPTER 2 

Principles and theories of the study 

This chapter describes the principles and theories related to the eye gaze tracking 

system design. Section 2.1 explains the fundamentals of eye gaze tracking system. 

Section 2.2 describes eye gaze image filtering using two-dimensional Gaussian filter. 

After the face image is filtered, both eye’s positions can be determined by using the 

image labelling method described in section 2.3.  

Before computing the eye gaze point on the screen, the distance between the 

participant’s eye and the screen has to be determined. Thus, regression methods are 

described for the eye gaze distance estimation in section 2.4.  

To compute the eye gaze point on the screen, the perspective transformation is used for 

image transformations as described in section 2.5. The eye gaze center can be 

determined using the eigenvalue decomposition as shown in section 2.6. Then, the iris 

radius used for a three-dimensional eye model is computed as described from section 

2.7 through section 2.10.  

Finally, a confidence interval is applied to verify the experimental results demonstrated 

in section 2.11. 

2.1 Fundamental of eye gaze tracking 

An eye gaze tracking system consists of the eye detection and tracking. The eye gaze 

tracking involves two areas according to the eye localization in the image and gaze 

estimation [35]. Also, the eye detection has three processes: First, the location of the eye 

on the facial image is detected; second, the position of the eye gaze in the image is 

computed and the points of gaze are interpreted as the screen positions; third, the eye 

gaze points are tracked via frame to frame from the images obtained by the video 

camera.  
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Then, the relationship between the iris center and glint positions, which was utilized for 

mapping the eye gaze vector to the screen positions, is calculated. The process of the 

eye gaze system is to find out where the user is looking at the 3-D point on the screen. 

The calculation of the point of gaze on the screen is called ‘gaze estimation’.  

The eye gaze estimation on the screen was performed by determining the eye location in 

the facial image. Then, the background color of the facial image was eliminated by the 

2-D Gaussian filter. After that, the Blob coloring was used for labelling the point of 

glint in the image. The distance between the eye and the screen could be estimated 

using the linear and exponential regression methods. The human eye model required 

parameters which consist of the iris radius, eye gaze center, and glint positions. All eye 

parameters were used for eye gaze mapping to the screen positions. Figure 2.1 shows 

the process of the eye gaze tracking system.  
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Figure 2.1 Process of eye gaze tracking system. 

2.2 Eye gaze image filtering 

The process of the eye gaze tracking system began with the eye gaze image 

segmentation. Both eyes in the image were required to be segmented. In order to extract 

the eye gaze image from the facial image, the two-dimensional (2-D) Gaussian filter 

method [36] was applied. The advantage of using the 2-D Gaussian filter is that it could 

subtract the undesirable facial features such as eyebrows, nose, and skin color. The 

theory of the two-dimensional Gaussian filter is described as follows. 
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 2.2.1 Two-dimensional Gaussian filter 

An image was smoothened by using the two-dimensional (2-D) Gaussian filter. The 

Gaussian smoothing operator G(x,y) [36] or a Gaussian filter is given by 

 
2 2 2( )/2( , ) x yG x y e   . (2.1) 

where x, y are the image co-ordinates and  is a standard deviation of the associated 

probability distribution. The Gaussian filter can also be represented by including 

normalizing factor as follows: 

 
2 2 2( )/2

2

1
( , )

2

x yG x y e 



   (2.2) 

or 

 

 
2 2 2( )/21

( , )
2

x yG x y e 



  . (2.3) 

The second derivative of a smoothing 2-D function f (x, y) can be obtained by using the 

Laplace operator 2. The Laplacian of an image f (x, y) can be smoothened by using a 

convolution (*). Thus, the operation from Laplacian of Gaussian is defined as 

    2 , , * ,G x y f x y    . (2.4) 

 

The expression in (2.4) can be interchanged to perform the differentiation and 

convolution as follows: 

    2 , , * ,G x y f x y   . (2.5) 

 

 

The complexity of the expression in (2.1) can be reduced by substituting r2=x2+y2, 

where r measures the distance from the origin. The aim is to convert the 2-D Gaussian 

into 1-D function which is simpler to be differentiated as follows: 

 
2 2/2( ) rG r e  . (2.6) 
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The first derivative G’(r) is defined as 

 
2 2/2

2

1
'( ) rG r re 



  . (2.7) 

The second derivative "( )G r , the Laplacian of a Gaussian, is defined as 

 

 
2 2

2
/2

2 2

1
''( ) 1 rr

G r e 

 

 
  

 
. (2.8) 

After returning to the original co-ordinates x, y and introducing a normalizing 

multiplicative coefficient c, the convolution mask of a LoG operator is defined as 

 
 2 2 22 2

/2

4
( , )

x yx y
h x y c e





  
  

 
. (2.9) 

The inverted LoG operator is commonly called a Mexican hat. An example of a 55 

discrete approximation is  

 

0 0 1 0 0

0 1 2 1 0

1 2 16 2 1

0 1 2 1 0

0 0 1 0 0

 
 

  
 
    
 

   
  

. 

 

After the background of the facial image is filtered by using the two-dimensional 

Gaussian filter, both eye positions within the image can be determined. Then, an image 

labelling method is used to define both eye’s positions. The method for image labelling 

is described in the next section. 

2.3 Image labelling 

The eye positions in an image could be determined by using the image labelling 

method. The Blob coloring was used for labelling both eyes positions in the facial 

image. The Blob coloring [37] was also applied for labelling the position of the point 
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light sources reflected on the participant’s cornea. The 4-connected component could be 

determined by using the mask as presented in Figure 2.2. 

 

 

 

Figure 2.2 Blob coloring mask. 

The Blob coloring method can be described as follows: 

1) Given the begin color is k = 1, then scanning the image from left to right 

and from top to the bottom. 

2) If f(XC) = 0, to be continuous for scanning the image 

3) Else 

  If f(XU) = 1 and f(XL) = 0 

   Color XC = Color XU 

  If f(XL) = 1 and f(XU) = 0 

   Color XC = Color XL 

  If f(XL) = 1 and color f(XU) = 1 

   Color XC = Color XU 

   Color XL is equivalent to color XU 

  If f(XL) = 0 and f(XU) =0 

   Color XC = k 

  k=k+1 

End 

The Blob coloring was applied for locating the right and left eye positions. Then, the 

eyes were segmented from the face image. The segmented eye images were used for 

computing the eye gaze distance estimation between the participant’s head and the 

screen. First of all, the eye gaze distance equation was computed by using the image 

patch which was reflected on the cornea. Moreover, the iris radius which was used for 

 

XL 

XU 
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three-dimensional eye modelling was determined. The mathematical calculation 

associated with eye gaze distance estimation model is described in the next section. 

2.4 Linear regression   

 2.4.1 Linear least squares   

The linear least squares regression was utilized to find an approximation of the function 

that passed through the point of data obtained from an experiment [38]. The aim to use 

the least squares method is to find a function f (x) of the eye gaze distance equation that 

best represented the data which was subjected to error. The linear function is generally 

presented as follows: 

 ( )f x ax b  . (2.10) 

The function f (x) in (2.10) consists of parameters a and b that can make f (x) be the 

“best” function which was used for fitting the data. Let ei = f (xi) – yi for 1 ≤  i  ≤ n . 

Therefore, the sum of square error is described as follows: 
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The minimum of (2.11) will occur when 
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0, and 0
E a b E a b
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 
. (2.12) 

This condition gives the following relations: 
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The normal equation of least squares is  
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The solution of linear system is 
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where
1

n

i
  . 

The linear regression was used to construct an equation estimating the linear data. 

However, in other cases, the data might not always be linear. Thus, linear formulas can 

possibly cause an error for distance estimation. The non-linear approach was conducted 

to compute the equation for estimating the function of the data set as described as 

follows: 

 2.4.2 Least squares polynomial 

In the case of experimental data being non-linear, the least squares polynomial could be 

a choice for data fitting. The expression of the least squares polynomial is illustrated as 

follows: 

 
0
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 . (2.17) 
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 The coefficients a0, a1, … , am are required to find the minimum value of   
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Fundamentally, E is minimum if 
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that is 
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Rearranging (2.20) gives (m+1) normal equations with (m+1) unknowns, a0, a1,.., am , as 

shown below:  
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 (2.21) 

 

The advantage of the least squares polynomial is that it can be used for non-linear 

regression. However, when dealing with experimental data which are exponential, 

another form of regression called exponential regression may be more suitable.  
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 2.4.3 Exponential form  

Even though the least squares polynomial can be utilized for non-linear data fitting, it 

depends on the nature of data. When the data in the experiment tend to possess an 

exponential pattern, this method may not be suitable. Instead, the exponential regression 

equation was used for data fitting. The exponential expression used for approximating 

the non-linear function is represented as follows: 

 ( ) bxf x ae . (2.22) 

In order to simplify the equation, the logarithmic of f (x) is taken. 

 ln ( ) lnf x bx a  . (2.23) 

If we let ( ) ln ( ), ln , and  =bF x f x a   , then the linear function of x can be obtained 

as 

 ( )F x x   . (2.24) 

 

The relation between β and α with the linear least squares is as follows: 

 b =   and a e . 

The theories described above were used for eye gaze distance estimation. Then, the 

distance between the participant’s head and the screen was calculated. The estimated 

distance could be used for modelling a three-dimensional eye model of the human eye, 

which was the real size of the eye in the real-world coordinates. The method which was 

used for transforming the distance in the image into the distance in the real-world 

coordinates can be derived using the perspective transformation described in the next 

section. 

2.5 Perspective transformation 

The eye gaze tracking system needed to transform the 3-D eye gaze point in the real-

world coordinate onto the 2-D plane. A perspective transformation [37] was applied to 

project 3-D points of the real-world coordinate onto image plane. A model of image 

formation process is shown in Figure 2.3. 
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Figure 2.3 Model of the imaging process. 

As shown in Figure 2.3, the xy-plane is the camera coordinate system (x, y, z) and the    

z-axis is the optical axis. The center of the image plane is set to the origin and the 

coordinate (0, 0, ) is the center of the lens. The focal length of the lens, a distance 

where a camera is in focus for distance objects is . 

It is assumed that the camera coordinate system aligns with the real-world one (X, Y, Z). 

From Figure 2.3, the real-world coordinate of any point in the 3-D scene is given as (X, 

Y, Z), assuming that Z > . All possible points of interest also lie in front of the lens. 

Here, the similar triangle can be utilized to project the point (X, Y, Z) onto the 

coordinates (x, y) of the image plane. The equation of similar triangles is presented as 

follows: 

 ,
x X X

Z Z  
  

 
 (2.25) 

and 

 .
y Y Y

Z Z  
  

 
 (2.26) 
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The image plane coordinates of the projected 3-D point are represented as follows: 

 ,
X

x
Z







 (2.27) 

and  

 
Y

y
Z







. (2.28) 

From (2.25) and (2.26), the image on the image plane is inverse to the 3-D point in the 

real-world coordinates. Both equations are non-linear expressions because they are 

divided by the variable Z. It is simpler for computation if this equation is rewritten in 

the matrix form. Here, it can be accomplished by using the homogeneous coordinates. 

The homogeneous coordinates of a point with Cartesian coordinates (X, Y, Z), are 

defined as (kX, kY, kZ, k) while the parameter k is an arbitrary nonzero constant. Thus, 

the transformation of the homogeneous coordinates can be obtained by dividing the first 

of three members with the fourth member. Therefore, the point in the Cartesian 

coordinate system is presented in the vector form as follows: 

  

 

X

Y

Z

 
 


 
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w . (2.29) 

The homogeneous counterpart is given by 

 h

kX

kY

kZ

k

 
 
 
 
 
 

w . (2.30) 

Therefore, the matrix of perspective transformation is defined as 

 

 

 

1 0 0 0

0 1 0 0

0 0 1 0

1
0 0 1



 
 
 

  
 
 
  

P . (2.31) 
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where ch is obtained from the product Pwh , i.e. 

 

 h hc Pw . (2.32) 

  

           

1 0 0 0

0 1 0 0

0 0 1 0

1
0 0 1

h
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 
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    
     
    
             

c . (2.33) 

From (2.33), the result can be converted to the Cartesian form by dividing the equation 

with the fourth components of ch.  

 

X

Zx
Y

y
Z

z
Z
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








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    
   
    

 
  

c . (2.34) 

 

The projected 3-D points (X, Y, Z) onto the 2-D image plane are the first two 

components of c which are the (x, y) coordinates according to (2.25) - (2.26). From 

(2.33), the image plane can be mapped to the 3-D coordinate system by using inverse 

perspective transformation. The inverse perspective transformation is defined as 

follows: 

     1

h h

w P c . (2.35) 

where the matrix P-1 is defined as 

 

   1

1 0 0 0

0 1 0 0

0 0 1 0

1
0 0 0





 
 
 

  
 
 
  

P . (2.36)  

 



26 

 

Assume the image points have the coordinates (x0, y0, 0) with z = 0 which represents the 

image plane located at z = 0. Thus, the homogeneous vector form of ch can be expressed 

as 

 

0

0

0
h

kx

ky

k

 
 
 
 
 
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where z = 0. 

From (2.35), the homogeneous world coordinate vector can be demonstrated as 
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 
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In terms of the Cartesian coordinates, it can be defined as 
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Y y
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  
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 
  
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w . (2.39) 

Therefore, the result from (2.39) is the image plane transformation to the real-world 

coordinate that also causes Z = 0. The image point (x0, y0) is the set of co-linear 3-D 

points that lie on the line passing through (x0, y0, 0) and (0, 0, λ). Therefore, the real 

world coordinate system can be derived from (2.27) and (2.28) as follows: 

  0x
X Z


  ,  

  0y
Y Z


  . (2.40) 

Equation (2.40) could be used for computing the real-world coordinate from an image 

when Z and  are given. Next, in order to compute the eye gaze displacements, the      
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eye gaze center has to be determined. The method used to locate the eye gaze center 

using the eigenvalue technique is discussed below. 

2.6 Eigenvalue decomposition 

Eigenvectors and eigenvalues are useful for eye gaze center detection. Here, consider 

the matrix equation of eigenvalue decomposition. If the matrix C is symmetric, it can be 

written as eigenvalues decomposition [39] as follows: 
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u u

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  (2.41) 

where 

 

 0 1 1... n      . (2.42) 

 

The symmetric matrix C can be constructed as the sum of a number of outer products. 

 T T

i i

i

a a C AA  (2.43) 

The matrix A includes all the ai column vectors which are appended columnwise. In this 

case, all of the eigenvalues i are non-negative. The associated matrix C is positive 

semi-definite if and only if 

 0,Tx x x C . (2.44) 

The covariance of a set of xi points around their mean x  is defined as 

   
1 T

i i

i

x x x x
n

  C . (2.45) 
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The eigenvalue decomposition is the principal component analysis (PCA). The 

eigenvalues, eigenvectors of C, the singular values, and the singular vectors of A are 

given by 

 A=UVT (2.46) 

and 

 

 T  T T T
C AA UΣV VΣU = UΛU  (2.47) 

The i = i
2 and that the left singular vectors of A are the eigenvectors of C. The 

individual differences from mean image i ia x x  are long vectors of length P (the 

number of pixels in the image), while the total number of exemplars N (the number of 

images in the training database) is much smaller. Instead of forming C = AAT which is    

P  P, C can be formed as an N×N matrix by 

 ˆ TC A A . (2.48) 

The eigenvectors of  Ĉ  are the square singular values of A, namely 2, and are hence 

also the eigenvalues of C. The eigenvectors Ĉ  are the right singular vectors V of A, 

from which the desired eigenfaces U, which are the left singular vector of A, can be 

compute as 

 

 1
U=AVΣ . (2.49) 

 

 

The eigenvector can be defined as 

   0i i i i iu u u   C or C  (2.50) 

The non-trivial solution for ui can be founded if the system is rank deficient, i.e., 

 0 I-C  (2.51) 

The determinant form the characteristic polynomial in , which can be solved for small 

problems, e.g., 2  2 or 3  3 matrices, in closed form.  
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After the eye gaze center had been computed, it was required to determine the actual iris 

radius which needed for computing the visual eye angle. The visual eye angle was used 

in the process of eye gaze displacement mapping to the screen position. The Hough 

transform method could estimate the iris radius and was used for the proposed method, 

as described in the next section.  

2.7 Hough transform for circle 

The Hough transform circle [41] can be considered from the equation of a circle which 

is defined as 

    
2 2 2

0 0x x y y r    . (2.52) 

The locus of point (x, y) is centered on the origin (x0, y0) with radius r. The equation can 

be expressed in two ways: by the locus of point (x, y) in the image, and by the locus of 

point (x0, y0) centered on (x, y) with radius r. The example of Hough transform for 

circles is illustrated in Figure 2.4.   

 

 

 

 

 

 

 

 

 

                      (a) Image containing a circle      (b) Accumulator space 

 

 

 

 

 

 

 

 

 

 

 

(c) 3-D accumulator space 

 

Figure 2.4 Hough transform for circles. 
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Figure 2.4(a) shows a defined set of circles in accumulator space with all possible 

values of radius r. These centers of circles are in the coordinates of the edge point. 

Figure 2.4(b) shows three circles in accumulator space defined by edge points for a 

given radius value. Three edge points are mapped to be a cone of vote in the 

accumulator space as illustrated in Figure 2.4(c). The maximum in the accumulator 

space corresponds to the parameter of circle in the original image. Thus, the equation of 

HT (2.53) for a circle can be defined in parametric form as 

 0 0cos( ), sin( )x x r y y r     . (2.53) 

 

The Hough transform mapping is defined by 

 0 0cos( ), sin( )x x r y y r     . (2.54) 

The points in the accumulator space (Figure 2.4(b)) are dependent on the radius r, while 

θ is defined as the trace of the curve that refers to the point spread function. 

2.8 Parameter space reduction for circles 

There are different geometric properties of a circle to decompose the parameter space. 

In this case, the second directional derivative is used for parameter decomposition. The 

derivative equation is obtained by considering equation (2.53) that defines a position 

vector function. That is, 

      
1 0

0 1
x y   

   
    

   
 (2.55) 

where 

  

        0 0cos , sinx x r y y r       . (2.56) 

The first and second directional derivatives of (2.55) are defined as  

 

      
1 0

' ' '
0 1

v x y  
   

    
   

   

 

      
1 0

" " "
0 1

v x y  
   

    
   

 (2.57) 
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where 

        ' sin , ' cosx r y r       

       " cos , " sinx r y r       . (2.58) 

Figure 2.5 shows the definition of the first and second directional derivatives for a 

circle. The first derivative defines a tangential vector while the second derivative is 

similar to the vector function. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5 Definition of the first and second directional derivatives for a circle. 

The tangent of the angle of the first directional derivative from (2.56) and (2.58) can be 

denoted as '( )  and is given by 

  
 

   

' 1
'

' tan

y

x


 

 
   . (2.59) 

In the angular form, this equation can be written as 

 

     1ˆ ' tan '    . (2.60) 

The tangent of the second directional derivative is 

 

  
 

 
 

"
" tan

"

y

x


  


  , 

 

     1" tan "   


 . (2.61) 

The definition of "( )  is 

 0

0

( )"( )
"( )

"( ) ( )

y yy

x x x


 

 


 


. (2.62) 
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This equation defines a straight line that passes through the point ( ( ), ( ))x y  and          

(x0, y0). The equation can be rearranged as  

 0 0( ) "( )( ( ) )y x x y      . (2.63) 

From (2.63), the radius parameter is dependent. Therefore, it can be used to gather 

evidence of the location of the shape in a 2-D accumulator. Here, the Hough transform 

is also defined in the new form as   

 0 0"( )( ( )) ( )y x x y      . (2.64) 

 

Thus, from given image point ( ( ), ( ))x y  and the value of "( )  , the line of vote in the 

2-D accumulator (x0, y0) is generated. The purpose of the parameter space 

decomposition is to obtain the value of "( )   from image data. 

In order to obtain "( )   , the equation (2.60) and (2.61) can be used for computation. 

The tangents of "( )  and '( )   are perpendicular. The relationship of equation can be 

represented as  

 
1

"( )
'( )

 
 

  . (2.65) 

 

The Hough transform in (2.64) can be written in terms of gradient direction '( )   as 

 

 0
0

( )
( )

'( )

x x
y y




 


  . (2.66) 

This equation can be described as the line of votes passes through the point ( ( ), ( ))x y   

and (x0, y0) as shown in the Figure 2.6(a). The slope of the line is perpendicular to the 

direction of gradient direction. 
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(a) Relationship between angles.      (b) Two point angle definition. 

Figure 2.6 Geometry of the angle of the first and second directional derivatives. 

There is an alternative method to obtain the parameter decomposition. From            

Figure 2.6(b), if a pair of points 1 1( , )x y and 2 2( , )x y is taken, where ( )i ix x  , then the 

lines passing through the points ( ( ), ( ))x y  have the same slope. That is 

 2 1

2 1

'( )
y y

x x
 





 (2.67) 

where 

  1 2

1

2
    . (2.68) 

The second directional derivative is 

 2 1

2 1

"( )
x x

y y
 


 


. (2.69) 

From (2.68), the location of the point ( ( ), ( ))x y  is not known. However, the voting line 

also passes through the midpoint of the line between two selected points. Therefore, this 

point can be defined as 

 1 2 1 2

1 1
( ) , ( )

2 2
m mx x x y y y    . (2.70) 
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Thus, the Hough transform mapping can be written by substituting (2.67) into (2.66).      

In addition, by replacing the point ( ( ), ( ))x y  with ( , )m mx y , the HT mapping can be 

expressed as follows: 

 
  

 
0 2 1

0

2 1

m

m

x x x x
y y

y y

 
 


. (2.71) 

This equation is based on a pair of points that can be used for reducing the parameter 

space decomposition. In the case of a circle, tangents can be computed by gradient 

direction or by a pair of points. 

2.9 Hough transform for ellipse 

The problem of the camera’s viewpoint is that circles do not always look like circles, 

especially in eye images where they possibly look like ellipses. Thus, in reality, images 

are formed by mapping a shape in 3-D space into the image plane. In other word, such 

function mapping performs a perspective transformation. A circle is deformed to look 

like an ellipse. The circle can be transformed to an ellipse by a similarity transformation 

[40],  

 
   

   

cos sin '

'sin cos

x x

y y

S tx x

S ty y

 

 

        
         

         

. (2.72) 

 

where ( ', ')x y is defined as the coordinates of the circle in (2.53),  represents the 

orientation, ( , )x ys s  a scale factor, and ( , )x yt t a translation. The parameter can be 

defined as 

 
   

   

0

0

, cos , sin

, sin , cos

x x x x y

y y x y y

a t a S b S

b t a S b S

 

 

  

  
 (2.73) 

Then the ellipse equation is given by 

 

 
   

   

0

0

cos sin

cos sin

x x

y y

x a a b

y b a b

 

 

  

  
 (2.74) 
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which is represented in the polar form containing six parameters (a0, b0, ax, bx, ay, by).   

  is not a free parameter and it only addresses a particular point in the locus of the 

ellipse. The center of the ellipse can be defined as (a0, b0) and three axis parameters (ax, 

bx, ay, by). The axis parameters can be related to the orientation and the length along the 

axes by 

 

   2 2 2 2tan , ,
y

x y x y

x

a
a a a b b b

a
      . (2.75) 

where (a, b) is the axes of the ellipse, as illustrated in Figure 2.7. 

   

 

 

 

 

 

 

 

 

 

  

 

Figure 2.7 Ellipse axes. 

Equation in (2.74) can be used to generate the mapping function for Hough transform 

for ellipses. Therefore, the location of the center of the ellipse is given by 

 
   

   

0

0

cos sin

cos sin

x x

y y

a x a b

b y a b

 

 

  

  
 (2.76) 

Which contain five dimensional (5-D) spaces of parameters. This can, therefore require 

large space for computation. However, the parameter reduction is required for HT 

mapping function.  

2.10 Parameter space reduction for ellipses 

It is difficult to reduce the parameter space for ellipses since ellipses have more free 

parameters and are geometrically more complex than circles. Thus, geometric properties 
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of ellipse involve more complex relationships between points, tangents, and angles than 

those of circles. According to (2.55) and (2.57), the vector position and directional 

derivative of an ellipse in (2.74) can be written as  

 
           

           

' sin cos , ' sin cos

" cos sin , " cos sin

x x y y

x x y y

x a b y a b

x a b y a b

     

     

     

     
. (2.77)   

   

The tangents of the angles of the first and second directional derivatives are given by 

  
 

 

   

   

cos sin'
'

' cos sin

y y

x x

a by

x a b

 
 

  

 
 

 
 

  
 

 

   

   

cos sin''
''

" cos sin

y y

x x

a by

x a b

 
 

  

 
 

 
. (2.78) 

 

Therefore, from (2.77), the second derivative "( )   is defined as 

 
 

 
 0

0

"
y y

x x


 







. (2.79) 

 

Figure 2.8(a) represents the geometry of the definition for this equation. In the case of 

circles, this equation defines a line that passes through the points ( ( ), ( ))x y  and 

0 0( , )x y whereas in the case of ellipses, the angles  ˆ '  and ˆ"( )  are not orthogonal. 

This causes the computation of "( )  more complex. A pair of points presented in       

Figure 2.8(b) is utilized to define a line whose slope defines the value of "( )  at 

another point. The line in (2.79) passes through the center point ( , )m mx y . Nevertheless, 

it is not orthogonal to the tangent line. Then, equation of (2.68) is utilized to obtain the 

second derivative "( )  . 
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           (a) Relationship between angles                  (b) Two point angle definition 

 

Figure 2.8 Geometry of the angle of the first and second directional derivatives. 

Three points in Figure 2.8(b) can be defined by 

 
       

       

1 1 2 2

1 2 2

cos , cos , cos

sin , sin , sin .

x x x

x x x

x a x a x a

y b y b y b

   

   

  

  
 (2.80) 

The point ( ( ), ( ))x y   is given by the intersection of the line in (2.79) with the ellipse.  

 
 

 
0

0

.x m

y m

y y a y

x x b x









 (2.81) 

 

By substituting of the values of ( , )m mx y in (2.70),  

  
   

   
1 2

1 2

sin sin
tan .

cos cos

y yx

y x x

b ba

b a a

 


 





. (2.82) 

 

Thus, 

    1 2

1
tan tan

2
  

 
  

 
. (2.83) 

 

The tangent angle of the second directional derivative is defined as 

    " tan
y

x

b

a
   . (2.84) 

 

By substituting in (2.81), it is defined as 
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  " m

m

y

x
   . (2.85) 

 

If the ellipse is translated, the tangent of the angle can be written in terms of the points 

( , )m mx y and ( , )x y   as 

  " T m

T m

y y

x x
 





. (2.86) 

Since the point ( , )x y  is the intersection point of the tangent lines at 1 1( , )x y and 

2 2( , )x y , the tangent of the angle can be obtained as 

 

  
2

"
2

AC BD

A BC
 





. (2.87) 

 

where  

 

 
1 2 1 2

1 2 1 2

,

,

A y y B x x

C D   

   

   
. (2.88) 

 

The parameters of 1 2,  are the slopes of the tangent line to the points. As in (2.79), the 

Hough transform mapping for the center parameter is defined as 

  0 0

2

2
m m

AC BD
y y x x

A BC


  


. (2.89) 

The Hough ellipse transform was selected for determining the iris radius. After the     

eye gaze displacements had been computed, the visual angle and the distance between 

the participant’s head and screen became known values. Then, the eye gaze point on the 

screen position could be computed. The accuracy of the eye gaze on the screen positions 

evaluated the performance of the proposed system. In addition, the system accuracy was 

claimed by computing the confidence interval of the eye gaze point on the screen. 

Therefore, in the next section, the theory of the confidence interval is described. 

2.11 Confidence interval for μ of the normal distribution with unknown σ2 

A confidence interval is used for measuring an unknown parameter θ of some 

distribution (θ = μ ) which are in the interval of θ1 ≤ θ ≤ θ2  [41]. This method is not 
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certain but has high probability γ. Generally, the interval between 95 % and 99 % is 

popular. For example, if the confidence interval γ = 95 %, then probability becomes       

1 – γ = 5 % = 1/20, implying that one out of 20 cases does not contain θ. The confidence 

interval for θ is written as 

  1 2CONF     . (2.90) 

where γ is the confidence level, θ1 and θ2 are the lower and upper confidence limits. 

The larger confidence level γ causes a smaller error (1–γ). In the case that γ 1, the 

length then goes to infinity. From (2.90), the midpoint of θ can be approximated and 

half the length of (2.90) can be considered as an error bound. The parameters θ1 and θ2 

are calculated from the sample x1, … , xn. These samples are n observations of a random 

variable X. Thus, θ1= θ1(x1, … , xn) and θ2 = θ2(x1, … , xn) in (2.90) are observation 

values of two random variables Ө1 = Ө1(X1, … , Xn) and Ө2= Ө2(X1, … , Xn). The 

confidence level γ is defined as follows: 

  P(Ө1   θ    Ө2 ) =  (2.91) 

If 2 is unknown, the method of confidence interval with known 2 cannot be used. 

Because the values of k differ according to the sample standard deviation (s) has been 

determined with unknown the standard deviation σ of the population. In addition, the c 

depends on the sample size n, and must be determined lists values z for given values of 

the distribution function of the t-distribution. The expression for determining c can be 

written as follows: 

 

( 1)/2
2

( ) 1

m
z

m

u
F z K du

m

 



 
  

 
 . (2.92) 

Here, m = (1, 2, 3, ….) is the parameter, called the number of degrees of freedom of the 

distribution. 

The steps for determining the confidence interval for the mean of a normal distribution 

with unknown variance 2 can be described as follows: 
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 Step 1. Choose a confidence level  (95%, 99%). 

 Step 2. Determine the solution c of the equation. 

  
1

( ) (1 )
2

F c   , (2.93) 

from the table of the t-distribution with n-1 degree of freedom. 

 Step 3. Compute the mean x  and the variance 2s  of the sample 1,..., nx x . 

 Step 4. Compute /k cs n  . The confidence interval is 

 CONF { },x k x k      (2.94) 

Here is a numerical example for confidence interval computation for   of the normal 

distribution with unknown 2 . 

Suppose five dependences of the point of inflammation (flash point) of Diesel oil (D-2) 

give the values (in F), 144, 147, 146, 142, and 144. Determine the 99% confidence 

interval for the mean. 

Solution. 

 Step 1.  =0.99. 

Step 2.  
1

( ) 1 0.995
2

F c     and from table A9, with n–1=4 degrees of 

freedom gives  c = 4.60. 

 Step 3. 2144.6, 3.8x s  . 

 Step 4. 3.8 4.60 / 5 4.01k    . The confidence interval is  

   CONF0.99 {140.5    148.7}. 

 

 

 


