CONTENTS

	Page
Acknowledgement	c
Abstract in Thai	d
Abstract in English	f
List of Tables	1
List of Figures	m
List of Abbreviations	p
Statement of Originality in English	\mathbf{q}
Statement of Originality in Thai	S
Chapter 1 Introduction	1
1.1 Chapter Overview	1
1.2 The Information-Based Organisation	3
1.3 IT Resource Management and Research Justification	4
1.4 Research Questions and Assumptions	5
1.5 Research Methods and Proposed Solution	7
1.6 Novel Contribution of Research	11
1.7 Problem Statement/ Problem Definition	12
1.8 Research Objectives	13
1.9 Research Hypothesis	13
1.10 Thesis Organization	14
Chapter 2 Literature Review	15
2.1 Overview	15
2.2 IT Planning	15
2.3 IT Investment	17
2.3.1 Importance of IT Investment	18
2.3.2 Trend in IT Investment	20
2.3.3 IT Investment Strategy	23
2.4 IT Evaluation	24

CONTENTS(Continued)

	Page
2.4.1 Asset Evaluation	24
2.4.2 Conventional Financial Methods	25
2.4.3 Budget Planning	27
2.4.4 Benefit Realisation	28
2.4.5 Total Cost of Ownership	29
2.4.6 Loss Values	29
2.5 Risk Management	30
2.6 Challenges in IT Management	32
2.7 Asset Management	32
2.7.1 Definition of Asset Management and Related Terms	33
2.8 The Asset Management System	39
2.9 Application of Asset Management in the Utility Industry	40
2.10 Asset Maintenance Strategy	45
2.10.1 History of Maintenance	45
2.10.2 Maintenance Strategy	48
2.11 Asset Management Methodology – PAS 55	53
2.11.1 Background of PAS55	53
2.11.2 Overview of PAS55: 2008	54
2.12.3 Overall Structure of PAS55: 2008	56
2.12 Knowledge Management	62
2.13 Knowledge and Knowledge Management	63
2.14 Knowledge Engineering	68
2.14.1 Knowledge Elicitation	69
2.14.2 Knowledge Engineering Concept	71
2.14.2.1 Problem-Solving Methods	72
2.14.2.2 Ontologies	73
2.15 Propose Solution for IT Asset Management	74

CONTENTS(Continued)

	Page
Chapter 3 Research Methodology	76
3.1 Chapter Overview	76
3.2 Proposed University IT Asset Management	77
3.3 Economics Model of ITAM	79
3.3.1 Proposed Organisational Learning Model for University ITAM	79
3.3.1.1 Breakdown Maintenance	81
3.3.1.2 Corrective Maintenance	83
3.3.1.3 Preventive Maintenance	84
3.3.1.4 Predictive Maintenance	85
3.3.1.5 Proactive Maintenance	86
3.3.2 Development of the Economics Performance Model for ITAM	87
3.4 Knowledge Analysis	95
3.5 Knowledge Maps	98
3.6 Service Model of ITAM	112
3.7 Balancing Mechanism of the Proposed IT Investment Framework	113
Chapter 4 Case Study, Results and Analysis	117
4.1 Chapter Overview	117
4.2 General Description of Case Study	117
4.3 Test Bed 1: Based Case	121
4.3.1 General Description of Test Bed 1	121
4.3.2 Results of Test Bed 1	122
4.4 Test Bed 2	123
4.4.1 General Description of Test Bed 2	123
4.4.2 Results of Test Bed 2	124
4.5 Test Bed 3	124
4.5.1 General Description of Test Bed 3	124
4.5.2 Results of Test Bed 3	125

CONTENTS(Continued)

4.6 Test Bed 4	26
4.6.1 General Description of Test Bed 4	26
4.6.2 Results of Test Bed 4	28
4.7 Analysis and Discussion	29
4.7.1 Actual Investment Costs of Each Test Bed	29
4.7.2 Present Value Analysis	30
4.7.3 Present Value Analysis with Proposed Investment framework	32
4.8 Chapter Summary	33
Chapter 5 Conclusion and Future Work 1.	35
5.1 Conclusion	35
5.2 Future Work	38
	39
Appendix 14	43
Appendix Curriculum Vitae 1:	.58
AI UNIVERS	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

	Page
Table 2.1 Knowledge management frameworks	68
Table 2.2 Probes to elicit information in structured interviews	71
Table 3.1.Implication of the Service Performance Model	113
Table 4.1. Classification of the Personal Computer with Different Functions	120
across Departments	
Table 4.2 Results of the Test Bed 1	122
Table 4.3 Results of the Test Bed 2	124
Table 4.4 Results of the Test Bed 3	125
Table 4.5 Results of the Test Bed 4	128
Table 4.6. The Actual Investment Costs of Each Test Bed	130
Table 4.7. Present Values of Costs and Benefits from Each Investment Scenario	131
Table 4.8 Present Values of Costs and Benefits from Each Investment Scenario	132

LIST OF FIGURES

	Page
Figure 1.1 Online Supporting Information on IT Investment	8
Figure 1.2 Online Supporting Information on Aging Profile	9
Figure 1.3 The concept of asset management to balance costs, performance and risks	s 10
Figure 1.4 High Level concept of the Proposed IT Asset Management	10
Figure 1.5 ITAM framework	11
Figure 2.1 Asset Lifecycle (adapted from Minnaar et al., 2013)	35
Figure 2.2 The first stage of the asset lifecycle: specify/design	35
Figure 2.3 The second stage of the asset lifecycle: Procurement	36
Figure 2.4 The third stage of the asset lifecycle: Operate/Management Incidents	36
Figure 2.5 The fourth stage of the asset lifecycle: Health/Condition Monitoring	37
Figure 2.6 The fifth stage of the asset lifecycle: Maintenance Planning/Execution	37
Figure 2.7 The sixth stage of the asset lifecycle: Life Extension/Decommissioning/	38
Replacement	
Figure 2.8 The asset management capability model (Deadman, 2010)	42
Figure 2.9 The proposed OFGEMS asset management model	44
Figure 2.10 Summary of maintenance history	47
Figure 2.11 Maintenance strategies (adapted from Mobley, 2004)	49
Figure 2.12 The focus and business context of PAS55 (IAM, 2004 and IBM, 2009)	55
Figure 2.13 Overall structure of PAS55: 2008 (IBM, 2009)	56
Figure 2.14 The relationship between related terminologies	64
Figure 2.15 The general knowledge management model (Newman and Conrad, 1999)	65
Figure 3.1 High Level concept of the Proposed IT Asset Management	78
Figure 3.2 Proposed Organisational Learning Model for University IT Asset	80
Management	
Figure 3.3 Planning Template	82
Figure 3.4 Diagnosis Template	83

LIST OF FIGURES (Continued)

	Page
Figure 3.5 Scheduling Template	84
Figure 3.6 Monitoring Template	85
Figure 3.7 Assessment Template	86
Figure 3.8 Categories of IT Asset Management Maintenance	88
Figure 3.9 Steps of Planning an Interview	89
Figure 3.10 The diagram shows a common problem in diagnosis	90
Figure 3.11 The diagram shows the problem of the assessment	91
Figure 3.12 The diagram shows the surveillance/monitor.	91
Figure 3.13 The diagram shows the problem of scheduling.	92
Figure 3.14 Diagram Present Task-Subtask	98
Figure 3.15 Diagram present details T1 Corrective Maintenance	98
Figure 3.16 Diagram present Inference-Domain of Staff PC	99
Figure 3.17 Diagram present Inference-Domain of Lab PC	100
Figure 3.18 Diagram present Inference-Domain of HPC	100
Figure 3.19 Diagram present Inference-Domain of Server	101
Figure 3.20 Diagram Present Task-Inference of Preventive Maintenance	101
Figure 3.21 Diagram present Inference-Domain of Lab Preparation	102
Figure 3.22 Diagram present Inference-Domain of Running Test (Software)	102
Figure 3.23 Diagram Present Inference-Domain of Inspection	103
Figure 3.24 Diagram Present Inference-Domain of Filter Projector, Cleaning	103
Figure 3.25 Diagram present Inference-Domain of Lect. Room Inspection	104
Figure 3.26 Diagram Present Inference-Domain of Update Information	104
Figure 3.27 Diagram Present Task-Inference of Predictive Maintenance	105
Figure 3.28 Diagram Present Inference-Domain of Network Fail	105
Figure 3.29 Diagram Present Inference-Domain of Server's Problem	106
Figure 3.30 Diagram Present Inference-Domain of Power Failure	107

LIST OF FIGURES (Continued)

	Page
Figure 3.31 Diagram Present Task-Inference of Proactive Maintenance	108
Figure 3.32 Diagram Present Inference-Domain of Computer Failures	109
Figure 3.33 Diagram Present Inference-Domain of Internet Failures	109
Figure 3.34 Diagram Present Inference-Domain of Monitor Failures	109
Figure 3.35 Diagram Present Inference-Domain of Cannot Run Program	110
Figure 3.36 Diagram Present Inference-Domain of No WIFI Service	110
Figure 3.37 Diagram Present Inference-Domain of Keyboard Broken	110
Figure 3.38 Diagram Present Inference-Domain of Dark Screen	111
Figure 3.39 Diagram Present Inference-Domain of Windows cannot Boot	111
Figure 3.40 Diagram Present Inference-Domain of No Internet Service	111
Figure 3.41 Simulated Behaviours of Stakeholders in the Service Performance	114
Model	
Figure 4.1 Categorisation of the Initial IT Investment for CAMT	118
Figure 4.2 Typical Investment Option at the End of the Asset Life Cycle	120
Figure 4.3 Investment Pattern of the Test Bed 1	121
Figure 4.4 Investment Pattern of the Test Bed 4	127
Figure 4.5 Comparisons of Present Values of Each Investment Options	133

LIST OF ABBREVIATION

IT Information Technology

ITAM Information Technology Asset Management

NPV Net Present Value

ROI Return on Investment

IRR Internal Rate of Return

CAMT College of Arts, Media and Technology

SaaS Software as a Service

TCO Total Cost of Ownership

CIO Chief Information Officer

CRM Independent Power Producers

W3C World Wide Web Consortium

OASIS Organisation for the Advancement of Structured Information Standard

SOA Service-Oriented Architecture

ESB Enterprise Service Bus

ABR Active Benefit Realization

AM Asset Management

IAM Institute of Asset Management

BSI British Standards Institute

PAS Publicly Available Specification

PDCA Plan-Do-Check-Act

KM Knowledge Management

KMS Knowledge Management System

KE Knowledge Engineering

AI Artificial Intelligence

PSMs Problem Solving Methods

KBS Knowledge Based Systems

MMIT Modern Management and Information Technology

STATEMENT OF ORIGINALITY

This research aims to propose an alternative framework to manage the IT assets within the university context. In order to accomplish this objective, novel contributions of the research are developed and can be expressed as the following:

- 1. In an asset management context: although the main concept of asset management in terms of balancing costs, performance and risks is still applied in this research, the approach differs in the sense that the IT asset possesses different characteristics compared to other assets. Not only does the IT asset have a very short life cycle, it also has no explicit relation to the overall organisational revenue. The proposed asset management framework for IT assets of university overcomes these issues by assisting stakeholders to make the correct decision at the right time, while justifying the IT investment budget.
- 2. In the asset categorisation context: the asset categorisation method utilised in this research provides flexibility for decisions to be made from a wider perspective and hence, with more management choices. This allows the IT asset to be moved across and utilised by different departments within the organisation.
- 3. Economic performance modelling: with the specific perspective of the IT asset mentioned above, knowledge engineering provides increased understanding of the costs incurred and the rationale behind each action. Hence, rather than relying heavily on an equation for IT asset management, the decision making process presented in this thesis puts more emphasis on the reasoning behaviour of the expert.
- 4. IT service performance: to satisfy all parties involved while making decisions regarding IT assets, a simple but very effective function is introduced to quantify the IT service performance. This function can be represented as 'functions divided by requirements'. Due to its simplicity, the most suitable solution can be found based on all parties' expectations.

5. Intelligent decision making tool: the decision support system developed as part of this research provides a user-friendly environment and sufficient features to assist the organisation in decision making activities. Instead of providing only the solution, this intelligent decision making tool is developed to guide the decision maker through the available knowledge and information to find the most suitable solution according to each specific scenario and constraints.

ข้อความแห่งการริเริ่ม

งานวิจัยนี้มีเป้าหมายที่จะนำเสนอกรอบทางเลือกในการจัดการสินทรัพย์ประเภทเทคโนโลยี สารสนเทศในบริบทของมหาวิทยาลัย ซึ่งการที่จะบรรลุตามเป้าหมายนี้ให้ได้นั้น งานวิจัยนี้ได้มีการ พัฒนาแนวทางใหม่ขึ้นมาและสามารถแสดงสรุปได้ดังต่อไปนี้

- 1. ในบริบทของการบริหารจัดการสินทรัพย์: ถึงแม้ว่าหลักการในการบริหารจัดการ สินทรัพย์ในเชิงของการรักษาสมคุลระหว่างต้นทุน ประสิทธิภาพ และความเสี่ยงจะถูก นำมาประยุกต์ใช้ในงานวิจัยนี้ แนวทางในการแก้ปัญหาที่ใช้ในงานวิจัยนี้มีความแตกต่าง ในแง่ที่ว่า สินทรัพย์ประเภทเทก โนโลยีสารสนเทศมีลักษณะที่แตกต่างเมื่อเปรียบเทียบกับ สินทรัพย์ประเภทอื่นๆ ทั้งในแง่ที่ว่านอกจากสินทรัพย์ประเภทเทก โนโลยีสารสนเทศจะมี อายุการใช้งานที่สั้นมาก สินทรัพย์ประเภทนี้ยังไม่มีความเกี่ยวข้องสัมพันธ์โดยตรงที่ ชัดเจนกับรายรับของหน่วยงานซึ่งทำให้เป็นเรื่องยากในการตอบคำถามถึงความคุ้มค่าของ การลงทุน กรอบทางเลือกในการจัดการสินทรัพย์ประเภทเทค โนโลยีสารสนเทศที่ นำเสนอในงานวิจัยนี้ก้าวข้ามประเด็นเหล่านี้โดยสนับสนุนผู้มีส่วนได้ส่วนเสียให้ ตัดสินใจได้ถูกต้องในเวลาที่เหมาะสมภายในกรอบงบประมาณ
- 2. ในบริบทของการจำแนกประเภทสินทรัพย์ : วิธีการในการจำแนกประเภทสินทรัพย์ที่ นำมาใช้ในงานวิจัยนี้ทำให้เกิดความยืดหยุ่นในการตัดสินใจที่มองจากมุมมองที่กว้าง ดังนั้นจะส่งผลให้มีทางเลือกที่มากกว่าในการตัดสินใจ ด้วยเหตุผลนี้เองจะทำให้การ ตัดสินใจครอบคลุมถึงการจัดการสินทรัพย์ประเภทเทคโนโลยีสารสนเทศด้วยการย้าย หน้าที่ไปส่วนต่างของหน่วยงาน
- 3. แบบจำลองด้านเศรษฐศาสตร์: จากเหตุผลด้านลักษณะเฉพาะของสินทรัพย์ประเภท เทคโนโลยีสารสนเทศที่ได้กล่าวไว้ข้างต้น กระบวนการวิศวกรรมความรู้ที่นำมาใช้ใน งานวิจัยนี้ช่วยเพิ่มความเข้าใจในแง่ของต้นทุนที่เกิดขึ้นและเหตุผลในการตัดสินใจต่างๆ ดังนั้นแทนที่จะต้องพึงพาข้อมูลเป็นหลักในการบริหารจัดการสินทรัพย์ประเภท เทคโนโลยีสารสนเทศเหมือนที่ทำอยู่ในปัจจุบัน การตัดสินใจโดยใช้กรอบทางเลือกที่ นำเสนอในงานวิจัยนี้เน้นการใช้ประโยชน์จากหลักการ เหตุและผล จากประสบการณ์ของ กลุ่มผู้เชี่ยวชาญที่ทำงานกับอุปกรณ์เหล่านี้มาตั้งแต่เริ่มติดตั้งใช้งาน

- 4. ประสิทธิภาพการให้บริการของเทค โนโลยีสารสนเทศ : เพื่อตอบสนองต่อความต้องการ ในแง่ของการบริการกับผู้ที่เกี่ยวข้องทั้งหมด ฟังก์ชั่นที่เรียบง่ายแต่มีประสิทธิภาพสูงได้ถูก นำเสนอในงานวิจัยชิ้นนี้ โดยเน้นการประเมินประสิทธิภาพากรให้บริการของสินทรัพย์ เทค โนโลยีสารสนเทศในกรอบของคุณภาพ และสามารถแสดงได้ด้วยสมการง่าย คือ ฟังก์ชั่นการทำงาน หารด้วย ความต้องการทั้งหมดขององค์กร และเนื่องจากเป็นสมการที่ ไม่ซับซ้อน การร้อยเรียงหาเหตุและผลของการตัดสินใจแบบต่างๆในกรอบของสมการนี้ ทำให้สามารถตอบโจทย์ของผู้ที่เกี่ยวข้องทั้งหมดได้
- 5. เครื่องมือช่วยตัดสินใจอัจฉริยะ : ระบบช่วยสนับสนุนการตัดสินใจที่ถูกพัฒนาขึ้นใน งานวิจัยนี้มีความง่ายสำหรับผู้ใช้งาน และมีองค์ประกอบที่เพียงพอสนับสนุนหน่วยงาน ให้สามารถตัดสินใจได้อย่างมีประสิทธิภาพ ซึ่งแทนที่จะให้แนวทางการตัดสินใจเพียง อย่างเคียว เครื่องมือช่วยตัดสินใจอัจฉริยะนี้ยังช่วยให้ตัดสินใจด้วยการใช้ความรู้ หลักการ และข้อมูลสารสนเทศจากประสบการณ์ เพื่อให้ไปถึงแนวทางที่เหมาะสมที่สุดใน สถานการณ์นั้นๆ

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved