CONTENTS

Acknowled	lgement	d
Abstract in	Thai	e
Abstract in	English	f
List of Tab	les all light	i
List of Fig	ures	1
List of Abb	previations	n
List of Syn	nbols	0
Statement	of originality in Thai	р
Statement	of originality in English	q
Chapter 1	Introduction	1
	Introduction	1
	NEL MARIS	
Chapter 2	Literature review	4
	1. General characteristic of Physic nut	5
	2. Seed oil	7
	3. Physic nut oil	11
4. Oil production in plants		
	5. Plant cell culture in Physic nut.	15
Chapter 3	Material and Methods	19
	1. Plant Materials S T E S E F V E G	19
	2. Methods	19
	Part 1 Studies on callus induction from endosperm explants	19
	of Physic nut (J.curcas L.)	
	Part 2 Study on growth and oil content from cell suspension	20
	culture of endospermcell of Physic nut (J.curcas L.)	
	Part 3 Study on oil production from endosperm cells of Physic	24
	Nut (J.curcas L.) in a modified bubble column bioreactor.	

page

Chapter 4	Results and Discussion	26
	Part 1 Studies on callus induction from endosperm explants	26
	of Physic Nut(J. curcas L.)	
	Part 2 Study on growth and oil content from cell suspension culture	29
	of endosperm cell of Physic Nut (J. curcas L.)	
	Part 3 Study on oil production from endosperm cells of Physic Nut	61
	in a modified bubble column bioreactor.	
Chapter 5	Conclusions	64
	Part 1 Studies on callus induction from endosperm explants of	64
	Physic Nut (J. curcas L.)	
	Part 2 Study on growth and oil content from cell suspension culture	64
	of endospermcell of Physic Nut (J. curcas L.)	
References		66
List of publications		
I I I		
Appendix	The close of the	79
Curriculun	n vitae	81
	ลิขสิทธิมหาวิทยาลัยเชียงไหม	
Copyright [©] by Chiang Mai University		
	All rights reserved	
	All lights leserveu	

LIST OF TABLES

Table 1	The lipid class compositions (weight % of the total lipids)	9
	of various plant tissues.	
Table 2	The fatty acid compositions (weight % of the total) of some seed oils.	9
Table 3	Selected properties of some common fatty acids and esters.	10
Table 4	Major fatty acids (in wt%) of some oils and fats used or tested	11
	as alternative diesel fuels.	
Table 5	Show the properties of diesel, methanol, Physic nut oil and	12
	methyl ester of Physic nut oil.	
Table 6	Auxin types and concentrations.	20
Table 7	Combinations of temperature levels and sucrose concentrations.	23
Table 8	Effects of auxin types and concentrations on callus formation	29
	From endosperm explants of <i>J. curcas</i> L.	
Table 9	Effect of temperature on fresh weight (g/30ml)	42
	of jatropha endosperm suspended cell during culturing for 20 days.	
Table 10	Effect of sucrose concentration on fresh weight (g/30ml)	43
	of jatropha endosperm suspended cell during culturing for 20 days.	
Table 11 📄	Combinatory effect on temperature and sucrose concentration	44
Ę	on fresh weight (g/30ml) of jatropha endosperm suspended cell	
	during culturing for 20 days.	
Table 12	Effect of temperature on dry weight (g/30ml)	45
	of jatropha endosperm suspended cell during culturing for 20 days.	
Table 13	Effect of sucrose concentration on dry weight (g/30ml)	46
	of jatropha endosperm suspended cell during culturing for 20 days.	
Table 14	Combinatory effect on temperature and sucrose concentration	47
	on dry weight (g/30ml)of jatropha endosperm suspended cell	
	during culturing for 20 days.	

page

Table 15	Main effect of temperature on the ratio of fresh weight to dry weight	48
	(FW/DW) of jatropha endosperm suspended cell during culturing	
	for 20 days.	
Table 16	Main effect of sucrose concentration on the ratio of fresh weight	49
	todry weight (FW/DW) of jatropha endosperm suspended cell	
	during culturing for 20 days.	
Table 17	Effects of temperature and sucrose concentration on the ratio	50
	of fresh weight to dry weight (FW/DW) of jatropha endosperm	
	suspended cell during culturing for 20 days.	
Table 18	Effect of temperature on the cell number of jatropha endosperm	51
	suspended cell during culturing for 20 days.	
Table 19	Effect of sucrose concentration on the cell number	52
	ofjatropha endosperm suspended cell during culturing for 20 days.	
Table 20	Combinatory effect of temperature and sucrose concentration	53
	on the cell number of jatropha endosperm suspended cell	
	during culturing for 20 days.	
Table 21	Effect of temperature on packed cell volume (cm ³ /cm ³)	54
	of jatropha endosperm suspended cell during culturing for 20 days.	
Table 22	Effect of sucrose concentration on packed cell volume (cm ³ /cm ³)	55
8	of jatropha endosperm suspended cell during culturing for 20 days.	
Table 23	Combinatory effect of temperature and sucrose concentration	56
C	on packed cell volume(cm ³ /cm ³) of jatropha endosperm suspended ce	11
A	during culturing for 20 days.	
Table 24	Effect of temperature on total lipid extract (TLE) (w/w)	57
	Ofjatropha endosperm suspended cell during culturing for 20 days.	
Table 25	Main effect of sucrose concentration on total lipid extract (TLE)	58
	(w/w)of jatropha endosperm suspended cell during culturing for	
	20 days.	

Table 26Combinatory effect of temperature and sucrose concentration59on total lipid extract(TLE) (w/w) of jatropha endospermsuspended cellduring culturing for 20 days.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

page

LIST OF FIGURES

Figure 1	Physic nut	7
Figure 2	Vegetable oil (A) and Triglyceride (B)	8
Figure 3	Structure of triglycerides and principle of the transesterification reaction	8
Figure 4	Structures of the Major Fatty Acids and Glycerolipids	13
	of Plant Cell Membranes.	
Figure 5	An overview of the current understanding of metabolism associated with	14
	fatty acid synthesis and plastidial carbon partitioning in the developing	
	oil seed rape embryo based on metabolic studies.	
Figure 6	Callus formation from endosperm explant of physic nut.	27
Figure 7	Callogenesis of physic nut endosperm on MS medium supplement with	28
	various auxins at different concentrations.	
Figure 8	Cell suspension culture of endosperm cell of J. curcas L.	30
Figure 9	Endosperm cells of physic nut in liquid MS medium supplemented	30
	with 10 µM NAA.	
Figure 10	The fresh weight of endosperm suspended cell of physic nut	31
	every 5 days of culture.	
Figure 11	The dry weight of endosperm suspended cell of physic nut	32
	every 5 days of culture.	
Figure 12	The cell number of jatropha endosperm suspended cell	33
	every 5 days of culture.	
Figure 13	Packed cell volume (data were taken every 5 days)	34
Figure 14	The percentage of oil content (% TLE) (data were taken every 5 days)	35
Figure 15	Cell suspension culture of Jatropha endosperm cells	36
	in liquid MS medium supplemented with 10 μ M NAA.	
	(Magnification 40X, Olympus CX31)	
Figure 16	The increased of fresh weight during the cell suspension culture	37
	of J. curcas L. in different amounts of callus contents.	

page

Figure 17	The increased of dry weight during the cell suspension culture	37
	of J.curcas L. in different amounts of callus contents.	
Figure 18	The increased of the number of cells of the cell suspension culture	38
	of J. curcas L. in different amounts of callus contents.	
Figure 19	The increased of the packed cell volume of the cell suspension culture	39
	of J. curcas L. in different amounts of callus contents.	
Figure 20	The increased of the oil contents of the cell suspension culture	40
	of <i>Leurcas</i> L in different amounts of callus contents	

Figure 21 Culture in 1 liter of modified bubble column bioreactor.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF ABBREVIATIONS

2,4-D	2,4-dichlorophenoxyacetic acid
ACCase	acetyl-CoA carboxylase
CRD	completely randomized design
DW	dry weight
FW	fresh weight
IBA	indole-3-butyric acid
JCL	Jatrophacurcas Linnaeus
MS medium	Murashige and Skoog medium
NAA	1-napthaleneacetic acid
PC	phosphatidyl choline
PCV	packed cell volume
PE	phosphatidyl ethanolamine
PEG	polyethylene glycol
PI	phosphatidyl inositol
TG	triglyceride
TAGs	triacylglycerol
%TLE	percentage of total lipid extract
Copyri	ght [©] by Chiang Mai University
AII	rights reserved

LIST OF SYMBOLS

°C	degree Celsius
μΜ	micro molar
g	gram
mg/L	milligram per litre
ppm	part per million
rpm	round per minute
	MAI UNIVERS
ີລິປີສີ່ Copyr A I I	<mark>าธิ์มหาวิทยาลัยเชียงใหม่</mark> ight [©] by Chiang Mai University rights reserved

ข้อความแห่งการริเริ่ม

ดุษฎีนิพนธ์ฉบับนี้เกิดขึ้นจากการรวบรวมข้อมูล การสรุปวิเคราะห์ข้อมูลบนพื้นฐานของ แนวคิดและทฤษฎีที่มีความเกี่ยวข้องกับงานวิจัย โดยเนื้อหาภายในดุษฎีนิพนธ์เป็นเนื้อหาที่เกิดขึ้น จากการจัดทำของข้าพเจ้าเอง ซึ่งได้รวบรวมข้อมูลอ้างอิงจากแหล่งข้อมูลที่มีความน่าเชื่อถือ ดังนั้น ข้าพเจ้าขอรับรองว่า ดุษฎีนิพนธ์ฉบับนี้ยังไม่เคยมีการนำส่งในระดับปริญญาอื่นๆหรือใช้เพื่อ วัตถุประสงค์อื่นๆ แต่ประการใด

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

STATEMANT OF ORIGINALITY

I declare that this dissertation and the work reported herein was composed by and originated entirely from me.I certify that the intellectual content of this dissertation is the product of my own work and that all the assistance received in preparing this dissertation and sources have been acknowledged. This dissertation has not been submitted for any degree or other purposes.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved