CONTENTS

	Page
Acknowledgement	d
Abstract in Thai	f
Abstract in English	h
List of Tables	m
List of Figures	0
List of Abbreviations	q
List of Symbols	t
Statement of Originality in Thai	u
Statement of Originality in English	V
Chapter 1 Introduction	1
1.1 Statement of problems	1
1.2 Objectives	3
Chapter 2 Literature review	4
2.1 Colorectal cancer	4
2.2 Current colon cancer treatments	8
2.3 Oxidative stress and antioxidants	10
2.4 Antioxidants from plants	18
2.5 Plants used in this study	19 ISITY
All rights rese	

CONTENTS (Continued)

P	Page
Chapter 3 Materials and methods	29
3.1 Chemicals and materials	29
3.2 Preparation of plant extracts	29
3.3 Phytochemical screening	30
3.4 Safety evaluation of the extracts(Ames Test)	32
3.5 Investigation of the antiproliferative effect on	
colon cancer cell lines	32
3.6 Determination of antioxidant propert	33
3.7 Experimental animal	33
3.8 Statistical analysis	38
Chapter 4 Results	38
4.1 Phytochemical Components and Safety evaluation of the extracts	39
4.2 The antiproliferative effect of the extracts from <i>M. oleifera</i> and	
P. palatiferum	43
4.3 Antioxidant efficiency of the extracts from <i>M. oleifera</i> and	
P. palatiferum	50
Chapter 5 Discussion	57
5.1 Phytochemical components and safety evaluation of the extracts	57
5.2 Investigation of the antiproliferative effect on colon cancer cell lines	59
5.3 Determination of antioxidant property	62

CONTENTS (Continued)

		Page
References		70
Appendix		
Appendix	A List of chemical and materials used in this study	90
Appendix	B Preparation of some reagents and buffer	93
Appendix	C List of instrument used in this study	96
Appendix	D Ames test	97
Appendix	E Colon cancer cell lines	99
Appendix	F ABTS radical scavenging activity	103
Appendix	G DPPH radical scavenging activity	105
Appendix	H Ascorbic acid assay	107
Appendix	I Total phenolic assay	108
Appendix	J Calculation of the doses of the extracts	
	used in the experiments	110
Curriculum Vitae		111

LIST OF TABLES

 Table 2 Chemical components of <i>Pseuderanthemum palatiferum</i> (Nees) Radlk leaves. Table 3 Phytochemical analysis of extracts of <i>Moringa oleifera</i> Lam. and <i>Pseuderanthemum palatiferum</i> (Nees) Radlk. Table 4 Number of mutant colonies of <i>S. typhimurium</i> TA98 induced by <i>M. oleifera</i> extracts with or without activated enzyme. Table 5 Number of mutant colonies of <i>S. typhimurium</i> TA98 induced by <i>P. palatiferum</i> extracts with or without activated enzyme. Table 6 Toxicity (IC₅₀ μg/ml) of <i>M. oleifera</i> and <i>P. palatiferum</i> extracts on 3 types of colon cancer cell lines. Data are representative of three independent experiments (mean ± SD). Table 7 Suppression or elimination of ABTS and DPPH oxidants by <i>M. oleifera</i> and <i>P. palatiferum</i> leaf extracts and the amount of 			Page
 Table 2 Chemical components of <i>Pseuderanthemum palatiferum</i> (Nees) Radlk leaves. Table 3 Phytochemical analysis of extracts of <i>Moringa oleifera</i> Lam. and <i>Pseuderanthemum palatiferum</i> (Nees) Radlk. Table 4 Number of mutant colonies of <i>S. typhimurium</i> TA98 induced by <i>M. oleifera</i> extracts with or without activated enzyme. Table 5 Number of mutant colonies of <i>S. typhimurium</i> TA98 induced by <i>P. palatiferum</i> extracts with or without activated enzyme. Table 6 Toxicity (IC₅₀ μg/ml) of <i>M. oleifera</i> and <i>P. palatiferum</i> extracts on 3 types of colon cancer cell lines. Data are representative of three independent experiments (mean ± SD). Table 7 Suppression or elimination of ABTS and DPPH oxidants by <i>M. oleifera</i> and <i>P. palatiferum</i> leaf extracts and the amount of 	Table 1	Summary of chemical components and pharmacological	
Table 3 Phytochemical analysis of extracts of <i>Moringa oleifera</i> Lam. and <i>Pseuderanthemum palatiferum</i> (Nees) Radlk. Table 4 Number of mutant colonies of <i>S. typhimurium</i> TA98 induced by <i>M. oleifera</i> extracts with or without activated enzyme. Table 5 Number of mutant colonies of <i>S. typhimurium</i> TA98 induced by <i>P. palatiferum</i> extracts with or without activated enzyme. Table 6 Toxicity (IC ₅₀ μg/ml) of <i>M. oleifera</i> and <i>P. palatiferum</i> extracts on 3 types of colon cancer cell lines. Data are representative of three independent experiments (mean ± SD). Table 7 Suppression or elimination of ABTS and DPPH oxidants by <i>M. oleifera</i> and <i>P. palatiferum</i> leaf extracts and the amount of		effects of various parts of the Moringa oleifera Lam.	22
 Table 3 Phytochemical analysis of extracts of <i>Moringa oleifera</i> Lam. and <i>Pseuderanthemum palatiferum</i> (Nees) Radlk. Table 4 Number of mutant colonies of <i>S. typhimurium</i> TA98 induced by <i>M. oleifera</i> extracts with or without activated enzyme. Table 5 Number of mutant colonies of <i>S. typhimurium</i> TA98 induced by <i>P. palatiferum</i> extracts with or without activated enzyme. Table 6 Toxicity (IC₅₀ µg/ml) of <i>M. oleifera</i> and <i>P. palatiferum</i> extracts on 3 types of colon cancer cell lines. Data are representative of three independent experiments (mean ± SD). Table 7 Suppression or elimination of ABTS and DPPH oxidants by <i>M. oleifera</i> and <i>P. palatiferum</i> leaf extracts and the amount of 	Table 2	Chemical components of <i>Pseuderanthemum palatiferum</i> (Nees) Radlk	
 Pseuderanthemum palatiferum (Nees) Radlk. Table 4 Number of mutant colonies of <i>S. typhimurium</i> TA98 induced by <i>M. oleifera</i> extracts with or without activated enzyme. Table 5 Number of mutant colonies of <i>S. typhimurium</i> TA98 induced by <i>P. palatiferum</i> extracts with or without activated enzyme. Table 6 Toxicity (IC₅₀ μg/ml) of <i>M. oleifera</i> and <i>P. palatiferum</i> extracts on 3 types of colon cancer cell lines. Data are representative of three independent experiments (mean ± SD). Table 7 Suppression or elimination of ABTS and DPPH oxidants by <i>M. oleifera</i> and <i>P. palatiferum</i> leaf extracts and the amount of 		leaves.	28
 Table 4 Number of mutant colonies of <i>S. typhimurium</i> TA98 induced by <i>M. oleifera</i> extracts with or without activated enzyme. Table 5 Number of mutant colonies of <i>S. typhimurium</i> TA98 induced by <i>P. palatiferum</i> extracts with or without activated enzyme. Table 6 Toxicity (IC₅₀ μg/ml) of <i>M. oleifera</i> and <i>P. palatiferum</i> extracts on 3 types of colon cancer cell lines. Data are representative of three independent experiments (mean ± SD). Table 7 Suppression or elimination of ABTS and DPPH oxidants by <i>M. oleifera</i> and <i>P. palatiferum</i> leaf extracts and the amount of 	Table 3	Phytochemical analysis of extracts of Moringa oleifera Lam. and	
 M. oleifera extracts with or without activated enzyme. Table 5 Number of mutant colonies of S. typhimurium TA98 induced by P. palatiferum extracts with or without activated enzyme. Table 6 Toxicity (IC₅₀ μg/ml) of M. oleifera and P. palatiferum extracts on 3 types of colon cancer cell lines. Data are representative of three independent experiments (mean ± SD). Table 7 Suppression or elimination of ABTS and DPPH oxidants by M. oleifera and P. palatiferum leaf extracts and the amount of 		Pseuderanthemum palatiferum (Nees) Radlk.	40
 Table 5 Number of mutant colonies of <i>S. typhimurium</i> TA98 induced by <i>P. palatiferum</i> extracts with or without activated enzyme. Table 6 Toxicity (IC₅₀ μg/ml) of <i>M. oleifera</i> and <i>P. palatiferum</i> extracts on 3 types of colon cancer cell lines. Data are representative of three independent experiments (mean ± SD). Table 7 Suppression or elimination of ABTS and DPPH oxidants by <i>M. oleifera</i> and <i>P. palatiferum</i> leaf extracts and the amount of 	Table 4	Number of mutant colonies of S. typhimurium TA98 induced by	
 P. palatiferum extracts with or without activated enzyme. Table 6 Toxicity (IC₅₀ μg/ml) of M. oleifera and P. palatiferum extracts on 3 types of colon cancer cell lines. Data are representative of three independent experiments (mean ± SD). Table 7 Suppression or elimination of ABTS and DPPH oxidants by M. oleifera and P. palatiferum leaf extracts and the amount of 		M. oleifera extracts with or without activated enzyme.	41
 Table 6 Toxicity (IC₅₀ μg/ml) of <i>M. oleifera</i> and <i>P. palatiferum</i> extracts on 3 types of colon cancer cell lines. Data are representative of three independent experiments (mean ± SD). Table 7 Suppression or elimination of ABTS and DPPH oxidants by <i>M. oleifera</i> and <i>P. palatiferum</i> leaf extracts and the amount of 	Table 5	Number of mutant colonies of <i>S. typhimurium</i> TA98 induced by	
3 types of colon cancer cell lines. Data are representative of three independent experiments (mean ± SD). Table 7 Suppression or elimination of ABTS and DPPH oxidants by <i>M. oleifera</i> and <i>P. palatiferum</i> leaf extracts and the amount of		P. palatiferum extracts with or without activated enzyme.	42
independent experiments (mean \pm SD). Table 7 Suppression or elimination of ABTS and DPPH oxidants by <i>M. oleifera</i> and <i>P. palatiferum</i> leaf extracts and the amount of	Table 6	Toxicity (IC ₅₀ μg/ml) of <i>M. oleifera</i> and <i>P. palatiferum</i> extracts on	
Table 7 Suppression or elimination of ABTS and DPPH oxidants by <i>M. oleifera</i> and <i>P. palatiferum</i> leaf extracts and the amount of		3 types of colon cancer cell lines. Data are representative of three	
M. oleifera and P. palatiferum leaf extracts and the amount of		independent experiments (mean \pm SD).	49
	Table 7	Suppression or elimination of ABTS and DPPH oxidants by	
total phanois and accorbic acid in the extracts		M. oleifera and P. palatiferum leaf extracts and the amount of	
total phenois and ascorbic acid in the extracts.		total phenols and ascorbic acid in the extracts.	51

LIST OF TABLES (Continued)

Page

Table 8 Reduced MDA percentages in the serum of male rats treated with extracts from *M. oleifera* at doses of 60, 120, 180 and 240 mg/kgBW day and extracts from *P. palatiferum* leaves at doses of 5, 10, 15 and 20 mg/kg BW for a period of 60 days in comparison with the control group.

53

Table 9 Reduced MDA percentages in the livers of male rats treated with extracts from *M. oleifera* at doses of 60, 120, 180 and 240 mg/kg BW/day and extracts from *P. palatiferum* leaves at doses of 5, 10, 15 and 20 mg/kg BW/day for a period of 60 days in comparison with the control group

54

LIST OF FIGURES

	99	Page
Figure 1	Changes of colorectal cancer cells at various stages	6
Figure 2	Formation and destruction of Reactive Oxygen Species	11
Figure 3	The formation and destruction of radical generated from oxygen and Fenton and the Haber-Weiss Reaction	13
Figure 4	Formation of oxygen radicals catalyzed by xanthine oxidase,	3
Figure 5	myeloperoxidase and NADPH oxidase Characteristics of <i>Moringa oleifera</i> Lam. leaves.	15 19
Figure 6	Characteristics of <i>Pseuderanthemum palatiferum</i> (Nees) Radlk. Leaves	25
Table 7	Suppression or elimination of ABTS and DPPH oxidants by	
	M. oleifera and P. palatiferum leaf extracts and the amount of total phenols and ascorbic acid in the extracts.	44
Figure 8	The antiproliferative effect of ethanol extracts from the leaves of <i>M. oleifera</i> and <i>P. palatiferum</i> on 3 types of human colon cancer cell	
	line; HCT15, SW48 and SW480.	46
Figure 9	The antiproliferative effect of hexane extracts from the leaves of <i>M. oleifera</i> and <i>P.palatiferum</i> on 3 types of human colon cancer cell	
	line; HCT15, SW48 and SW480.	⁴⁸ /ersity

LIST OF FIGURES (Continued)

Figure 10	The anti-peroxidative activity of serum of male rats treated with	
	M. oleifera at doses of 60, 120, 180 and 240 mg/kg BW and	
	P. palatiferum at doses of 5, 10, 15 and 20 mg/kg BW for 60 days,	
	the stars indicate significant difference at P<0.05.	52
Figure 11	The anti-peroxidative activity of liver of male rats treated with	
	M. oleifera at doses of 60, 120, 180 and 240 mg/kg BW and	
	P. palatiferum at doses of 5, 10, 15 and 20 mg/kg BW for 60 days,	
	the stars indicate significant difference at P<0.05.	54
Figure 12	SOD of erythrocytes of male rats treated with <i>M. oleifera</i>	
	at doses of 60, 120, 180 and 240 mg/kg BW and P. palatiferum	
	at doses of 5, 10, 15 and 20 mg/kg BW for 60 days, the stars	
	indicate significant difference at P<0.05.	56

LIST OF ABBREVIATIONS

 $\mu g/pL$ Micrograms/ pL

μl Microliter

8-iso-PGE $_{2\alpha}$ Isoprostane

ABTS 2 - 2' azino – bis (3-ethylbenzothiazoline

sulfonic acid)

CAT Catalase enzymes

CYP Cytochrome P450

DMSO Dimethyl sulfoxide

DNA Deoxyribonucleic acid

DPPH 2, 2-Diphenyl-1-picrylhydrazyl

EGCG Epigallo-catechin gallate

Gram

g/kg BW Gram/ kilogram body weight

GAE Gallic acid equivalent

GCL Glutamy-cystein ligase

GSH Glutathione

GSHPx Glutathione peroxidase

GSH-Px Glutathione peroxidase

GS-SG Oxidized glutathione

GST Glutathione S-transferase

HO-1 Heme oxygenase-1

LIST OF ABBREVIATIONS (Continued)

IC₅₀ Inhibition Concentration at 50 %

LDL Low-density lipoprotein

LSD Least significant difference

M Transition metals

MDA Malondialdehyde

mg Gallic acid/mg dry weight Milligram Gallic/milligram dry weight

mg Trolox/mg dry weight Milligram Trolox/milligram dry weight

mg/kg BW Milligram/ kilogram body weight

mg/ml Milligram/ milliliters

ml Milliliters

MTT 3-(4,5-dimethylthiazol-2-yl)-2,5

diphenyltetrasolium bromide

NADPH Nicotinamide adenine dinucleotide phosphate

nm Nanometre

NO Nitric oxide

NQO1 NADPH-quinone oxidoreductase

PEITC Phenethyl isothiocyanate

RNA Ribonucleic acid

ROM Reactive oxygen metabolites

ROS Reactive oxygen species

LIST OF ABBREVIATIONS (Continued)

SD Standard deviation

SOD Superoxide dismutase

SULT Sulfotransferase

TBA Thiobarbituric acid

TBARS Thiobarbituric acid reactive substance

TCA Trichloroacetic acid

TEAC Trolox equivalent antioxidant capacity

UGT UDP-glucuronosyltransferase

XO Xanthine oxidase

Zn Zinc

LIST OF SYMBOLS

% Percent sign

°OH Hydroxyl radical

¹O₂ Singlet oxygen

C₁₅H₁₀O₅ Apigenin

C₂₀H₄₀O Phytol

C₂₉H₄₈O Stigmasterol

 $C_{29}H_{50}O$ β -Sitosterol

CO₂. Carbon Dioxide

FeCl₃ Iron trichloride, Iron(III) chloride

H₂O₂ Hydrogen peroxide

H₂SO₄ Sulfuric acid

HCl Hydrogen chloride

NaOH Sodium hydroxide

O-2° Superoxide

Beta

Gamma

ข้อความแห่งการริเริ่ม

- 1. วิทยานิพนธ์นี้ได้นำเสนอการตรวจสอบศักยภาพการยับยั้งการแบ่งตัวเพิ่มจำนวนเซลล์มะเร็ง ลำไส้ใหญ่ ชนิด HCT 15, SW48 และ SW480 จากสารสกัดใบมะรุมและใบว่านพญาวานร
- 2. เพื่อหาความสัมพันธ์ระหว่างประสิทธิภาพของสารต้านอนุมูลอิสระกับประสิทธิภาพการ ยับยั้งมะเร็งลำไส้ใหญ่จากสารสกัดใบมะรุมและใบว่านพญาวานร
- 3. เพื่อเป็นการตรวจสอบความปลอดภัยในเบื้องต้นของสารสกัดจากใบมะรุมและว่านพญา วานรที่มีการบริโภคอย่างแพร่หลายจากอำเภอเมือง จังหวัดเชียงใหม่ และเป็นการเพิ่มมูลค่าพืช สมุนไพรหากมีการนำไปพัฒนาเป็นผลิตภัณฑ์เสริมสุขภาพต่อไป

STATEMENT OF ORIGINALITY

- 1. This thesis examines the potential of *M. oleifera* and *P. palatiferum* extracts on the inhibition of cell division of colon cancer cell HTC15, SW48 and SW480
- 2. To determine the correlation between the efficiency of antioxidants and the efficiency of inhibition of colon cancer cell division of *M. oleifera* and *P. palatiferum* extracts.
- 3. To test the primary safety of *M. oleifera* and *P. palatiferum* extracts which are widely consumed in many districts of Chiang Mai province and to add value of the plants if they are developed to be health products.