CONTENTS	
	Page
	ii
Acknowledgement	
Abstract in English	iv state
Abstract in Thai	v
List of Tables	xi
List of Figures	xii
Abbreviations and Symbols	Sxv
Statement of Originality	xvii
Chapter 1 Introduction	
1.1 Dimple surface	O
1.1.1 Heat transfer performance on dimple surface	
1.1.2 Literature review	1
1.2 Tube heat exchanger	5
1.2.1 Dimple tube	5
1.2.1.1 Heat transfer performance on dimple surface	5
1.2.1.2 Literature review	5
1.2.2 Oval and flat tube	7
1.2.2.1 Heat transfer performance on oval and flat tube	7
1.2.2.2 Literature review	8
1.3 Research objectives	12
1.4 Potential benefits	13
1.5 Scope of the study	13
Chapter 2 Effects of Dimple Configurations on Heat Transfer and Friction Fact	ors for
Air Flow Over Flat Plate Having Dimple Surface	

2.1 Introduction	14
2.2 Problem definition	14
2.2.1 Problem conditions and main assumptions	14
2.2.2 Numerical method	15
2.3 Results and discussions	17
2.3.1 Data reduction	17
2.3.2 Result of base case	18
2.3.3 Effect of dimple shape	19
2.3.4 Effect of attack angle of dimple	21
2.4 Summary and conclusion	24

Chapter 3 Heat Transfer Behavior of Flat Plate Having Spherical Dimple Surface

3.1 Introduction	25
3.2 Experimental setup and procedure	25
3.3 Data reduction	27
3.4 Results and discussion	29
3.4.1 Validation of the experiment	29
3.4.2 Case of Staggered arrangement	30
3.4.2.1 Temperature distribution	30
3.4.2.2 Effects of dimple pitch	31
3.4.3 Case of inline arrangement	33
3.4.3.1 Temperature distribution	33
3.4.3.2 Effects of dimple pitch	34
3.4.4 Empirical correlation	36
3.5 Summary and conclusion	37

Chapter 4 Heat Transfer Behavior of Flat Plate Having 45° Ellipsoidal Dimple Surface

4.1 Introduction	38
4.2 Experimental setup and procedure	38
4.3 Results and discussion	40
4.3.1 Case of Staggered arrangement	40
4.3.2 Case of inline arrangement	42

4.3.3 Empirical correlation	44
4.4 Summary and conclusion	45

Chapter 5 Thermal Characteristics of Air Flow Over Flat Tube with Ellipsoidal Dimple Surface

5.1 Introduction	48
5.2 Experimental setup and procedure	48
5.3 Data reduction	49
5.3.1 Single tube in cross flow	6 49
5.3.2 Tube bank in cross flow	50
5.4 Results and discussion	51
5.4.1 Single tube in cross flow	51
5.4.2 Tube bank in cross flow	52
5.4.3 Empirical correlation	53
5.5 Summary and conclusion	54
Chapter 6 Numerical Simulation and Flow Visualization	
6.1 Introduction	55
6.2 Numerical simulation of flat-dimple tube	55
6.2.1 Problem conditions and main assumptions	55
6.2.2 Numerical method	56
6.2.3 Data reduction	58
6.2.4 Results and discussions	58
6.3 Flow visualization and flow structure	60
6.3.1 Smoke visualization	60
6.3.2 Effect of flow structure on temperature distribution	61
6.4 Summary and conclusion	62
Chapter 7 Conclusions and Recommendations for The Future	
7.1 Summary of discussion	63
7.1 Summary of conclusion	64
7.2 Recommendation for future work	65

References		66
List of Publications		69
Appendix		
Appendix A		70
	A.1 Paper in International Journals	71
	A.2 Papers in International Conferences	81
Curriculum Vitae		97

LIST OF TABLES

Page

 Table 1.1 Conclusion of the literature review for dimple surface Table 1.2 Tube dimensions considered by Min and Webb (2004) for numerical calculation Table 1.3 Conclusion of the literature review for dimple tube Table 1.4 Conclusion of the literature review for oval and flat tube Table 3.1 Geometric dimensions of spherical dimple surface Table 4.1 Geometric dimensions of ellipsoidal dimple surface Table 6.1 Computational domain size Table 6.2 Basic mesh dimensions and numbers of cell 		
calculation Table 1.3 Conclusion of the literature review for dimple tube Table 1.4 Conclusion of the literature review for oval and flat tube Table 3.1 Geometric dimensions of spherical dimple surface Table 4.1 Geometric dimensions of ellipsoidal dimple surface Table 6.1 Computational domain size	Table 1.1 Conclusion of the literature review for dim	ple surface
Table 1.4 Conclusion of the literature review for oval and flat tubeTable 3.1 Geometric dimensions of spherical dimple surfaceTable 4.1 Geometric dimensions of ellipsoidal dimple surfaceTable 6.1 Computational domain size		Yebb (2004) for numerical
Table 3.1 Geometric dimensions of spherical dimple surfaceTable 4.1 Geometric dimensions of ellipsoidal dimple surfaceTable 6.1 Computational domain size	Table 1.3 Conclusion of the literature review for dimp	ple tube
Table 4.1 Geometric dimensions of ellipsoidal dimple surface Table 6.1 Computational domain size	Table 1.4 Conclusion of the literature review for oval	and flat tube
Table 6.1 Computational domain size	Table 3.1 Geometric dimensions of spherical dimple	surface
	Table 4.1 Geometric dimensions of ellipsoidal dimple	e surface
Table 6.2 Basic mesh dimensions and numbers of cell	Table 6.1 Computational domain size	
	Table 6.2 Basic mesh dimensions and numbers of cell	

LIST OF FIGURES

	Page
Figure 1.1 A flat plate having dimpled surface	1
Figure 1.2 Vortex flow within its hole	2
Figure 1.3 Compared to other types of heat transfer enhancement approaches	6
Figure 1.4 Vortex generations on dimple surface	6
Figure 1.5 Illustration of the louvered plate fin automotive radiator with in line tu	ibes 8
Figure 1.6 Heat transfer and friction characteristics of circular and oval finned tul	bes 9
in a staggered tube layout as reported by Brauer (1964)	
Figure 1.7 Tube geometries considered by Min and Webb for numerical calculati	on 11
(a) cross-sectional shape, (b) computational domain for the ET-2 oval	tube
case.	
Figure 1.8 Photo of oval tube fins used in analysis of Webb and Iyengar	12
Figure 2.1 Details of dimple surface	16
Figure 2.2 Computational grids for dimple surfaces	17
Figure 2.3 Comparison of the heat transfer coefficient and friction coefficient from	m 19
the numerical simulation and the model	
Figure 2.4 Dimple configurations	20
Figure 2.5 Effect of dimple shape to the air side heat transfer performance	21
Figure 2.6 Effect of dimple shape to the surface friction coefficient	21
Figure 2.7 Effect of dimple shape to the effectiveness (E)	22
Figure 2.8 Details of: (a) 0° attack angle (b) 35° attack angle (c) 45° attack angle	23
(d) 60° attack angle (e) 90° attack angle	
Figure 2.9 Effect of attack angle on the air side heat transfer performance	23
Figure 2.10 Effect of attack angle on the surface friction coefficient	24
Figure 2.11 Effect of attack angles to the effectiveness (<i>E</i>)	2421511
Figure 3.1 Schematic diagram of the experimental setup	²⁷ e d

xiii

Figure 3.2 Details of: (a) dimpled-tested surface for staggered arrangement, and	28
(b) individual dimple geometry	
Figure 3.3 Details of: (a) dimpled-tested surface for inline arrangement, and	28
(b) individual dimple geometry	
Figure 3.4 Comparison of the Nusselt number under the constant heat flux	31
condition from the experimental and the model in case of plain flat plate	e
Figure 3.5 Temperature distributions of Geometric No.1	32
at frontal velocity = 4.1 m/s	
Figure 3.6 Effect of dimple arrangement on heat transfer coefficient for staggered	33
arrangement	
Figure 3.7 Span-wise averaged h/h_0 , as dependent upon y	34
at frontal velocity is 4.1 m/s in case of staggered arrangement	
Figure 3.8 Temperature distributions of Geometric No.11	35
at frontal velocity = 4.1 m/s	
Figure 3.9 Effect of dimple arrangement on heat transfer coefficient for inline	36
arrangement	
Figure 3.10 Span-wise averaged h/h_0 , as dependent upon y	37
at frontal velocity is 4.1 m/s in case of inline arrangement	
Figure 3.11 Comparison of heat transfer correlations with experimental data	38
Figure 4.1 Details of: (a) dimpled-tested surface for staggered arrangement, and	41
(b) individual dimple geometry	
Figure 4.2 Details of: (a) dimpled-tested surface for inline arrangement, and	41
(b) individual dimple geometry	
Figure 4.3 Temperature distributions of Geometry No.1	43
at frontal velocity = 2.9 m/s	
Figure 4.4 Effect of dimple arrangement on heat transfer coefficient for staggered	44
arrangement	
Figure 4.5 Comparison of heat transfer coefficient for staggered arrangement	44
of spherical dimple surface and the ellipsoidal dimple surface	
Figure 4.6 Temperature distributions of Geometry No.6	45
at frontal velocity = 4.1 m/s	
Figure 4.7 Effect of dimple arrangement on heat transfer coefficient for inline	46

arrangement

Figure 4.8 Comparison of heat transfer coefficient for staggered arrangement	48
of spherical dimple surface and the ellipsoidal dimple surface	
Figure 4.9 Comparison of heat transfer correlations with experimental data	48
Figure 5.1 Schematic diagram of the experimental setup	51
Figure 5.2 Details of: (a) dimpled-flat tube arrangement, (b) individual	51
dimpled-flat tube geometry and (c) individual dimple geometry	
Figure 5.3 Average span-wise Nusselt number of cylinder, flat tube and	55
flat-dimple tube	
Figure 5.4 Average heat transfer coefficient for cylinder, flat tube	55
and flat-dimple tube	
Figure 5.5 Average heat transfer coefficient to frontal velocity for tube bank	56
Figure 5.6 Comparison of Nu correlations with experimental data	57
Figure 6.1 Details of a flat-dimple tube	60
Figure 6.2 Computational grids for a flat-dimple tube	61
Figure 6.3 Comparison of average heat transfer coefficient of experimental results	63
and numerical results of flat-dimple tube and cylinder	
Figure 6.4 Drag coefficients of flat-dimple tube and cylinder in comparison of	64
numerical results and the model	
Figure 6.5 Flow visualization of: (a) spherical dimpled surface, and	65
(b) ellipsoidal dimpled surface	
Figure 6.6 Temperature distribution along the stream line of spherical	66
dimple surface of Geometric No.1 at frontal velocity 4.1 m/s	

ABBREVIATION AND SYMBOLS

Symbol

A	Area (m ²)
C_d	Drag coefficient
C_{f}	Friction coefficient
D	Dimple diameter or tube width (mm)
$D_{\min or}$	Dimple diameter on minor axis (mm)
D _{major}	Dimple diameter on major axis (mm)
$D_{ m h}$	Hydraulic diameter (mm)
Н	Wind tunnel height
h_x	Local heat transfer coefficient (W/m ² K)
h	Average heat transfer coefficient (W/m ² K)
h_0	Average heat transfer coefficient of flat plate without dimple (W/m ² K)
h_x	Local heat transfer coefficient (W/m ² K)
Nu	Average Nusselt number
Nu _x	Local Nusselt number
Nu _D	Average Nusselt number base on tube width
Nu ₀	Baseline average Nusselt number of flat plate without dimple
Pr	Prandtl number
q''	Heat flux (W/m ²)
Re _x	Reynolds number
Re _L	Reynolds number base surface length (include dimples surface)

Re_D Reynolds number base on tube width

Re_{Dh} Reynolds number base on hydraulic diameter

- S_L Stream-wise pitch (mm)
- S_T Span-wise pitch (mm)
- *T* Temperature (°C)
- V Velocity (m/s)
- x Spanwise coordinate
- y Streamwise coordinate

Greek letters

μ	Dynamic viscosity of air $(N \cdot s/m^2)$
ρ	Density of air (kg/m ³)
k	Thermal conductivity of air (W/m·K)

Subscripts

- f Fluid
- L Surface length
- S Surface
- *x x*-direction
- ∞ Free air stream

STATEMENTS OF ORIGINALITY

- 1. A new technique of heat transfer enhancement of heat exchanging surface is proposed in order to serve the heat exchanger application.
 - The study focuses on the dimple surface which is the special method for improving the heat transfer rate without the significant pressure drop.

2.

3.

The novel design of flat tube heat exchanger having dimples surface is proposed. The new design will have better performance than the conventional type.

ข้อความแห่งการริเริ่ม

- วิทยานิพนธ์นี้ได้นำเสนอวิธีการเพิ่มการถ่ายเทความร้อนให้กับพื้นผิวที่ต้องการถ่ายเทความ ร้อน เพื่อใช้ในการออกแบบเครื่องแลกเปลี่ยนความร้อน ทำให้สามารถลดการใช้วัสดุในการ ผลิตเครื่องแลกเปลี่ยนความร้อนได้
 - ในการศึกษานั้นจะใช้วิธีทำให้พื้นผิวเป็นแอ่ง โดยประกอบไปด้วยแอ่งรูปทรงรีและทรงกลม ซึ่งเป็นวิธีที่ได้รับการพิสูจน์แล้วว่าช่วยเพิ่มการถ่ายเทความร้อนโดยไม่เพิ่มความดันสูญเสีย
 - งานวิจัยนี้ยังได้ศึกษาการถ่ายเทความร้อนของอากาศผ่านกลุ่มท่อแบนที่ผิวมีแอ่งรูปทรงรี ซึ่ง เพิ่มการถ่ายเทความร้อนให้กับท่อแบนได้

3.