CONTENTS

	Page
Acknowledgements	с
Abstract in Thai	d
Abstract in English	f
List of Tables	k
List of Figures	р
List of Abbreviations	r
Statement of Originality in English	s
Statement of Originality in Thai	t
Chapter 1 Introduction	1
1.1 Background and motivation	1
1.2 Literature review	3
1.3 Purposes of the study	10
1.4 Research scope and method	10
1.5 Education/application advantage	11
1.6 Research methodology	11
1.7 Research locations	11
1.8 Thesis organization	11
Chapter 2 Principles and theories of the study	13
2.1 Fundamental of eye gaze tracking	S 13
2.2 Eye gaze image filtering	15
2.3 Image labelling	17
2.4 Linear regression	19
2.4.1 Linear least squares	19

2.4.3 Exponential form	22
2.5 Perspective transformation	22
2.6 Eigenvalue decomposition	27
2.7 Hough transform for circle	29
2.8 Parameter space reduction for circles	30
2.9 Hough transform for ellipse	34
2.10 Parameter space reduction for ellipses	35
2.11 Confidence interval for μ of the normal distribution with unknown σ^2	38
Chapter 3 Research designs and methods	41
3.1 Eye gaze tracking system setting	42
3.2 Range of applications for eye gaze tracking system setting	46
3.3 Model of eye gaze tracking system and experiment methods	47
3.4 Image capture	50
3.5 Image filtering	50
3.6 Eye position detection	51
3.7 Iris radius estimation	52
3.8 Image glint segmentation	52
3.9 Distance estimations	53
3.9.1 Eye gaze distance estimation based on gray-level intensity	53
3.9.2 Eye gaze distance estimation based on eigenvalues of iris	58
3.9.3 Eye gaze distance estimation based on iris area	65
3.10 Eye gaze center detection	- 74
3.11 Pupil-glint vector computation	76

2.4.2 Least squares polynomial

Page

20

79

81

83

i

3.12 Three-dimensional eye model

3.14 Eye gaze mapping to screen

3.13 Visual angle of eye gaze estimation

83 3.14.1 Eye gaze mapping to screen using two IR-LEDs light sources 3.14.2 Eye gaze mapping to screen using three IR-LEDs light sources 84 3.15 Eye gaze distance transform to the computer screen 85 3.15.1 Condition and terms for two near IR-LEDs 86 3.15.2 Condition and terms for three near IR-LEDs 86 3.16 Screen position for experiments 87 Chapter 4 Results and discussion 88 4.1 Experimental results of eye gaze distance estimation 89 89 4.1.1 Results of eye gaze distance estimation based on gray-level intensity of image patches 90 4.1.2 Results of eye gaze distance estimation based on eigenvalue 92 4.1.3 The results of eye gaze distance estimation based on iris area 4.2 Results of eye gaze tracking system using gray-level intensity of image 94 patches for eye-gaze distance estimation. 4.2.1 Head was placed at the center direction of the screen 94 4.2.2 The participant's head tilted to the right and the left of the screen 96 99 4.3 Results of eye gaze tracking system using the iris area for eye gaze distance estimation 4.4 Results of confidence interval of eye gaze tracking on the screen 104 computation 108 4.5 Results of confidence interval of distance estimation 4.6 Summary and discussion 111 **Chapter 5 Conclusion** 114 References 116 Appendix 122 Curriculum Vitae 131

Page

LIST OF TABLES

Table 3.1	Example of image patches intensity	54
Table 3.2	Distance estimation using the linear least squares	55
Table 3.3	An accuracy of the linear least squares	56
Table 3.4	Distance estimation using least square second order polynomial	56
Table 3.5	An accuracy of least square second order polynomial	57
Table 3.6	Distance estimation using power regression	57
Table 3.7	An accuracy of power regression	58
Table 3.8	Example of eigenvalues of the iris	60
Table 3.9	Results of distance estimation using exponential regression	62
Table 3.10	Results of distance estimation using linear regression	62
Table 3.11	Results of distance estimation using logarithmic regression	63
Table 3.12	Results of distance estimation using power regression	64
Table 3.13	Example of iris area of both eyes at distance of 60 cm	67
Table 3.14	Results of distance estimation of the exponential regression principle on	
	the iris area of participant's head tilted to the left of the screen.	68
Table 3.15	Results of distance estimation of the exponential regression principle on	
	the iris area of participant's head tilted to the right of the screen	69
Table 3.16	Results of distance estimation of average both irises area using the	
	exponential regression	69
Table 3.17	Results of distance estimation of the linear regression principle on the	
	iris area of participant's head tilted to the left of the screen	70
Table 3.18	Results of distance estimation of the linear regression principle on the	
	iris area of participant's head tilted to the right of the screen	70
Table 3.19	Results of distance estimation of the average both irises area for linear	
	regression method	70
Table 3.20	Results of distance estimation of the logarithmic regression principle	
	on the iris area of participant's head tilted to the left of the screen	71

Table 3.21	Results of distance estimation of the logarithmic regression principle	
	on the iris area of participant's head tilted to the right of the screen	71
Table 3.22	Results of distance estimation of the average both irises area using	
	logarithmic regression method	72
Table 3.23	Results of distance estimation of the power regression principle on	
	the iris area of participant's head tilted to the left of the screen	72
Table 3.24	Results of distance estimation of the power regression principle on	
	the iris area of participant's head tilted to the right of the screen	72
Table 3.25	Results of distance estimation of the average both irises area using	
	power regression method	73
502		
Table 4.1	Results of eye gaze distance estimation accuracy based on gray-level	
	intensity of image patches	89
Table 4.2	Results of eye gaze distance estimation based on gray-level intensity	
	of image patches	90
Table 4.3	Results of the MAE of the eye gaze distance estimation based on	
	gray-level intensity of image patches	90
Table 4.4	Results of eye gaze distance estimation based on eigenvalue by using	
	the exponential regression method	91
Table 4.5	Results of eye gaze distance estimation based on eigenvalues by using	
	linear regression method	91
Table 4.6	Results of eye gaze distance estimation based on eigenvalues by using	
	logarithmic regression method	92
Table 4.7	Results of eye gaze distance estimation based on eigenvalues by using	
	power regression method	92
Table 4.8	The results of eye gaze distance measurement accuracy based on	
	iris area 8 n u s n e s e n v e	93
Table 4.9	The results of mean average distance computation based on iris area	93
Table 4.10	The results of standard deviation computation based on iris area	93

Page

Table 4.11	The RMSE of eye gaze on the computer screen estimation when the	
	participant's head was placed in the center direction of the screen	95
Table 4.12	Experimental results of distance estimation when the participant's head	
	was placed in the center direction of the screen	95
Table 4.13	Experimental results of iris radius estimation when the participant's head	
	was placed in the center direction of the screen	96
Table 4.14	The RMSE of eye gaze on the computer screen estimation when the	
	participant's head was tilted to the right of the screen	96
Table 4.15	Experimental results of distance estimation when the participant's head	
	was tilted to the right of the screen	97
Table 4.16	Experimental results of iris radius estimation when the participant's head	
	was tilted to the right of the screen	97
Table 4.17	The RMSE of eye gaze on the computer screen estimation when the	
	participant's head was tilted to the left of the screen	98
Table 4.18	Experimental results of distance estimation when the participant's head	
	was tilted to the left of the screen	98
Table 4.19	Experimental results of iris radius estimation when the participant's head	
	was tilted to the left of the screen	98
Table 4.20	The RMSE of eye-gaze on the computer screen estimation when the	
	participant's head was placed at the center direction of the screen	99
Table 4.21	Experimental results of distance estimation when the participant's head	
	was placed at the center direction of the screen	100
Table 4.22	Experimental results of iris radius estimation when the participant's head	
	was placed at the center direction of the screen	100
Table 4.23	The RMSE of eye gaze on the computer screen estimation when the	
	participant's head was tilted to the right of the screen	101
Table 4.24	Experimental results of distance estimation when the participant's head	
	was tilted to the right of the screen	101

Table 4.25	Experimental results of iris radius estimation when the participant's head	1
	was tilted to the right of the screen	101
Table 4.26	The RMSE of eye gaze on the computer screen estimation when the	
	participant's head was tilted to the left of the screen	102
Table 4.27	Experimental results of distance estimation when the participant's head	
	was tilted to the left of the screen	102
Table 4.28	Experimental results of iris radius estimation when the participant's	
	head was tilted to the left of the screen	103
Table 4.29	Comparisons on 3-D eye gaze tracking on the screen when the	
	participant's head was placed at the center direction of the screen	103
Table 4.30	Comparisons on 3-D eye gaze tracking on the screen when the	
	participant's head was tilted to the right of the screen	104
Table 4.31	Comparisons on 3-D eye gaze tracking on the screen when the	
	participant's head was tilted to the left of the screen	104
Table 4.32	Confidence interval of the eye gaze on the screen by using gray-level	
	intensity of image patch when the participant's head was placed at the	
	center direction of the screen	105
Table 4.33	Confidence interval of the eye gaze on the screen by using gray-level	
	intensity of image patch when the participant's head was tilted to the	
	right of the screen	106
Table 4.34	Confidence interval of the eye gaze on the screen by using gray-level	
	intensity of image patch when the participant's head was tilted to the	
	left of the screen	106
Table 4.35	Confidence interval of the eye gaze on the screen by using iris area	
	when the participant's head was placed center direction of the screen	107
Table 4.36	Confidence interval of the eye gaze on the screen by using the iris area	
	when the participant's head was tilted to the right of the screen	107
Table 4.37	Confidence interval of the eye gaze on the screen by using the iris area	
	when the participant's head was tilted to the left of the screen	107

7	Table 4.38	Confidence interval of the eye gaze distance estimation by using	
		gray-level intensity of image patch when the participant's head	
		was placed at the center direction of the screen	109
5	Table 4.39	Confidence interval of the eye gaze distance estimation by using	
		gray-level intensity of image patch when the participant's head	
		was tilted to the right of the screen	109
5	Table 4.40	Confidence interval of the eye gaze distance estimation by using	
		gray-level intensity of image patch when the participant's head	
		was tilted to the left of the screen	109
7	Table 4.41	Confidence interval of the eye gaze distance estimation by using	
		iris area when the participant's head was placed center direction	
		of the screen	110
-	Table 4.42	Confidence interval of the eye gaze distance estimation by using	
		the iris area when the participant's head was tilted to the right of	
		the screen	110
5	Table 4.43	Confidence interval of the eye gaze distance estimation by using	
		the iris area when the participant's head was tilted to the left	
		of the screen	110

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

Figure	1.1	Eye gaze detection and tracking system application	3
Figure	2.1	Process of eye gaze tracking system	15
Figure	2.2	Blob coloring mask	18
Figure	2.3	Model of the imaging process	23
Figure	2.4	Hough transform for circles	29
Figure	2.5	Definition of the first and second directional derivatives for a circle	31
Figure	2.6	Geometry of the angle of the first and second directional derivatives	33
Figure	2.7	Ellipse axes	35
Figure	2.8	Geometry of the angle of the first and second directional derivatives	37
Figure	3.1	Eye gaze tracking system	42
Figure	3.2	Actual eye gaze tracking system	43
Figure	3.3	Screen stand of the eye-gaze tracking system	44
Figure	3.4	Camera position on the screen stand	45
Figure	3.5	Components of IP camera	46
Figure	3.6	Eye-gaze tracking system for wide range applications	47
Figure	3.7	Process of eye-gaze tracking system	49
Figure	3.8	Input images for the experiment	50
Figure	3.9	Filtered face image	51
Figure	3.10	Face image divided of right-left eye	51
Figure	3.11	Estimated iris's radius	52
Figure	3.12	Glint detection from three light sources	52
Figure	3.13	Image patch at different distances	54
Figure	3.14	Estimated distance using the linear least squares	56
Figure	3.15	Estimated distance using least squares second order polynomial	57
Figure	3.16	Region of interest	59
Figure	3.17	Sample segmented irises	60

Page

Figure	3.18	Summation eigenvalues of an iris	61
Figure	3.19	Object image and focal distance relationship	65
Figure	3.20	Segmented right-left iris images	66
Figure	3.21	Average iris area at a distance of 60cm to 80cm	67
Figure	3.22	Eye-gaze center	74
Figure	3.23	Input images for eye-gaze center detection	75
Figure	3.24	Eye image for gaze center detection	75
Figure	3.25	A binary of pupil image	76
Figure	3.26	Eye-gaze center computation	76
Figure	3.27	Pupil centers and inter-glint distances	77
Figure	3.28	Reference points of infrared light sources on the cornea	78
Figure	3.29	Human eye structure	79
Figure	3.30	Three-dimensional eye-models	80
Figure	3.31	Example of iris radius detected using the Hough ellipse	81
Figure	3.32	Geometry of the eye gazing to the screen	82
Figure	3.33	Result of IR-LEDs reflected on the cornea	83
Figure	3.34	Screen mapping condition by using two IR-LEDs	84
Figure	3.35	Screen mapping using three IR-LEDs	85
Figure	3.36	Screen position used in experiments	87

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

LIST OF ABBREVIATIONS

CCD	Charge-coupled device
CMOS	Complementary metal-oxide-semiconductor
CONF	Confidence interval
FOV	Field of view
НТ	Hough transforms
IP camera	Internet protocol camera
IR-LED	Infrared light emitting diode
MAE	Mean absolute error
PCA	Principal component analysis
P-CR	Pupil-corneal reflection
RMSE	Root-mean-square error
RGB	Red, Green, Blue
SD	Standard deviation
2-D	Two-dimensional
3-D	Three-dimensional

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

STATEMENT OF ORIGINALITY

- 1. A novel method requiring only a single camera for a three-dimensional eye gaze tracking using eye model is proposed. By computing the gray-level intensity of image patches, the eigenvalues of iris and the iris area, eye gaze distance can be estimated.
- 2. A new three-dimensional eye model is proposed for eye gaze tracking by using the proposed eye gaze distance estimation without camera calibration and user calibration.
- 3. The proposed method can improve the accuracy of eye gaze tracking system even under the condition when a user's head is not stationary.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

ข้อความแห่งการริเริ่ม

- วิทยานิพนธ์นี้ได้เสนอวิธีการใหม่ในการตรวจติดตามการเพ่งมองโดยใช้แบบจำลองตา 3 มิติ ด้วยกล้องเดี่ยว การประมาณระยะห่างทำได้โดยการกำนวณก่ากวามเข้มของแสงระดับเทาของ แผ่นภาพ โดยใช้ก่าลักษณะเฉพาะของม่านตาและการใช้พื้นที่ของม่านตา
- วิทยานิพนธ์นี้ได้เสนอแบบจำลองตา 3 มิติแบบใหม่ สำหรับการใช้งานการตรวจติดตามการ เพ่งมอง โดยใช้วิธีการประมาณระยะห่างของตาที่ได้เสนอ โดยไม่มีการปรับเทียบระบบและ การปรับเทียบผู้ใช้งาน
- วิธีการที่เสนอสามารถปรับปรุงค่าความถูกต้องของระบบการตรวจติดตามการเพ่งมองได้ดี มากขึ้นกว่าเดิม โดยศีรษะผู้ใช้งานสามารถเคลื่อนที่ได้

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

t