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Symbol

A Area (m?)

Cq Drag coefficient

Cs Friction coefficient

D Dimple diameter or tube width (mm)
Dminor Dimple diameter on minor axis (mm)
Dmajor  Dimple diameter on major axis (mm)

Dn Hydraulic diameter (mm)
H Wind tunnel height
hx Local heat transfer coefficient (W/m?K)

h Average heat transfer coefficient (W/m?K)
ho Average heat transfer coefficient of flat plate without dimple (W/m?K)

hx Local heat transfer coefficient (W/m?K)

Nu Average Nusselt number

Nux  Local Nusselt number

Nup  Average Nusselt number base on tube width

Nuo  Baseline average Nusselt number of flat plate without dimple
Pr Prandtl number

q" Heat flux (W/m?)

Rex  Reynolds number

Re.  Reynolds number base surface length (include dimples surface)
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Rep
Repn
SL

St

Reynolds number base on tube width
Reynolds number base on hydraulic diameter
Stream-wise pitch (mm)

Span-wise pitch (mm)

Temperature (°C)

Velocity (m/s)

Spanwise coordinate

Streamwise coordinate

Greek letters

M Dynamic viscosity of air (N-s/m?)

P Density of air (kg/m®)

k Thermal conductivity of air (W/m-K)
Subscripts

f Fluid

L Surface length

S Surface

X x-direction

0 Free air stream
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STATEMENTS OF ORIGINALITY

A new technique of heat transfer enhancement of heat exchanging surface is

proposed in order to serve the heat exchanger application.

The study focuses on the dimple surface which is the special method for

improving the heat transfer rate without the significant pressure drop.

The novel design of flat tube heat exchanger having dimples surface is proposed.
The new design will have better performance than the conventional type.
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