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ข้อความแห่งการริเร่ิม 
 

1) วธีิการหาเสถียรภาพแบบใหม่ท่ีอาศยัทฤษฏี Lyapunov ไดถู้กน าเสนอเพื่อท านายความเป็นไป
ไดข้องการเกิดการสั่นสะเทือนแบบไม่เป็นเชิงเส้นท่ีเก่ียวขอ้งกบัปฏิกิริยาระหวา่งโรเตอร์และ 
สเตเตอร์ เง่ือนไขเสถียรภาพของวงโคจรท่ีสม ่าเสมอส าหรับการหมุนวนแบบตามถูกสร้างข้ึน 
วธีิการควบคุมใดๆท่ีท าใหเ้ง่ือนไขน้ีเป็นจริงจะท าใหไ้ดร้ะบบควบคุมท่ีมีเสถียรภาพ 

2) กลยุทธ์ในการควบคุมแบบใหม่โดยอาศยัแบบจ าลองของระบบท่ีเรียกว่าการควบคุมแรง
ป้อนกลบัแบบพลศาสตร์ ซ่ึงอยูบ่นพื้นฐานของทฤษฎีท่ีถูกพฒันาข้ึนไดถู้กน าเสนอ ตวัควบคุม
น้ีใช้การวดัแรงปฏิกิริยาระหว่างโรเตอร์และสเตเตอร์ เทคนิคน้ีสามารถน าไปใช้กับการ
สั่นสะเทือนท่ีมีหลายโหมดและในกรณีท่ีแอกชูเอเตอร์กบัเซนเซอร์ไม่อยูใ่นต าแหน่งเดียวกนั 
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STATEMENT OF ORIGINALITY 

 

1) A novel Lyapunov-based approach to predict the possibility of nonlinear vibration 

response involving rotor-stator interaction was proposed. Here, the stability 

condition of a steady orbit for a forward whirl was established. Any control approach 

that ensures this condition is satisfied will result in a stable control system. 

2) A novel model based control strategy called “dynamic force feedback control” based 

on the theories developed was proposed. This controller utilizes measurement of 

rotor-stator interaction forces. The technique can be applied with multi-mode 

vibration and in case where the actuator and sensor are non-collocated. 




