CONTENTS

Pa	age
Acknowledgement	d
Abstract in Thai	e
Abstract in English	h
List of Tables	n
List of Figures	0
Statement of Originality in Thai	u
Statement of Originality in English	v
Chapter 1 Introduction	1
1.1 Rotating Machinery	1
1.2 Vibration in Rotating Machinery	2
1.3 Rotor-stator Interaction	2
1.4 Background	4
1.5 Objectives of the Thesis	6
1.6 Thesis Outline	7
Chapter 2 Rotor-stator Vibration Behaviour	10
2.1 Modelling Approach2.2 Prediction of Whirl with Contact	10 12
2.3 Example of Whirl Prediction with Contact	18
2.4 Summary	24
Chapter 3 Test Rig and Experimental Setup	29

3.1 Test Rig	29
3.2 Rotor	30
3.3 Active Magnetic Bearing	31
3.4 Stator and Force Sensing Device	33
3.5 Instrumentation and Data Acquisition	34
Chapter 4 System Modelling	37
4.1 Parameter Identification for Rotor Modelling	37
4.2 Parameter Identification for Stator Modelling	42
4.3 Multi-Mode Rotor-Stator System Model	46
4.4 Nonlinear Interaction Model	47
4.5 Summary	48
Chapter 5 Prediction of Vibrational Stability	49
5.1 Stability Condition for Forward Whirl using Frequency Response Function	4 9
5.2 Stability Condition for Backward Whirl using Frequency Response Function	ı 51
5.3 Stability Conditions for Forward Whirl using Lyapunov Based Approach	52
5.4 Stability Condition to Avoid Backward Whirl using Lyapunov Based Ap-	
proach	60
5.5 Numerical Simulation	62
5.6 Summary	64
Chapter 6 Controller Design	66
6.1 Controller Formulation	66
6.2 Stability Conditions for Controlled System	68
6.3 Controller Synthesis to Stabilize Contact-Free Whirl in the Presence of	
Friction	74
00 6.4 Summary by Chiang Mai Universi	77
Chapter 7 Simulation and Experimental Result	79
7.1 Numerical Analysis and Simulation Results	79
7.2 Experimental Results	100
7.3 Summary	106

Chapter 8 Conclusions	111
8.1 Test Rig and Mathematical Model	111
8.2 Rotor-Stator Coupled Whirl without Significant Friction	112
8.3 Rotor-Stator Coupled Whirl with Friction Influence	113
8.4 Discussion	113
Bibliography	115
Curriculum Vitae	120

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University AII rights reserved

LIST OF TABLES

Table 4.1	l	Parameter values for rotor model identification	41
Table 4.2	2	Parameter values for stator model identification	44

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

Figure 1	1.1	Examples of rotating machines	1
Figure 2	2.1	Simple model for a rotor interacting with a stator	11
Figure 2	2.2	Vector geometry to analyse the contact force solution.	13
Figure 2	2.3	Rotational frequency zones for alternative orbit solution with rotor-	
		stator interaction can be determined from the Nyquist plot of $G(\omega)$.	
		Bi-stable interaction solution can exist for rotational speeds within	
		the range $\omega_1 \rightarrow \omega_2$.	15
Figure 2	2.4	Boundary for possibility of a backward whirl solution can be de-	
		termined from condition (2.21)	17
Figure 2	2.5	A flexible rotor and stator model.	18
Figure 2	2.6	Alternative orbit solution with rotor-stator interaction exists for ro-	
		tational frequency within the range 315 to 410 rad/s.	19
Figure 2	2.7	Transient response of the rotor system due to temporary step change	
		in disturbance at operating frequency of 280 rad/s	21
Figure 2	2.8	Transient response of the rotor system due to temporary step change	
		in disturbance at operating frequency of 345 rad/s	22
Figure 2	2.9	Boundary for possibility of backward whirl solution of the rotor	
		system at operating frequency of 280 rad/s	24
Figure 2	2.10	Transient response of the rotor system (with friction coefficient for	
		rotor and stator surfaces $\mu = 0.1$) due to step change in disturbance	
		at operating frequency of 280 rad/s	25

- Figure 2.11 Orbit plots of the rotor at operating frequency of 280 rad/s with friction coefficient for rotor-stator surfaces $\mu = 0.1$ (a) initial contact free orbit (b) rotor-stator rubbing transition orbit (c) rotor whirl with full annular rub. An initial limit of clearance is indicated by a dot circle.
- Figure 2.12 Transient response of the rotor system (with friction coefficient for rotor and stator surfaces $\mu = 0.5$) due to step change in disturbance at operating frequency of 280 rad/s

26

27

28

Figure 2.13 Orbit plots of the rotor at operating frequency of 280 rad/s with friction coefficient for rotor-stator surfaces $\mu = 0.5$ (a) initial contact free orbit (b) rotor-stator rubbing transition orbit (c) rotor orbit is developed to friction driven backward bouncing (d) instability orbit of friction driven backward whirl. An initial limit of clearance is indicated by a dot circle.

Figure 3.1	Experimental test rig	29
Figure 3.2	CAD model of rotor part	30
Figure 3.3	Contact disk	31
Figure 3.4	Rotational speed measurement and driving unit	31
Figure 3.5	Basic concept of an active magnetic bearing.[1]	32
Figure 3.6	Structural configurations of radial bearings.[1]	33
Figure 3.7	Radial clearance between rotor and stator/AMB housing	33
Figure 3.8	Active magnetic bearing	34
Figure 3.9	Horizontal supported rods	35
Figure 3.10	Force sensing device	35
Figure 3.11	xPC Target system and test rig connection diagram	36
Figure 3.12	Experimental test rig and xPC target computer system connection	36
Figure 4.1	Rotor schematic for parameters identification	37
Figure 4.2	Magnitude of frequency response for test rig rotor (measured)	38
Figure 4.3	Phase of frequency response for test rig rotor (measured)	39

Figure	4.4	Real and Imaginary part of $G11(s)$ which is used to identify the	
		rotor model parameters	40
Figure	4.5	Rotor model validation for magnitude of frequency response function	42
Figure	4.6	Rotor model validation for phase of frequency response function	43
Figure	4.7	Mechanical modelling of stator for parameter identification	44
Figure	4.8	Impulse vibration response of stator measured during impact test	44
Figure	4.9	Stator model validation: impulse vibration response	45
Figure	4.10	Block diagram of rotor system with nonlinear interaction model	47
Figure	4.11	Schematic of rotor-stator interaction in contact plane	48
Figure	5.1	Whirl mode map for test rig showing region for possibility of an	
		alternative vibration response involving rotor-stator interaction	50
Figure	5.2	Boundary for possibility of backward whirl solution of the test rig	
		predicted by using equation (2.21).	51
Figure	5.3	Schematic diagram of rotordynamic system	55
Figure	5.4	The geometry for rotor-stator interaction occurring at contact plane	56
Figure	5.5	Schematic diagram of rotordynamic system with steady orbit due	
		to steady initial disturbance	58
Figure	5.6	Schematic diagram of rotordynamic system with friction at inter-	
		action plane	60
Figure	5.7	Schematic diagram of rotordynamic system with friction at inter-	
		action plane	61
Figure	5.8	Comparison of boundaries for possibility of an alternative vibra-	
		tion response involving rotor-stator interaction.	62
Figure	5.9	Comparison of boundaries for possibility of a backward whirl so-	
		lution.	64
Figure	6.1	Control scheme based on feedback of rotor-stator interaction forces	67
Figure	6.2	Control scheme based on feedback of rotor-stator interaction forces	
		with a steady orbit	72
Figure	6.3	Control scheme based on feedback of rotor-stator interaction forces	
		with friction at interaction plane	76

Figure 7.1	whirl mode map for test rig calculated from model which shows a	
	jump response pair from simulation at operating frequency of 28	
	Hz with radial clearance of 0.6 mm	80
Figure 7.2	Transient response of the uncontrolled system due to temperary	
	step change in disturbance at operating frequency of 28 Hz	81
Figure 7.3	Variation of orbit radius and contact force with unbalance level for	
	simulated steady state operation at 28 Hz	82
Figure 7.4	Dynamic compliance $H(\omega)$ for the controlled system. The design	
	parameter α has an important influence on the magnitude of this	
	function	83
Figure 7.5	Transient response of the controlled system due to temperary step	
	change in disturbance at operating frequency of 28 Hz	84
Figure 7.6	Transient response of the uncontrolled system due to temporary	
	step change in disturbance at operating frequency of 38 Hz	85
Figure 7.7	Transient response of the controlled system due to temporary step	
	change in disturbance at operating frequency of 38 Hz	86
Figure 7.8	whirl mode map for test rig calculated from model which shows a	
	jump response pair from simulation at operating frequency of 34	
	Hz with radial clearance of 0.6 mm	87
Figure 7.9	Transient response of the uncontrolled system due to temporary	
	step change in disturbance at operating frequency of 34 Hz	88
Figure 7.10	Dynamic compliance $H(\omega)$ for the controlled system with a flexi-	
	ble stator	89
Figure 7.11	Variation of magnitude of stator vibration and contact force with	
	unbalance level for simulated steady state operation at 34 Hz	89
Figure 7.12	Transient response of the controlled system due to temporary step	
	change in disturbance at operating frequency of 34 Hz	90
Figure 7.13	Boundary for possibility of backward whirl solution of the uncon-	
	trolled system using LMI stability conditions.	92

- Figure 7.14 Transient response of the uncontrolled system with friction coefficient between rotor and stator surfaces $\mu = 0.12$ due to temporary step change in disturbance at operating frequency of 15 Hz
- Figure 7.15 Orbit plots of contact disk at operating frequency of 15 Hz with friction coefficient between rotor-stator surfaces $\mu = 0.12$ (a) initial contact free orbit (b) rotor-stator rubbing transition orbit (c) limit cycle bouncing of friction driven whirl (d) limit cycle of friction driven whirl. An initial limit of clearance is indicated by a dotted circle.
- Figure 7.16 Transient response of the uncontrolled system with friction coefficient between rotor and stator surfaces $\mu = 0.14$ due to temporary step change in disturbance at operating frequency of 15 Hz
- Figure 7.17 Orbit plots of contact disk at operating frequency of 15 Hz with friction coefficient between rotor-stator surfaces $\mu = 0.14$ (a) initial contact free orbit (b) rotor-stator rubbing transition orbit (c) rotor orbit is developed to friction driven backward bouncing (d) instability orbit of friction driven backward whirl. An initial limit of clearance is indicated by a dotted circle.
- Figure 7.18 Dynamic compliance $H(\omega)$ plots for the controller gain selection with varying the desing parameter α
- Figure 7.19 Comparison of boundary for possibility of backward whirl solution of the uncontrolled and controlled system using LMI stability conditions. The region where the controller can eliminate the possibility of backward whirl is indicated by the gray area.

Figure 7.20 Transient response of the controlled system with friction coefficient between rotor and stator surfaces $\mu = 0.14$ due to temporary step change in disturbance at operating frequency of 15 Hz

Figure 7.21 Orbit plots of contact disk of the controlled system at operating frequency of 15 Hz (a) initial contact free orbit (b) rotor-stator rubbing transition orbit (c) stable circular orbit of the rotor-stator rubbing case. An initial limit of clearance is indicated by a dotted circle.

S

93

94

95

96

97

97

98

99

Figure 7	.22	Variation of orbit radius and contact force with unbalance level for	
		experiment with steady state operation at 28 Hz (a) Uncontrolled	
		case. (b) Controlled case with $\alpha = 0$	101
Figure 7	.23	Experimental transient test at 28 Hz involving temporary increase	
		in unbalance of uncontrolled case	102
Figure 7	.24	Experimental transient test at 28 Hz involving temporary increase	
		in unbalance of controlled case	103
Figure 7	.25	Experimental transient test at 34 Hz involving temporary increase	
		in unbalance of uncontrolled case.	104
Figure 7	.26	Experimental transient test at 34 Hz involving temporary increase	
		in balance of controlled case.	105
Figure 7	.27	Experimental transient test at 15 Hz involving temporary increase	
		in balance of uncontrolled case.	108
Figure 7	.28	Rotor disk orbit at a contact plane operating at frequency of 15 Hz	
		(a) Rotor orbit transition from contact free orbit to contact orbit. (b)	
		Rotor orbit in second 2-2.5(black), second 5-5.5(blue) and second	
		10-10.5(red). An initial limit of clearance is indicated by a dotted	
		circle.	108
Figure 7	.29	Experimental transient test at 15 Hz involving temporary increase	
		in balance of controlled case.	109
Figure 7	.30	Rotor disk orbit at a contact plane operating at frequency of 15 Hz	
		(a) Rotor orbit transition from contact free orbit to contact orbit. (b)	
		Rotor orbit in second 2-2.5 (black), second 5-5.5(blue) and second	
		10-10.5(red). An initial limit of clearance is indicated by a dotted	
		circle.	110

All rights reserved

ข้อความแห่งการริเริ่ม

- วิธีการหาเสถียรภาพแบบใหม่ที่อาศัยทฤษฎี Lyapunov ได้ถูกนำเสนอเพื่อทำนายความเป็นไป ได้ของการเกิดการสั่นสะเทือนแบบไม่เป็นเชิงเส้นที่เกี่ยวข้องกับปฏิกิริยาระหว่างโรเตอร์และ สเตเตอร์ เงื่อนไขเสถียรภาพของวงโคจรที่สม่ำเสมอสำหรับการหมุนวนแบบตามถูกสร้างขึ้น วิธีการควบคุมใดๆที่ทำให้เงื่อนไขนี้เป็นจริงจะทำให้ได้ระบบควบคุมที่มีเสถียรภาพ
- กลยุทธ์ในการควบคุมแบบใหม่โดยอาศัยแบบจำลองของระบบที่เรียกว่าการควบคุมแรง ป้อนกลับแบบพลศาสตร์ ซึ่งอยู่บนพื้นฐานของทฤษฎีที่ถูกพัฒนาขึ้นได้ถูกนำเสนอ ตัวควบคุม นี้ใช้การวัดแรงปฏิกิริยาระหว่างโรเตอร์และสเตเตอร์ เทคนิคนี้สามารถนำไปใช้กับการ สั่นสะเทือนที่มีหลายโหมดและในกรณีที่แอกชูเอเตอร์กับเซนเซอร์ไม่อยู่ในตำแหน่งเดียวกัน

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

STATEMENT OF ORIGINALITY

- A novel Lyapunov-based approach to predict the possibility of nonlinear vibration response involving rotor-stator interaction was proposed. Here, the stability condition of a steady orbit for a forward whirl was established. Any control approach that ensures this condition is satisfied will result in a stable control system.
- 2) A novel model based control strategy called "dynamic force feedback control" based on the theories developed was proposed. This controller utilizes measurement of rotor-stator interaction forces. The technique can be applied with multi-mode vibration and in case where the actuator and sensor are non-collocated.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University AII rights reserved