CHAPTER 3

Methodology

3.1Water footprintassessment

3.1.1 Data requirement for WF calculation

The beginning of processing asses of water footprint could be started through a checklist illustrated by Hoekstra et al. (2009) (Appendix A).All of data was collected from MSCE Company staff and sugarcane's farmer in Mae Sot District, Tak Province.

Sugarcane fields about 23,966 rai in Mae Sot District were considered (Figure 3.1 beneath MSCECompany supported). And especially growing season of sugarcane cultivation since October 2011 to September 2012 were calculated WF. Collection of the data was carried out for green and blue WF calculation according to the checklist in CROPWAT 8.0 Model.

Table 3.1 The useful information for calculations of green and bluewater footprints inCROPWAT 8.0 model

No.	Parameters	results	unit data source
	For evapotranspiration	Table 4.1	°C Data from
	calculation* (ET ₀ ; mm/day)		meteorological
1)	Minimum and maximum		station's MSCE
	temperature all of growing		
	season		
2)	Humidity	Table 4.1	% Data from
			meteorological
			station's MSCE

Table 3.1 The useful information for calculations of green and bluewater footprints inCROPWAT 8.0 model (Cont.)

No.	Parameters	results	unit	data source
3)	Wind	Table 4.1	m/s	Data from
				meteorological
				station's MSCE
4)	Sunshine hours	Table 4.1	hours	
	0. 9	ามยห่อ	1 91	
After	complete data by filling in No.	1 - 4, it could s	show the value i	n No. 5 - 6
5)	Radiation	Table 4.1	MJ/m ² /day	Outcome from
	8.	<u>_</u>	> >	CROPWAT 8.0
6)	Evapotranspiration (ET ₀)	Table 4.1	mm/day	Outcome from
		Le in	4	CROPWAT 8.0
	For effective rainfall	Appendix B	mm	Data from
	calculation (Peff)	NZ	1 13	meteorological
7)	Rainfall	MA	10/2	station's MSCE
After	complete data by filling in No.	7, it could sho	w the value in N	No. 8
8)	Effective rainfall	Appendix B	mm	Outcome from
		U UNIV		CROPWAT 8.0
	Crop data	Sugarcane		Observation
9)	Name of crop	เวิทยาส	ลัยเชีย	งเหม
10)	The date for beginning	2011, Oct	Mai Uni	Interview and
	cultivation to harvesting	2012, Sep.		observation
	ATT FIGT	its r	eser	vea
11)	Crop coefficient (K _c)	K _c ini. 0.65		Royal Irrigation
		K _c mid. 1.27		Department,
		Kclat. 0.57		Thailand
				(RID)

*Climate data were collect from October 2011-September 2012

No.	Parameters	results	unit	data source
12)	Number of days for each		Days	InterviewMSCE
	stage			Company's staff
	-initial	30		
	-development	60		
	-mid-season	180		
	- late-season	95	8	
	- total	365	10	
13)	Root depth	1-1.5	m. 2	Interview and Allen
	5	- j k	≤ 13	et al., 1998
14)	Critical depletion	0.65	71	Allen et al., 1998
		T = m		-The example of
	400	They want) I.	the use
	IG I	NX	Λ Λ	ofCROPWAT 8.0
	131	MA	N/S	by FAO (2012)
15)	Yield response factor (K _y)	1.2	JA.	(Allen et al., 1998)
16)	Crop height	3	m m	Observation
17)	Total of sugarcane yields	72.31	ton/ha	Interview MSCE
				Company's staff
	Soil data	Black	ลัยเชีย	Observation
18)	Type of soil	clay soil	Mai Llui	andprovisional map
	Copyright [®] by	Chiang	Mai Uni	of the soil and
	All righ	ts r	eser	surface rock of
				kingdom of Thailand
				by Robert L.
				Pendleton, 1949
21)	Maximum rooting depth	2,000	cm	Allen et al., 1998
22)	Initial soil moisture	50	fraction	The example of the
	Depletion (as %TAM)			use of CROPWAT
				8.0 by FAO (2012)

Table 3.1 The useful information for calculations of green and bluewater footprints inCROPWAT 8.0 model (Cont.)

Table 3.1 The useful information for calculations of green and bluewater footprints inCROPWAT 8.0 model(Cont.)

No.	Parameters	results	unit	data source	
After complete data by filling in No. 18-22, it could show the value in No. 23					
23)	Initial available soil	100	%	Outcome from	
	moisture			CROPWAT 8.0	
	Fertilization data	Table 4.5	kg/ha	Interview MSCE	
24)	Formula and application			Company's staff	
	rate of chemical fertilization	มยนดิ			

3.1.2Water footprint calculation

1)Green water footprint (WF)

The three kinds of WF are presented by the different colors as follows:Green WF (WF_{green}, m^3 /ton) was calculated as the green component in crop water use (CWU_{green}, m^3 /ha) divided by the crop yield (Y, ton/ha).

WF green =
$$\frac{CWU_{green}}{V}$$

The green component in crop water use (CWU, m³/ha)is calculated by CROPWAT 8.0 model.

 $CWU_{green} = 10 \times \sum_{d=1}^{lgp} ET_{green}$

Where, ET_{green} is the evapotranspiration of crop which wascalculated by accumulation of daily evapotranspiration (ET, mm/day). And,lgp is the length of growing period in days. Factor of 10 is applied to convert evapotranspiration (ET) of crop from millimeters (mm) into water volume per land surface area (m³/ton) (Hoekstra *et al.*, 2011)

The green WF assessment was done by using the climatic data from the meteorological station by MSCECompany, located near

Figure 3.1 Sugarcane fields in Mae Sot District, Tak Province beneath MSCE Company supported

thesugarcane fields in Mae Sot District. The yield and harvested area of sugarcane in Mae Sot District were also obtained from MSCEC. The crop parameters from Allen *et al.* (1988) and Crop coefficient (K_c) for sugarcane wereobtained from Royal Irrigation Department of Thailand (RID, 2010). The growing period of sugarcane began early October, 2011 and ended late September, 2012 (12 month).

2)Blue water footprint (WF)

Blue WF (WF_{blue}, m^3 /ton) is calculated in the similar way as green WF. However, in this study, the most of sugarcane fields (99%) in Mae Sot District have no irrigation system (rain-fed condition).

3)Grey water footprint (WF)

Many pollutants generally consist of fertilizers such as nitrogen, phosphorus and so on; have been used to calculate the grey $WF(WF_{gray}, m^3/ton)$. In this study, nitrogen is used as a fertilizer.

WF_{grey}=
$$\frac{(\alpha \times AR) / (Cmax - Cnat)}{Y}$$

Where, C_{nat} is the natural concentration of pollutant in the receiving water body. In this study it was assumed to be zero (IFC, 2010; Hoekstra et al., 2011) because the receiving water is only precipitation. The Surface Water Quality Standards of Thailand recommended thatmaximum contaminant level or concentration (C_{max}) of nitrate nitrogen in surface water is 5.0 mg/L (PCD, 2013). 10% as a leaching rate was assumed to be a leaching run off fraction (α) of fertilizer application rate (AR, kg/ha) for all locations (Chapagain*et al.*, 2009) as recommended by Hoekstra and elsewhere (Kongboon and Sampattagul, 2012; Hoekstra et al., 2009; IFC, 2010; Hoekstra et al., 2011; Chapagain *et al.*, 2006).

The total WF (m^3 /ton) is calculated as the sum of the green, blue and grey WF.

 $WF_{proc} = WF_{green} + WF_{blue} + WF_{grey}$

WF_{proc}(m³/ton) is the total WF of an agricultural production

process.

3.2Heavy metal analysis

3.2.1 Sampling sites and collection

Sampling sites were contaminated site and control site as follow basic information in Table 3.2:
 Table 3.2 Site information

	Contaminated site	Control site
location	- Mae Tao Mai,	- Mae KuedLuang,
	Mae Tao Sub district,	Mae Kasa Sub district,
	Mae Sot District,	Mae Sot District,
	Tak Province	Tak Province
GPS	- 16°40'12.4"N	- 16°49'25.0"N
(Figure 3.2)	98°36'29.7"E	98°33'37.2"E
	- 229 m above sea level	- 204 m above sea level
Site description	- Near Mae Tao Stream with	- Far from contaminated site
	inflow of heavy metals from Zn	about 25 kms and located at
	mine upstream	thecontrol site
Site description	- Sugarcane fields are in village,	- Sugarcane fields are far from
(Cont.)	more shed by trees around filed	village and few shed of tree.
Cop	and near road.	Mai University
Soil	- Name of soil : Hang Chat Series	Name of soil : Tub Kwang Series
characterization	(Hc)	(Tw)
(Potichanet al.,	- Fine-loamy, mixed,	- Fine, mixed, active,
2004)	isohyperthermicTypic (Kandic)	is ohyper thermic Typic Haplustal fs.
	Paleustults	

	Contaminated site	Control site
Soil	- Dark brown or dark grayish	- Dark brown or very dark
characterization	brown sandy loam overlaying a	grayish brown loam or clay
(Potichanet al.,	yellowish red, reddish yellow or	loams A horizon overlaying
2004)	red clay loam	brown and etc.
	- Reaction is moderately acid to	- Reaction is medium acid to
	very strongly acid that deceasing	slightly acid at the surface and
	with depth.	very strongly acid to strongly
	- Formed from alluvial deposits	acid in the subsoil.
	(mainly from granite) over	- Same properties with Wang
	residuum of granitic rock on	SaPhung(Ws) and Chatturut(Ct)
	coalescing fans or fan	Series.
	- Relief is gently undulating to	- Developed from residuum
	rolling.	and/or colluvium of shale (sandy
	- Slopes range 2-16 %	shale) and phyllite and occur on
	- 1,100 – 1,800 mm average	(dissected) erosion surface.
	annual precipitation	- Relief is undulating to rolling
	- Well drained.	with slope ranging from 2-8%.
	- Moderate permeability	- 1,100 -1,400 mm average
	- Medium to rapid of runoff	annual precipitation
8 11	สิทธิ์แหกริทยุกร้	- Well drained.
ดบ	ດແອກມາງແຄງເຕ	- Moderate permeability
Cop	oyright [©] by Chiang <i>l</i>	- Medium runoff
A	l rights r	eserved

Table 3.2 Site information (Cont.)

Sugarcane root and soil samplings werecarried out in August (2011) and February (2012) to compare the differences between dry and wet seasons as follow Table 3.3 (both of sites were planted sugarcane since March 2011 and harvest in February 2012). Three sampling, both sugarcane root and soil were collected randomly each area. Sugarcane roots were collected and cut to the length of 5-10 cms from the base of sugarcane stem. Soil samples were collected at10-20 cmsdepth in the sugarcane fields (IAEA, 2004; Ma *et al.*, 2012). In the laboratory, all the

samples were washed with distilled water, dried at ca. 80° for 24 hours, and grounded with a mortar for analysis.

Figure 3.2 Sampling sites for samples in Mae Sot District, Tak province

Months	Type of sample	Age of sample	Contaminated site*	Control site*
August	Soil	-	3	3
2011	Sugarcane root	1 yr.	3	3
2011		3 yr.	3	3
February	Soil	-	3	3
2012	Sugarcane root 1 yr. 3 yr.	1 yr.	3	3
2012		3 yr.	3	3
	Total	ANERO	18	18

Table 3.3 Number of sampling both soil and sugarcane root in study sites

*100 mg per 1 sample

3.2.2 Analysis of heavy metalsby ICP-OES

1)Materials, chemical reagents and equipment

- Balances

- Nitric acid pure and nitric acid 0.1 Molar
- Volumetric flask 10 ml
- Beaker
- Deionization water
- Polyethylene bottles size 30 ml
- Label
- Nylon filter 0.45 µm

- Syringes

- Micropipette

- Double layer Teflon digestion vessel

- Hot oven

- Inductively Couple Plasma-Optical Emission Spectrometer (ICP-OES)

2)Decomposition of samples and heavy metals analysis

The 100 mg of samples were digested by high purity concentrated nitric acid (1 ml) with double layer Teflon digestion vessel (modified from the method of Qiuquan*et al.* 2003). Al, Ba, Ca, Cd, Cr, Cu, Fe, Mg, Mn, and Znwere analyzed by ICP-OES based on Compendium Method IO-3.4 (USEPA. 1999) as shown by Figure 3.3 - 3.4.

Figure 3.3 Double layer Teflon digestion vessel (Qiuquanet al. 2003)

3) Quality Control for metal analysis

The certified reference materials (CRM) were digested by the same method as the samples, and heavy metals were measured by ICP-OES. Percent recoveries of Al, Ba, Ca, Cd, Cr, Cu, Fe, Mg, Mn, and Zn were calculated (Figure 3.4). For soil, CRM clay soil RTC 051 was used. And for plant, CRM pepperbush (*Clethrabarbinervis*) NIES 1 was used.

The certificated values are shown in Table 3.4.

Copyright[©] by Chiang Mai University All rights reserved

nt Certifi	Certified value (mg/kg)		
CRM Pepperbush NIES 1	CRM Clay soil RTC 051		
-	5530		
165±10	-		
$13{,}800\pm700$	1,220		
6.7±0.5	42.2		
1.3	246		
12±1	58.5		
205±17	4,520		
4,080±200	925		
2,030±170	757		
340±20	2 - 44		
Method validation 1. Recovery (CRMs) a. Pepperbush NIES 1 b. Clay soil RTC 051 2. Standard calibration curve 3. Instrument detection limit	Real sample analysis 1. Sugarcane root 2. Soil in sugarcane fields		
Use double layer Teflon digestion vessel for digestion (figure 3.3) and add 1 mL of HNO ₃ and 140 °C in hot oven for 4 hr. Filtered through Nylon filter 0.45 µm and adjust volume with HNO ₃ 0.1 Molar to 10 mL in volumetric flask			
	nt Certifi CRM Pepperbush NIES 1 165±10 13,800 ± 700 6.7±0.5 1.3 12±1 205±17 4,080±200 2,030±170 340±20 Method validation 1. Recovery (CRMs) a. Pepperbush NIES 1 b. Clay soil RTC 051 2. Standard calibration curve 3. Instrument detection limit Use double layer Teflon dige 3.3) and add 1 mL of HNO ₃ Filtered through Nylon filter HNO ₃ 0.1 Molar to 1		

Table 3.4 Certificated values of CRMs Pepperbush NIES No.1 and clay soil RTC 051

Figure 3.4Diagram of analytical methods for elemental analysis