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STATEMENTS OF ORIGINALITY 

1. A new technique of heat transfer enhancement of heat exchanging surface is 

proposed in order to serve the heat exchanger application. 

 

2. The study focuses on the dimple surface which is the special method for 

improving the heat transfer rate without the significant pressure drop. 

 

3. The novel design of flat tube heat exchanger having dimples surface is proposed. 

The new design will have better performance than the conventional type. 
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