APPENDIX A

Cercarial types found in field-collected snails

1. Distome cercaria Oral sucker Pharynx Caeca Ventral sucker Excretory tube Excretory bladder Tail 0.0<u>5 m</u>m 0.05 mm 2. Echinostome cercaria Oral sucker Collar spine Pharynx Caeca Ventral sucker Excretory tube Excretory bladder Tail 0.0<u>5 m</u>m 0.0<u>5 m</u>m 121

7. Tranversotrema cercaria Genital pore Oral sucker Eyespots Caeca Ventral sucker Tail 0.<u>1 m</u>m 0.<u>1 m</u>m 8. Xiphidio cercaria Stylet Oral sucker Caeca Ventral sucker Excretory bladder · Tail 0.03 mm 0.03 mm ทยาลัยเชียงใหม ลิขสิทธิ์มหาร์ rights, reserve

APPENDIX B

The related trematodes were compared

1. Clinostomum philippinensis

2. Fischoederius elongatus

3. Ganeo tigrinus

4. Haplorchis taichui

APPENDIX C

Sequences of ITS-2 region from this study

1. Centrocestus caninus

2. Fasciola gigantica

GCGGATTAATATTGAGTGAGCATACTGTGTGATTAATGCAAACTGCATACTGCTTTGAA CATCGACATCTTGAACGCATATTGCGGCCATGGGTTAGCCTGTGGCCACGCCTGTCCGA GGGTCGGCTTATAAACTATCACGACGCCCAAAAAGTCGTGGCTTGGGTTTTGCCAGCTG GCGTGATCTCCTCTATGAGTAATCATGTGAGGTGCCAGATCTATGGCGTTTCCCTAATG TATCCGGATGCACCCTTGTCTTGGCAGAAAGCCGTGGTGAGGTGCAGTGGCGGAATCGT GGTTTAATAATCGGGTTGGTACTCAGTTGTCAGTGTGTCGGCGATCCCCTAGTCGGCA CACTCATGATTTCTGGGATAATTCCATACCAGGCACGTTCCGTTACTGTTACTTTGTCA TTGGTTTGATGCTGAACTTGGTCATGTGTCTGATGCTATTTCATATAACGACGGTACCC TTCGTGGTCTGTCTTCCTGACCTCGGTTCAGACGTGATTTCATATAACGACGGTACCC

3. Fasciola gigantica (Vietnarm)

GGGGGCTTATGGAGAGCGCAGCCACTGTGTGATTAATGCAAACTGCATACTGCTTTGAA CATCGACATCTTGAACGCATATTGCGGCCATGGGTTAGCCTGTGGCCACGCCTGTCCGA GGGTCGGCTTATAAACTATCACGACGCCCAAAAAGTCGTGGCTTGGGTTTTGCCAGCTG GCGTGATCTCCTCTATGAGTAATCATGTGAGGTGCCAGATCTATGGCGTTTCCCTAATG TATCCGGATGCACCCTTGTCTTGGCAGAAAGCCGTGGTGAGGTGCAGTGGCGGAATCGT GGTTTAATAATCGGGTTGGTACTCAGTTGTCAGTGTGTCGGCGATCCCCCAGTCGGCA CACTCATGATTTCTGGGATAATTCCATACCAGGCACGTTCCGTTACTGTTACTTTGTCA TTGGTTTGATGCTGAACTTGGTCATGTGTCTGATGCTATTTCATATAACGACGGTACCC TTCGTGGTCTGTCTTCCTGACCTCGGTTCAGACGTGATTACCCGCTGAATTTAAGCATA

4. Fischoederius elongatus

Α

GGGTTCGATGAGAGCGCAGCCACTGTGTGATTAATGTGAACTGCATACTGCTTTGAACA TCGACATCTTGAACGCACATTGCGGCCACGGGTTTTCCTGTGGCCACGCCTGTCCGAGG GTCGGCTTATAAACTATCACGACGCCCAAAAAGTCGTGGCTTGGAATCTGCCAGCTGGC GTGATTTCCTCTGTGGTTCGCCACGTGAGGTGCCAGATCTATGGCGTTTTCCTAATGTC TCCGGACACAACTGCGTCTTGCTGGTAGCGCAGACGAGGGTGTGGCGGTAGAGTCGTGG CTCAGTGAACTGTAATGGTAGCACGCTCTATTGTTGTGCCTTTGTTAGTGTAACTGGTT TGAGATGCTATTGCTGTTCGTCCAATAATGATCACCCACTGTGGTGTTCAATTACCTGA CCTCGGATCAGACGTGAATACCCGCTGAATTTAAGCATAA

5. Haplorchis taichui

CCCCCGGATAATAAGTAAAAGCTCTAGTTGTGATAAATGTGAACTGCCCAAAGCTTTGA ACATCGACATCTTGAACGCACATTGCGGCCATGGGTTTTCCTGTGGCCACGCCTGTCCG AGGGTCGGCTTATAAACTATCACGACGCCCAAATAGTCGTGGCTTGGGTCTTGCCAGCT GGCGTGATTTCCTTGTGCTTTTGCATAGGGTGCCAGATCTATGGCTTTTCCCTAATGTG CCGGACGCAACCATGTCTTGGCTGACGGCCTGGATGAGGAAGTGGCGGCGGAGTCGTGG

6. Haplorchoides sp.

CGGCAATTAACCCCGCCACTTTTGTGTGATTAATGTGAACTGCCTACTGCTTTGAACAT CGACATCTTGAACGCATATTGCGGCCATGGGTTTTCCTGTGGCCACGCCTGTCCGAGGG TCGGCTTATAAACTATCACGACGCCCAAAAAGTCGTGGCTTGGGTCTTGCCAGCTGGCG TGATTTCCCTGTGCTTTTGTGTGGGGGTGCCAGATCTATGGCTTTTCCTTAATGTGCCGG ACGCATCCACATTCGGGCTGTATACCGGGATGAGGAAGTGGCGGCAGAGTCGTGGCTCA TTTTGTGAACTGTATAAATGCGCGCTCTGCTGTCTAACCTGTCTTGGTTGAAGCTTGAT GTGTCAATGCATCTGATGCAAATTTTGGTGCGCTTGCGTACTATTCCTGACCTCGGATC AGACGTGAATACCCGCTGAATTTAACCATAA

7. Opisthorchis viverrini

TCGAAGCTGAAAGGGGCGCTGCCTACTGTGTGATTAATGCGAACTGCATACTGCTTTGA ACATCGACATCTTGAACGCATATTGCGGCCATGGGTTTGCCTGTGGCCACGCCTGTCCG AGGGTCGGCTTATAAACTATCACGACGCCCAAAAAGTCGTGGCTTGGGTCTTGCCAGCT GGCATGATTTCCCCGCGCAATTGTGTGGGGGTGCCGGATCTATGGCTTTTCCCCAATGTG CCGGACGCAACCATGTCTGGGCTGACTGCCTAGATGAGGGGGTGGCGGCGGAGTCGTGG CTCAATTGTTGTTATTGTTGTTGTGAATGCGCGCGCCTCCGTTGTTGTTCCTTTGTCTTT GGTTGAGGCTCCAGTAGTGGCAATGCATTCGATGCAAATCGGTTTTGCACTTTGGTGCT TAACAACTTTCCTGACCTCGGATCAGACGTGATTACCCGCTGAATTTAAGAATAAAN

8. Orthocoelium streptocoelium

GGTTCTATAAGAGCGCAGCCACTGTGTGATTAATGTGAACTGCATACTGCTTTGAACAT CGACATCTTGAACGCACATTGCGGCCACGGGTTTTCCTGTGGCCACGCCTGTCCGAGGG TCGGCTTATAAACTATCACGACGCCCAAAAAGTCGTGGCTTGGAATCTGCCAGCTGGCG TGATTTCCTCTGTGGTTCGCCACGTGAGGTGCCAGATCTATGGCGTTTTCCTAATGTCG CCGGACACAACCGCGTCTTGCTGGTAACGCAGACGAGGGTGTGGCGGTAGAGTCGTGGC TCAGTGAACTGTAATGGTAGCACGCTCTACTGTTGTGCCTTTGTTAGTGTAACTGGTTT GAGATGCTATTGCTGTCCGTCCAATCATGATCACCTACTGTGGTGTTCATTTACCTGAC CTCGGATCAGACGTGAATACCCGCTGAATTTAAGCATAAA

9. Paramphistomum epiclitum

TAATGAGGAGCGCAGCCACTGTGTGATTAATGTGAACTGCATACTGCTTTGAACATCGA CATCTTGAACGCACATTGCGGGCCACGGGTTTTCCTGTGGCCACGCCTGTCCGAGGGTCG GCTTATAAACTATCACGACGCCCAAAAAGTCGTGGCTTGGAATCTGCCAGCTGGCGTGA TTTCCTCTGTGGTTTGCCACGTGAGGTGCCAGATCTATGGCGTTTTCCTAATGTCTCCG GACACAACTGCGTCTTGCTGGTAGCGCAGACGAGGGTGTGGCGGTAGAGTCGTGGCTCA GTGAACTGTAATGGTAGCACGCTCTATTGTTGTGCCTTTGTTAGTGCAGCTGGTTTTGAG ATGCTATTGCTGTCTGTCCAATGACGATCACCTACTGTGGTGTTCTATTACCTGACCTC GGATCAGACGTGAATACCCGCTGAATTTAAGCATA

10. Stellantchasmus falcatus

CGAGGGGCGGTTGGGGCGCAGCCACTGTGTGATTAATGTGAACTGCCTACTGCTTTGAA CATCGACATCTTGAACGCACATTGCGGCCACGGGTTTTCCCGTGGCTACGCCTGTCCGA GGGTCGGCTTATAAACTATCACGACGCCCATAAAGTCGTGGCTTGGGGTCTTGCCAGCTG GCGTGATATCCCTGCGTCTGTTGTAGGGTGCCGGATCTGTGGCTTTTCCCCAATGTGCC GGATGCAACCATATCTAGGCAGGCTGCCTGGAAACGGGGGGTGACGGCGGAGTCGTGGCT CAATTGCTAATGTGAATAATGTGCGCGCCTCCGTTGTCAATTATTTACCCGATGTTTGGC TGATGCTTTGATATGGCAATGCACCTGACTATTTGTTTTGCACTGACGTGCCAACCCAT CCTGACCTCGGATCAGACGTGAATACCCGCTGAATTTAAGCATAAAC

APPENDIX D

Sequences of ITS-2 region derived from GenBank

Fasciola gigantica 5.8S ribosomal RNA gene, partial sequence; internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence

GenBank: HQ700438.1

GCCCGACCCGCTAGGGATCACTGTGTGTGATTAATGCAAACTGCATACTGCTTTGAACATC GACATCTTGAACGCATATTGCGGCCATGGGTTAGCCTGTGGCCACGCCTGTCCGAGGGT CGGCTTATAAACTATCACGACGCCCAAAAAGTCGTGGCTTGGGTTTTGCCAGCTGGCGT GATCTCCTCTATGAGTAATCATGTGAGGTGCCAGATCTATGGCGTTTCCCTAATGTATC CGGATGCACCCTTGTCTTGGCAGAAAGCCGTGGTGAGGTGCAGTGGCGGAATCGTGGTT TAATAATCGGGTTGGTACTCAGTTGTCAGTGTGTCCGGCGATCCCCTAGTCGGCACACT CATGATTTCTGGGATAATTCCATACCAGGCACGTTCCGTTACTGTTACTTTGTCATTGG TTTGATGCTGAACTTGGTCATGTGTCTGATGCTATTTCATATAACGACGGTACCCTTCG TGGTCTGTCTTCCTGACCTCGGTTCAGACGTGATTACCGCTGAATTTTAAGCATAA

Fasciola sp. Khanh.Ct.5.1 genes for 5.8S rRNA, ITS2, 28S rRNA GenBank: AB536921.1

Fasciola gigantica genes for 5.8S rRNA, ITS2, 28S rRNA, partial and complete sequence, isolate: C-Bf 202

GenBank: AB553695.1

Fasciola gigantica genes for 18S rRNA, 5.8S rRNA and internal transcribed spacer 2, partial sequence

GenBank: AB010977.1

Fasciola sp. genes for 18S rRNA, 5.8S rRNA and internal transcribed spacer 2, partial sequence

Fasciola gigantica genes for 18S rRNA, 5.8S rRNA and internal transcribed spacer 2, partial sequence

GenBank: AB010976.1

Fasciola gigantica isolate SRS2 internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA gene, complete sequence; and internal transcribed spacer 2, partial sequence

GenBank: JN828958.1

TACTCTTACACAAGCGATACACGTGTGACCGTCATGTCATGCGATAAAAATTTGCGGAC GGCTATGCCTGGCTCATTGAGGTCACAGCATATCCGATCACTGATGGGGTGCCTACCTG TATGATACTCCGATGGTATGCTTGCGTCTCTCGGGGCGCTTGTCCAAGCCAGGAGAACG GGTTGTACTGCCATGATTGGTAGTGCTAGGCTTAAAGAGGAGATTTGGGCTACGGCCT GCTCCCGCCCTATGAACTGTTTCATTACTACAATTACACTGTTAAAGTGGTATTGAATG GCTTGCCATTCTTTGCCATTGCCCTCGCATGCACCGGTCCTTGTGGCTGGACTGCACG TACGTCGCCCGGCGGTGGCCTATCCCGGGTTGGACTGATAACCTGGTCTTTGACCATACG TACAACTCTGAACGGTGGATCACTCGGCTCGTGTGTCGATGAAGAGGCGCAGCCAACTGT GTGAATTAATGCAAACTGCATACTGCTTTGAACATCGACATCTTGAACGCATATTGCGG CCATGGGTTAGCCTGTGGCCACGCCTGTCCGAGGGTCGGCTTATAAACTATCACGACGC CCAAAAAGTCGTGGCTTGGGCTTTGCCAGCGGGGTGGATCTCCTCTATGAGTAATCATG TGAGGTGCCAGATCTATGGCGTTTCCCTAATGTATCCGGATGCACCCTTGTCTTGGCAG AAAGCCGTGGTGAGGTGCAGTGGCGGAATCGTGGTTTAATAATCGGGTTGGTACTCATG TGTCAGTGTTTGGCGATCCCCTAGTCGGCACACTCATGATTTCTGGGATAATTCCAT ACCAGGCACGTTCCGTTACTGTTACTTTGTCATTGGTTTGATGCTGAACTTGGTCATGT GTCTGATGCTATTTCATATAACGACGGTACCCTTCGT

Fasciola gigantica partial ITS1, 5.8S rRNA gene and partial ITS2, isolate FgCAY1 GenBank: AM850108.1

ACCTGAAAATCTACTCTTACACAAGCGATACACGTGTGACCGTCATGTCATGCGATAAA AATTTGCGGACGGCTATGCCTGGCTCATTGAGGTCACAGCATATCCGATCACTGATGGG GTGCCTACCTGTATGATACTCCGATGGTATGCTTGCGTCTCTCGGGGCGCTTGTCCAAG CCAGGAGAACGGGTTGTACTGCCATGGATTGGTAGTGCTAGGCTTAAAGAGGAGATTTGG GCTACGGCCCTGCTCCCGCCCTATGAACTGTTTCATTACTACAATTACACTGTTAAAGT GGTATTGAATGGCTTGCCATTCTTTGCCATTGCCCTCGCATGCACCCGGTCCTTGTGGC TGGACTGCACGTACGTCGCCGGCGGGGGCGCTATCCCGGGTTGGACTGATAACCTGGTCT TTGACCATACGTACAACTCTGAACGGTGGATCACTCGGCTCGTGTGTCGATGAAGAGCG CAGCCAACTGTGTGAATTAATGCAAACTGCATACTGCTTTGAACATCGACATCTTGAAC GCATATTGCGGCCATGGGTTAGCCTGTGGCCACGCCTGTCCGAGGGTCGGCTTATAAAC TATCACGACGCCCAAAAAGTCGTGGCTTGGGCTTCCCTAATGTATCCGGATGCACCCT TGGTAATCATGTGAGGTGCCAGATCTATGGCGTTTCCCTAATGTATCCGGATGCACCCT TGTCTTGGCAGAAAGCCGTGGTGAGGTGCAGTGGCGGAATCGTGGTTTAATAATCGGGT

Fasciola gigantica gene for ITS2

GenBank: AB207149.1

Fasciola hepatica isolate FhC4 internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA gene, complete sequence; and internal transcribed spacer 2, partial sequence

CTACTCTCACACAAGCGATACACGTGTGACCGTCATGTCATGCGATAAAAATTTGCGGA CGGCTATGCCTGGCTCATTGAGGTCACAGCATATCCGAACACTGATGGGGTGCCTACCT GTATGATACTCCGATGGTATGCTTGCGTCTCTCGGGGCGCTTGTCCAAGCCAGGAGAAC GGGTTGTACTGCCACGATTGGTAGTGCTAGGCTTAAAGAGGAGATTTGGGCTACGGCCC TGCTCCCGCCCTATGAACTGTTTCATTACTACATTTACACTGTTAAAGTGGTACTGAAT GGCTTGCCATTCTTTGCCATTGCCCTCGCATGCACCGGTCCTTGTGGCTGGACTGCAC GTACGTCGCCCGGCGGTGCCTATCCCGGGTTGGACTGATAACCTGGTCTTTGACCATAC GTACAACTCTGAACGGTGGATCACTCGGCTCGTGTGTCGATGAAGAGCGCAGCCAACTG TGTGAATTAATGCAAACTGCATACTGCTTTGAACATCGACATCTTGAACGACGCAGCCAACTG GCCATGGGTTAGCCTGTGGCCACGCCTGTCCGAGGGTCGGCTTATAAACTATCACGACG CCCAAAAAGTCGTGGCTTGGGTTTGCCAGCTGGCGTGATCTCCTCTATGAGTAATCAT GTGAGGTGCCAGATCTATGGCGTTTCCCTAATGTATCCGGATGCACCCTTGTCTTGGCA *Fasciola hepatica* isolate FhAM1 internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA gene, complete sequence; and internal transcribed spacer 2, partial sequence

ACCTGAAAATCTACTCTCACACAAGCGATACACGTGTGACCGTCATGTCATGCGATAAA AATTTGCGGACGGCTATGCCTGGCTCATTGAGGTCACAGCATATCCGAACACTGATGGG GTGCCTACCTGTATGATACTCCGATGGTATGCTTGCGTCTCTCGGGGGCGCTTGTCCAAG CCAGGAGAACGGGTTGTACTGCCACGATTGGTAGTGCTAGGCTTAAAGAGGAGATTTGG GCTACGGCCCTGCTCCCGCCCTATGAACTGTTTCATTACTACATTTACACTGTTAAAGT GGTACTGAATGGCTTGCCATTCTTTGCCATTGCCCTCGCATGCACCCGGTCCTTGTGGC TGGACTGCACGTACGTCGCCCGGCGGTGCCTATCCCGGGTTGGACTGATAACCTGGTCT TTGACCATACGTACAACTCTGAACGGTGGATCACTCGGCTCGTGTGTCGATGAAGAGCG CAGCCAACTGTGTGAATTAATGCAAACTGCATACTGCTTTGAACATCGACATCTTGAAC GCATATTGCGGCCATGGGTTAGCCTGTGGCCACGCCTGTCCGAGGGTCGGCTTATACAC TATCACGACGCCCAAAAAGTCGTGGCTTGGGTTTTGCCAGCTGGCGTGATCTCCTCTAT GAGTAATCATGTGAGGTGCCAGATCTATGGCGTTTCCCTAATGTATCCGGATGCACCCT TGTCTTGGCAGAAAGCCGTGGTGAGGTGCAGTGGCGGAATCGTGGTTTAATAATCGGGT TGGTACTCAGTTGTCAGTGTGTTTGGCGATCCCCTAGTCGGCACACTTATGATTTCTGG GATAATTCCATACCAGGCACGTTCCGTCACTGTCACTTTGTCATTGGTTTGATGCTGAA СС

ລິບສິກສົນກາວິກຍາລັຍເຮີຍວໃກມ Copyright[©] by Chiang Mai University All rights reserved

APPENDIX E

Processes of specimen preparation for permanent slide

1. Borax-carmine staining

Specimens

↓ Washing (0.85% normal saline)

Fixing (5% Formalin)

Washing stain (Tap water)

Dehydrating (Ethanol series; 10%, 20%, 30%, 50%, 70%)

> Staining (Borax-carmine)

Destaining; (1% HCl in 70% Alcohol)

Dehydrating (Ethanol series; 85%, 95%)

95% Ethanol : Butanol (2:1, 1:1, 1:2)

Butanol

Butanol : Xylene (2:1, 1:1, 1:2

Xylene

Mounting (Permount) 2. Haematoxylin staining

Specimens

Washing (0.85% normal saline)

> Fixing (5% Formalin) 1

Staining (Haematoxylin)

Washing stain (Tap water)

Dehydrating (Ethanol series; 10%, 20%, 30%, 50%, 70%)

> Destaining; (1% HCl in 70% Alcohol)

Dehydrating (Ethanol series; 85%, 95%)

95% Ethanol : Butanol (2:1, 1:1, 1:2)

Butanol

Butanol : Xylene (2:1, 1:1, 1:2

Xylene

Mounting (Permount)

141

APPENDIX F

Reagents and Stains preparation

1.

1.	Acid pepsin solution 1%			
	Pepsin powder (Sigma)	1	g S	
	Hydrocloric acid	1	ml	
	0.85% normal saline	99	ml	
2.	Borax carmine (Grenacher's alcoh	olic)		
	Borax carmine	8	g	
	70% ethanol	200	ml	
	Boil for ¹ /2 hour, cool and make up to	o 200 ml		
3.	Delifield alum haematoxylin			
	Alumimiun alum	3	g	
	Haematoxylin	0.6	g	
	Clycerine	15	ml	
	Methanol	15	ml	
	95% ethanol	4	ml	
	Distilled water	70	ml	
	Dissolve haematoxylin in 95% ethan	ol (1)		
	Dissolve Aluminium alum in distille	d water (2)		
	Solution $(1) + (2)$ add Glycerine and	d methanol. Stand	l in a sunny place to ripen	
	for several weeks			
	rights ₁₂			

4.	Formalin 5% 40% Formadehyde Distilled water	5 95	ml ml	
5.	Normal saline 0.85%			
	Sodium chloride	8.5	g ml	

All rights reserved

APPENDIX G

Reagents preparation for molecular biological study

1

2.

Agarose gel 1.4%	
Agarose gel	1.4 g
1x Tris Boric acid EDTA buffer	100 ml
Dissolve 1.4 g agarose gel to 100 ml 1x Tris	Boric acid EDTA buffer and
boiling by using microwave oven and pour	the gel when the agarose has cooled
to about 55 °C on gel electrophoresis tray.	
EDTA 0.5 M (pH 8.0)	
EDTA.Na2.2H2O	186.12 g
NaOH pallet/10N NaOH solution	
Deionized water	1000 ml
Dissolve EDTA.Na ₂ .2H ₂ O 186.12 g in dei	onized water 800 ml, set pH 8.0 by
add ~20 g NAOH while stirring vigorously	y, adjust the volume to 1000 ml and
autoclave	

3. Ethidium bromide (10mg/ml stock solution) Ethidium bromide 0.2 g Distilled water 20 ml

Dissolve 0.2 g ethidium bromide to 20 mL water. Mix well and store at 4 $^{\circ}$ C in the dark.

144 **reserv**

4. Tris Boric acid EDTA (TBE) buffer 5x	Tris Boric acid EDTA (TBE) buffer 5x			
Tris base	54	g		
Boric acid	27.5	g		
0.5 M EDTA (pH 8.0)	20	ml		

add distilled water to 1,000 ml and autoclave

ລິບສິກສົນກາວິກຍາລັຍເຮີຍວໃหມ Copyright[©] by Chiang Mai University All rights reserved

CURRICULUM VITAE

Author's Name	Mr. Anawat Phalee
Date/Year of Birth	1 June 1979
Place of Birth	Sakon Nakhon Province
Education	2001 BSc. (Biology) Mahasarakham University, Thailand
	2006 MSc. (Biology) Chiang Mai University, Thailand
	2014 Ph.D. (Biodiversity and Ethno Biology)
Scholarship	The Graduated School, Chiang Mai University
Publications	Phalee A. , Wongsawad C. 2014. <i>Fasciola gigantica</i> : worm recovery rate and adult maturity in experimental host, dwarf hamster infection, Chiang Mai Veterinary Medicine Journal. 12(1): 31-39
	Phalee A. , Wongsawad C. 2014. Prevalence of infection and molecular confirmation by using ITS-2 region of Fasciola gigantica found in domestic cattle from Chiang Mai province, Thailand. Asian Pacific Journal of Tropical Medicine. 7(3): 207-211.
	Wongsawad C., Phalee A. , Noikong W., Chuboon S., Choosak N. 2012. Co-infection with <i>Opisthorchis viverrini</i> and <i>Haplorchis taichui</i> detected by human fecal examination in
	Chomtong district, Chiang Mai Province, Thailand. Parasitology International. 61, 56-50.

All rights

Noikong W, Wongsawad C, **Phalee A.** 2011. Seasonal variation of metacercariae in cyprino fish from kwae noi bamroongdan dam, Phitsanulok Province, Northern Thailand. Southeast Asian Journal of Tropical Medicine and Public Health. 42(1): 79-83.

Phalee A., Wongsawad C., Wongsawad P., Chuboon S. 2009. Infection rate of trematode, *Centrocestus caninus* (Leiper, 1913) in *Puntius brevis* from Mae Teang District, Chiang Mai Province. Journal of Yala Rajabhat University. 4(2): 93-99.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights₁₄₇ reserved