CONTENTS

	Page
Acknowledgement	c
Abstract in Thai	d
Abstract in English	f
List of Tables	1
List of Figures	m
List of Abbreviations	n
List of Symbols	q
List of Subscripts	r
Statement of Originality in English	S
Statement of Originality in Thai	t
Chapter 1 Introduction	1
1.1 Statement and Significant of Problem	1
1.2 Potential of Low Temperature Heat Source	3
1.2.1 Combined Heat and Power (CHP) Plants	3
1.2.2 Solar Thermal Power Plant	4
1.2.3 Biomass Power Plant	5
1.2.4 Geothermal Power Plant	6
1.3 Literature Reviews	7
1.4 Objective of the Study	11
1.5 Scope of Study	12
1.6 Benefit of the Study	12
1.7 Research Location	12

CONTENT (Continued)

		Page
Chapter 2	Theory	13
2.1	Thermodynamic of Organic Rankine Cycle	13
	2.1.1 First and Second Law of Thermodynamic	14
	2.1.2 Simulation Model of the Organic Rankine Cycle	17
2.2	Working Fluids for the ORC	24
	2.2.1 Working Fluid Selection for Low-Temperature Heat Source	24
	2.2.2 Analysis of Working Fluids for Low-Temperature Power Cycle	27
Chapter 3 I	Experimental Setup	31
3.1	Description of ORC Test Rig	31
3.2	System Component Design and Installation	34
	3.2.1 Turbine	34
	3.2.2 Vapor Generator Design and Installation	37
	3.2.3 Water Cooled Condenser Installation	39
	3.2.4 Pump Selection and Installation	39
	3.2.5 Liquid Receiver Tank	42
3.3	Working Fluid Selection and Charging	42
3.4	Measurement Devices	44
	3.4.1 Thermocouple	44
	3.4.2 Temperature Data Logger	45
	3.4.3 Pressure Gauge	46
	3.4.4 Torque Measurement	47
	3.4.5 Working Fluid Flow Measurement	48
	3.4.6 Rotation Speed Measurement	49
3.5	Research Methodology	50
3.6	Cycle Thermodynamic Simulation	50
3.7	Description of Experimental Conditions	51

CONTENT (Continued)

			Page
Chapter 4	Results	and Discussions	53
4.1	ORC	Numerical Simulation	54
4.2	Chara	cteristic of ORC System	58
	4.2.1	Effects of Vapor Generator Temperature on Heat Source	
		Temperature	58
	4.2.2	Proportion of Pressure on Temperature at Vapor Generator	59
	4.2.3	Maximum Power Output on Heat Source Temperature	60
	4.2.4	Maximum Power Output on Turbine Torque	61
	4.2.5	Effects of Power Output and Torque on Temperature	
		Difference	62
	4.2.6	Characteristic of Turbine Torque on Turbine Rotation Speed	62
	4.2.7	Characteristic of Power Output on Turbine Rotation Speed	64
	4.2.8	Effects of Turbine Torque and Power Output on	
		Working Fluid Mass Flow Rate	65
	4.2.9	Optimum Condition of ORC System	67
4.3	Irreve	rsibility Analysis	68
	4.3.1	Effects of Irreversibility on ORC System	68
	4.3.2	Effect of Exergy Destruction on Working Fluid	
	ຄີປຄໍ	Mass Flow Rate	69
	4.3.3	Proportion of Thermodynamics Properties in Components	72
	4.3.4	Effect of Exergy Destruction on System	73
	4.3.5	Effects of Working Fluid Mass Flow Rate on Exergy	
		Destruction and Exergy Efficiency	74
	4.3.6	Influence of Working Fluid on Power Output	
		and Irreversibility	75
4.4	Verifi	cation of Numerical and Experimental ORC System	76
	4.4.1	Comparison of Overall Heat Transfer on Heat Source	
		Temperature	76

CONTENT (Continued)

	Page
4.4.2 Comparison of Heat Transfer on Working Fluid	
Mass Flow Rate	78
4.4.3 Comparison of Energy and Exergy Efficiency on System	79
4.5 Discussion	81
Chapter 5 Conclusions and Recommendations	82
5.1 Conclusions	82
5.2 Recommendations	83
5.3 Feasibility for Power Generation with ORC	84
5.4 The Future Work	85
References	86
Appendix	91
Appendix A Numerical Simulation and Experimental Data	92
Appendix B Numerical Simulation and Experimental Calculation	115
Appendix C Proportion of Torque and Power output	145
Appendix D Test Rig Drawing and Construction Cost	159
Appendix E List of Publications	173
Curriculum Vitae	191
Copyright [©] by Chiang Mai University	
All rights reserved	

LIST OF TABLES

	Page
Table 2.1 Physical, safety and environmental data of few working fluids	30
Table 3.1 Specifications of ORC system	33
Table 3.2 Specification of Micro-radial turbine	36
Table 3.3 Physical and chemical properties of HCFC-141b	44
Table 3.4 Specification of TC-08 thermocouple data logger	46
Table 3.5 Specification of Rotameter	49
Table 4.1 Numerical simulation on temperature heat source 100°C	55
Table 4.2 Maximum power output on high temperature heat source condition	60
Table 4.3 Optimum operating condition of ORC test rig	68
Table 4.4 Total exergy rates with heat source temperature and each component	
of ORC test rig	69
Table 4.5 Analysis irreversibility of test rig system	72
Table 4.6 Analysis of performance in maximum heat source temperature	
and working fluid mass flow rate case	72
Table 4.7 Thermodynamic characteristics of system on high temperature	
heat source	74
Table 4.8 Optimum condition of maximum working fluid mass flow rate case	77
Table 4.9 Heat transfer of system on heat source temperature difference	78
Table 4.10 Performance results on heat source temperature difference	79
Copyright [©] by Chiang Mai University	
All rights reserved	

LIST OF FIGURES

Figure 1.1 World marketed energy consumption: 1980 – 2030	1
Figure 1.2 Low – temperature heat source	2
Figure 1.3 Power generated from internal combustion engine heat rejected	4
Figure 1.4 Solar power plants for electric generating	5
Figure 1.5 Geothermal electric power generation diagrams	6
Figure 2.1 Principle of organic Rankine cycle	15
Figure 2.2 Simulation model components of ORC with single-stage turbine	17
Figure 2.3 Fluid flow pump diagram	18
Figure 2.4 Flow direction of working fluid through vapor generator	19
Figure 2.5 Vapor generator pinch-point temperatures	20
Figure 2.6 Turbine flow process	21
Figure 2.7 Flow directions in condenser	22
Figure 2.8 Specific heat of vaporization of working fluid	25
Figure 2.9 Typical saturation curves on T–s diagram	26
Figure 2.10 Schematic diagram T-s in ORC system	28
Figure 3.1 Prototype of ORC test rig	33
Figure 3.2 Characteristic curves for efficiency of turbines	34
Figure 3.3 Impulse radial turbine designed and constructed	35
Figure 3.4 Assembly of impulse radial turbine set	36
Figure 3.5 Vapor generator for thermal energy produced from heat source	38
Figure 3.6 Water cooled condenser design and installation	39
Figure 3.7 Schematic of reciprocating piston pump	40
Figure 3.8 Working fluid pump installation	40
Figure 3.9 Characteristic of working fluid pump	41
Figure 3.10 Receiver tank design and installation	42
Figure 3.11 Working fluid leak checked and charging	43
Figure 3.12 Thermocouple type K installation	44

LIST OF FIGURES (Continued)

Page

Figure 3.13 Temperature data logger measured	45
Figure 3.14 Pressure measurement by pressure gauge	46
Figure 3.15 Prony brake installation for torque measurement	47
Figure 3.16 Schematic diagram of torque measurement	47
Figure 3.17 Rotameter measured for working fluid flow rate	48
Figure 3.18 Tachometer measured for turbine shaft rotating	49
Figure 3.19 Schematic diagrams of apparatus components	51
Figure 4.1 Schematic diagram of ORC for numerical simulation	53
Figure 4.2 Effects of heat rate of vapor generator and turbine work output	
on heat source temperature at mass flow rate setting 372 kg/h	54
Figure 4.3 Effects of working fluid mass flow rate on heat rejection of condenser	
and net power output in case of heat source temperature $100^{\circ}C$	56
Figure 4.4 Relationship between turbine outputs on turbine inlet temperatures	57
Figure 4.5 Relationship between turbine inlet temperatures on cycle efficiency	57
Figure 4.6 Effects of vapor generator outlet temperature on heat source	
temperature	58
Figure 4.7 Relationship between temperature and pressure on vapor generator	59
Figure 4.8 Relationship maximum power output on turbine torque	61
Figure 4.9 Effects of power output on temperature difference at turbine	62
Figure 4.10 Characteristic of turbine torque and turbine rotation speed	63
Figure 4.11 Relationship of average turbine torque on turbine rotation speed	63
Figure 4.12 Characteristic of power output and turbine rotation speed	64
Figure 4.13 Effects of average power output on turbine rotation speed	65
Figure 4.14 Effects of working fluid mass flow rates on turbine torque	
and power output	66
Figure 4.15 Maximum power output on optimum turbine torque	67
Figure 4.16 Cycle efficiency on optimum turbine torque	67

LIST OF FIGURES (Continued)

Page

Figure 4.17 Turbine exergy destruction on working fluid mass flow rate	70
Figure 4.18 Second law efficiency on turbine inlet temperature	71
Figure 4.19 Effects of turbine energy loss percentage on turbine exergy	
destruction	71
Figure 4.20 Proportion of energy used on system of maximum	
heat source temperature	73
Figure 4.21 Proportion of exergy on system of the maximum heat source	
temperature	73
Figure 4.22 Effect of exergy destruction on working fluid mass flow rate	75
Figure 4.23 Power output and system irreversibility on working fluid mass	
flow rate in maximum heat source temperature case	76
Figure 4.24 Effects of overall heat transfer on heat source temperature	
in maximum condition of working fluid mass flow rate	77
Figure 4.25 Energy and exergy efficiency on heat rate of vapor generator	80
12 ALL BRSTIT	
CAL UNIVE	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF ABBREVIATIONS

А	Area, m ²
Ι	Availability rate, kW
С	Specific heat, kJ/kg-K
k	Thermal conductivity, W/m-K
h	Heat transfer coefficient, W/m ² -K
h	Specific enthalpy, kJ/kg
ṁ	Mass flow rate, kg/s
Pr	Prandtl number
Q	Heat transferred, kJ
Ż	Heat transfer rate, kW
W	Work transferred, kJ
Ŵ	Work transfer rate, kW
Re	Reynolds number
Т	Temperature, °C
To	Dead state temperature, °C
ORC	Organic Rankine Cycle
Р	Pressure, kPa
р	Power, W
t	Torque, N-m
F	Force, Novright [©] by Chiang Mai University
r	Length of radius, m
W	Weight, N
L	Length, m
n	Shaft speed, rpm
g	Gravitational acceleration, m/s ²
V	Velocity of the fluid, m/s
Х	Distance, m

LIST OF SYMBOLS

ปรายห่อ

overall heat addition coefficient from finite-time analysis, W/K α

- β overall heat rejection coefficient from finite-time analysis, W/K
- Ψ total availability, kW
- void fraction or effectiveness 3

density, kg/m³ ρ

- efficiency, % η
- thermal resource temperature ratio τ
- power cycle temperature ratio θ
- ξ slope of saturated vapor curve on T–S diagram

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University AII rights reserved

LIST OF SUBSCRIPTS

a	ambient
c	cold stream
d	destroyed
e	electricity
f	float
g	gaseous
h	hot stream
i	inlet
n	amount of test
N	rotation speed
0	outlet
s	solid, surface
t	turbine
u	useful
р	pump
ca	carnot cycle
co	condenser
ge	generator
lm	log mean temperature difference
vg	vapor generator
wf	working fluid Copyright [©] by Chiang Mai University
	All rights reserved

STATEMENT OF ORIGINALITY

A new modification for power production of representative method of designing, construction and testing of low-pressure turbine engine using low-temperature heat source with refrigerant such as working fluid based on the ideal Rankine cycle concepts.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

ข้อความแห่งการริเริ่ม

แนวทางการประยุกต์คัคแปลงรูปแบบใหม่สำหรับการผลิตไฟฟ้า ซึ่งได้เป็นตัวแทนของ วิธีการออกแบบ สร้าง และทคสอบของเครื่องยนต์กังหันแรงคันต่ำโคยใช้แหล่งความร้อนอุณหภูมิต่ำ ร่วมกับสารทำความเย็นเป็นสารทำงานบนพื้นฐานแนวคิควัฎจักรกำลังไออุคมคติ

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

t