TABLE OF CONTENTS

	Page
ANKNOWLEDGEMENT	iii
ABSTRACT (ENGLISH)	v
ABSTRACT (THAI)	vi
LIST OF TABLES	x
LIST OF FIGURES	xi
ABBREVIATIONS AND SYMBOLS	xxii
CHAPTER 1 INTRODUCTION	1
1.1 Metal Tungstates and Molybdates	4
1.1.1 Application of Metal Tungstates and Molybdates	4
1.1.2 Structure of Metal Tungstates	4
1.1.3 Structure of Metal Molybdates	6

1.2 Electrospinning method	7
1.3 Microwave method	13
1.4 Hydrothermal/Solvothermal method	14
1.5 Microwave- Hydrothermal method	17
1.6 Research objectives	19
CHAPTER 2 LITERATURE REVIEW	20
2.1 Synthesis of metal tungstates and metal molybdate	20
CHAPTER 3 EXPERIMENTAL PROCEDURE	30
3.1 Chemical reagents, equipments and instruments	30
3.1.1 Chemical reagents	30
3.2. Synthesized methods	32
3.2.1 Synthesis of SrWO ₄ using electrospinning	32
3.2.2 Synthesis of MgWO ₄ using electrospinning	34
3.2.3 Synthesis of MgMoO ₄ using electrospinning	36
3.2.4 Synthesis of SrMoO ₄ using Microwave-Hydrothermal	37
3.3. Characterization	39

CHAPTER 4 RESULTS AND DISCUSSION	47
4.1. SrWO ₄ synthesized by electrospinning method	47
4.2. MgWO ₄ synthesized by electrospinning method	68
4.3. MgMoO ₄ synthesized by electrospinning method	82
4.4. SrMoO ₄ synthesized by microwave-hydrothermal method	95
C HAPTER 5 CONCLUSION	115
5.1 SrWO ₄ by electrospinning	114
5.2 MgWO ₄ by electrospinning	114
5.3 MgMoO ₄ by electrospinning	115
5.4 SrMoO ₄ by microwave-hydrothermal	115
R EFERENCES	117
APPENDICES	129
APPENDIX A	130
APPENDIX B	153
CURRICULUM VITAE	154
INTERNATIONAL PUBLICATIONS	

LIST OF TABLES

Table	Page
3.1 Product codes of the present research MgWO ₄ .	35
3.2 Product codes of the present research MgWO ₄ .	37
3.3 Product codes of the present research SrMoO ₄ .	38
4.2 Lattice parameters and crystallite sizes of the MW5C1, MW5C2	70
and MW5C3 products.	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

Figu	re	Page
1.1	Crystal structure of SrWO ₄	5
1.2	MgWO4 cell unit	5
1.3	Crystal structure of SrMoO ₄	6
1.4	MgMoO4 cell unit	7
1.5	Schematic diagram to show polymer nanofibers by electrospinning.	9
1.6	PLLA nanofibers with different diameters and pores	10
1.7	AFM image of electrospun PEO nanofibers with beads	11
1.8	SEM photographs of electrospun nanofibers from different polymer concentration solutions	11
1.9	SEM photographs of PEO nanofibers electrospun under different electrical potentials	12
1.10	Potential applications of electrospun polymer nanofibers.	13
1.11	General purpose autoclave popularly used for hydrothermal synthesis	15
1.12	Pressure temperature map of materials processing techniques	16
3.1	Schematic diagram used for preparation of SrWO ₄	33

3.2 Schematic diagram of electrospinning equipment 34 Schematic diagram of Microwave-Hydrothermal equipment. 3.3 39 Thermogravimetric analyzer 3.4 40 X-ray diffractometer 3.5 41 3.6 Fourier transform infrared spectroscope 42 3.7 Raman spectroscope 43 3.8 Field emission-scanning electron microscope and Scanning electron 43 microscope 3.9 Transmission electron microscope 44 Luminescence spectrometer 45 3.10 UV-Vis-NIR Spectrophotometer. 3.11 46 TGA curves of a spider's web synthesized from the M4 solution, 4.1.1 48 and PVA. XRD patterns of SrWO₄-PVA spider's web, synthesized from 50 4.1.2 the M4 solution, after calcination at 300 °C, 400 °C, 500 °C and 600 °C for 3 h. FTIR spectra of (a) PVA, and (b)-(f) SrWO₄-PVA spider's 4.1.3 web, synthesized from the M4 solution, before and after

calcination at 300 °C, 400 °C, 500 °C and 600 °C for 3 h.

xii

4.1.4	Raman spectrum of SrWO ₄ spider's web, synthesized from the M4	55
	solution, after calcination at 600 °C for 3 h.	
4.1.5	SEM image of the product prepared using PVA 1.0 g, $Sr(C_2H_3O_2)_2$,	56
	and $H_{26}N_6O_4OW_{12}$ •x H_2O as starting reagents (Sample code M1).	
4.1.6	SEM image of the product prepared using PVA 1.1 g, $Sr(C_2H_3O_2)_2$,	57
	and $H_{26}N_6O_4OW_{12}$ •x H_2O as starting reagents (Sample code M2).	
4.1.7	SEM image of the product prepared using PVA 1.2 g, $Sr(C_2H_3O_2)_2$,	57
	and $H_{26}N_6O_4OW_{12}$ •x H_2O as starting reagents (Sample code M3).	
4.1.8	SEM image of the product prepared using PVA 1.3 g, $Sr(C_2H_3O_2)_2$,	58
	And $H_{26}N_6O_4OW_{12}$ •x H_2O as starting reagents (Sample code M4).	
4.1.9	SEM image of the product prepared using PVA 1.3 g, $Sr(C_2H_3O_2)_2$,	58
	and $H_{26}N_6O_4OW_{12}$ •x H_2O as starting reagents (Sample code M4),	
	calcined at 300 °C for 3 h.	
4.1.10	SEM image of the product prepared using PVA 1.3 g, $Sr(C_2H_3O_2)_2$,	59
	and $H_{26}N_6O_4OW_{12}$ ·x H_2O as starting reagents (Sample code M4),	
	calcined at 400 °C for 3 h.	
4.1.11	SEM image of the product prepared using PVA 1.3 g, $Sr(C_2H_3O_2)_2$,	59
	and $H_{26}N_6O_4OW_{12}$ ·x H_2O as starting reagents (Sample code M4),	
	calcined at 500 °C for 3 h.	
4.1.12	SEM image of the product prepared using PVA 1.3 g, $Sr(C_2H_3O_2)_2$,	60
	and $H_{26}N_6O_4OW_{12}$ ·x H_2O as starting reagents (Sample code M4),	
	calcined at 600 °C for 3 h.	

xiii

- 4.1.13 TEM and HRTEM images, of SrWO₄-PVA spider's web,
 synthesized from the M4 solution, after calcination at
 (a and b) 500 °C for 3 h.
- 4.1.14 SAED and simulated patterns, TEM images and SAED of SrWO₄-PVA spider's web, synthesized from the M4 solution, after calcination at (a and b) 500 °C, and (c and d) 600 °C for 3 h.
- 4.1.15 TEM images and SAED of SrWO₄–PVA spider's web,
 synthesized from the M4 solution, after calcination at (a and b)
 600 °C for 3 h.
- 4.1.16 (a) and (b) Distributions of fibrous diameters and particle sizes
 64 of the SrWO₄–PVA spider's web, synthesized from the M4 solution, before and after calcination at 600 °C for 3 h, respectively.
- 4.1.17 The $(\alpha hv)^2$ versus hv plot of the SrWO₄ spider's web, 65 synthesized from the M4 solution.
- 4.1.18 PL spectra of SrWO4–PVA spider's web, synthesized from the M4 solution, after calcination at 300 °C, 400 °C, 500 °C and 600 °C for 3 h.
- 4.2.1 XRD spectra of the MW5C1, MW5C2 and MW5C3 products, compared with the anorthic and monoclinic MgWO₄ phases, after calcination at 500 °C, 600 °C, and 700 °C for 3 h respectively

69

67

62

63

- 4.2.2 Simulated XRD pattern and crystal structure of monoclinic MgWO₄
 (Sample code MW5C3), after calcination 700 °C for 3 h.
- 4.2.3 SEM image of the product MW1 solution, the product prepared using 72
 1.5 mmol (CH₃COO)₂Mg·4H₂O, (NH₄)₆W₇O₂₄·4H₂O, and PVA 0.9 g as starting reagents.
- 4.2.4 SEM image of the product MW2 solution, the product prepared using 73
 1.5 mmol (CH₃COO)₂Mg·4H₂O, (NH₄)₆W₇O₂₄·4H₂O, and PVA 1.1 g as starting reagents.
- 4.2.5 SEM image of the product MW3 solution, the product prepared using 73
 1.5 mmol (CH₃COO)₂Mg·4H₂O, (NH₄)₆W₇O₂₄·4H₂O, and PVA 1.3 g as starting reagents.
- 4.2.6 SEM image of the product MW3C1 solution, the product prepared 74 using 1.5 mmol (CH₃COO)₂Mg·4H₂O, (NH₄)₆W₇O₂₄·4H₂O, and PVA 1.3 g as starting reagents and calcination at 500 °C for 3 h.
- 4.2.7 SEM image of the product MW4 solution, the product prepared using 74
 3.0 mmol (CH₃COO)₂Mg·4H₂O, (NH₄)₆W₇O₂₄·4H₂O, and PVA 1.3 g as starting reagents.

74

4.2.8 SEM image of the product MW4C1 solution, the product prepared using 3.0 mmol (CH₃COO)₂Mg·4H₂O, (NH₄)₆W₇O₂₄·4H₂O, and PVA 1.3 g as starting reagents and calcination at 500 °C for 3 h.

4.2.9	SEM image of the product MW5 solution, the product prepared	75
	using 4.5 mmol (CH ₃ COO) ₂ Mg·4H ₂ O, (NH ₄) ₆ W ₇ O ₂₄ ·4H ₂ O,	
	and PVA 1.3 g as starting reagents.	

76

81

82

4.2.10 SEM image of the product MW5C1 solution, the product prepared using 4.5 mmol (CH₃COO)₂Mg·4H₂O, (NH₄)₆W₇O₂₄·4H₂O, and PVA
1.3 g as starting reagents and calcination at 500 °C for 3 h.

- 4.2.11 SEM image of the product MW5C2 solution, the product prepared 76 using 4.5 mmol (CH₃COO)₂Mg·4H₂O, (NH₄)₆W₇O₂₄·4H₂O, and PVA 1.3 g as starting reagents and calcination at 600 °C for 3 h.
- 4.2.12 SEM image of the product MW5C3 solution, the product prepared 77 using 4.5 mmol (CH₃COO)₂Mg·4H₂O, (NH₄)₆W₇O₂₄·4H₂O, and PVA 1.3 g as starting reagents and calcination at 700 °C for 3 h.
- 4.2.13 TEM and HRTEM images of the MW3C1 (a and b), (c and e) of the 78 MW5C1 calcination at 500 °C for 3 h.
- 4.2.14 TEM and HRTEM images of the MW3C1 calcination at 500 °C for793 h (a), (b-d) of the MW5C1 calcination at 500 °C for 3 h.
- 4.2.15 PL emission of the MW5C1, MW5C2 and MW5C3 products, and calcination at 500 °C, 600 °C, and 700 °C for 3 h respectively.
- 4.2.16 UV–visible absorption of the MW5C3 product calcination at 700 °C for 3 h.
- 4.2.17 The $(\alpha hv)^{1/2}$ versus hv plot of the MgWO₄, synthesized from the MW5C3 calcination at 700 °C for 3 h.

4.3.1	TGA curves of PVA and the MgMoO ₄ -PVA, synthesized from the	83
	4.5 mmol (CH ₃ COO) ₂ Mg·4H ₂ O, (NH ₄) ₆ Mo ₇ O ₂₄ ·4H ₂ O, and PVA	
	1.3 g as starting reagents (Sample code MM3).	
4.3.2	XRD spectra of the MgMoO ₄ fibrous webs, synthesized from the	85
	4.5 mmol (CH ₃ COO) ₂ Mg·4H ₂ O, (NH ₄) ₆ Mo ₇ O ₂₄ ·4H ₂ O, and PVA	
	1.3 g as starting reagents and calcination at 500 $^{\circ}$ C, 600 $^{\circ}$ C , and	
	700 °C for 3 h respectively.	
4.3.3	SEM image of the product prepared using 4.5 mmol (CH ₃ COO) ₂	87
	Mg·4H ₂ O, (NH ₄) ₆ Mo ₇ O ₂₄ ·4H ₂ O, and PVA 0.7 g as starting reagents	
	(Sample code MM1).	
4.3.4	SEM image of the product prepared using 4.5 mmol (CH ₃ COO) ₂	87
	Mg·4H ₂ O, (NH ₄) ₆ Mo ₇ O ₂₄ ·4H ₂ O, and PVA 1.0 g as starting reagents	
	(Sample code MM2).	
4.3.5	SEM image of the product prepared using 4.5 mmol (CH ₃ COO) ₂	88
	Mg·4H ₂ O, (NH ₄) ₆ Mo ₇ O ₂₄ ·4H ₂ O, and PVA 1.3 g as starting reagents	
	(Sample code MM3).	
4.3.6	SEM image of the product prepared using $4.5 \text{ mmol} (CH_3COO)_2$	88
	Mg·4H2O. (NH4)6M07O24·4H2O. and PVA 1.3 g as starting reagents	
	and calcination at 400 °C for 3 h (Sample code MM3C1).	
a s	sin - by Chiang Mai Onive	ci al
4.3.7	SEM image of the product prepared using 4.5 mmol (CH ₃ COO) ₂	89
	Mg·4H ₂ O, (NH ₄) ₆ Mo ₇ O ₂₄ ·4H ₂ O, and PVA 1.3 g as starting reagents	
	and calcination at 500 °C for 3 h (Sample code MM3C2).	

4.3.8 SEM image of the product prepared using 4.5 mmol (CH_3COO) ₂	89
Mg·4H ₂ O, (NH ₄) ₆ Mo ₇ O ₂₄ ·4H ₂ O, and PVA 1.3 g, as starting reagents	
and calcination at 600 °C for 3 h (Sample code MM3C3).	
4.3.9 TEM and HRTEM images of the MM3 fibrous webs, after	90
calcination at (a and b) 500 °C for 3 h.	
4.3.10 TEM and HRTEM images of the MM3 fibrous webs, after	91
calcination at (a and b) 600 °C for 3 h.	
4.3.11 FTIR spectra of PVA and the MMC3 fibrous webs before and after	92
calcination at 400, 500 and 600 °C for 3 h.	
4.3.12 Raman spectrum of the MMC3 fibrous web after calcination at	94
600 °C for 3 h.	
4.3.13 UV-visible absorption of the MMC3 fibrous web, after calcination	95
at 600 °C for 3 h.	
4.4.1 XRD patterns of (a) MSA1, MSA2 and MSA3, the product prepared	97
using 5.0 mmol Sr(NO ₃) ₂ , and (NH ₄) ₆ Mo ₇ O ₂₄ ·4H ₂ O as starting	
reagents and a 270 w microwave-hydrothermal for 5, 15, and 30 min	
respectively.	
4.4.2 XRD patterns of MSB1, MSB2 and MSB3, of the product prepared	98
using 5.0 mmol Sr(CH ₃ CO ₂) ₂ , and (NH ₄) ₆ Mo ₇ O ₂₄ ·4H ₂ O as starting	
reagents and a 270 w microwave-hydrothermal for 5, 15, and 30 min	
respectively.	

- 4.4.3 XRD patterns of MSC1, MSC2 and MSC3, the product prepared
 99 using 5.0 mmol SrCl₂·6H₂O, and (NH₄)₆Mo₇O₂₄·4H₂O as starting
 reagents and a 270 w microwave-hydrothermal for 5, 15, and 30 min
 respectively.
- 4.4.4 Simulated XRD pattern and crystal structure of SrMoO₄, the product 100 prepared using 5.0 mmol Sr(NO₃)₂, and (NH₄)₆Mo₇O₂₄·4H₂O as starting reagents and a 270 w microwave-hydrothermal for 30 min.
 4.4.5 SEM image of the product prepared using 5.0 mmol Sr(NO₃)₂, 101 (NH₄)₆Mo₇O₂₄·4H₂O as starting reagents and a 270 w microwave-hydrothermal for 5 min (Sample code MSA1).
 4.4.6 SEM image of the product prepared using 5.0 mmol Sr(NO₃)₂, 101 (NH₄)₆Mo₇O₂₄·4H₂O as starting reagents and a 270 w microwave-hydrothermal for 5 min (Sample code MSA1).
 4.4.6 SEM image of the product prepared using 5.0 mmol Sr(NO₃)₂, 101 (NH₄)₆Mo₇O₂₄·4H₂O as starting reagents and a 270 w microwave-hydrothermal for 15 min (Sample code MSA2).
 4.4.7 SEM image of the product prepared using 5.0 mmol Sr(NO₃)₂, 102

 $(NH_4)_6Mo_7O_{24}\cdot 4H_2O$ as starting reagents and a 270 w microwavehydrothermal for 30 min (Sample code MSA3).

4.4.8 SEM image of the product prepared using 5.0 mmol Sr(NO₃)₂,
(NH₄)₆Mo₇O₂₄·4H₂O as starting reagents and a 270 w microwave-hydrothermal for 90 min (Sample code MSA4).

102

4.4.9 SEM image of the product prepared using 5.0 mmol Sr(NO₃)₂,
(NH₄)₆Mo₇O₂₄·4H₂O as starting reagents and a 270 w microwave-hydrothermal for 90 min (Sample code MSA4).

4.4.10 SEM image of the product prepared using 5.0 mmol $Sr(CH_3CO_2)_2$, 103 (NH₄)₆Mo₇O₂₄·4H₂O as starting reagents and a 270 w microwavehydrothermal for 5 min (Sample code MSB1). 104 4.4.11 SEM image of the product prepared using 5.0 mmol Sr(CH₃CO₂)₂, (NH₄)₆Mo₇O₂₄·4H₂O as starting reagents and a 270 w microwavehydrothermal for 15 min (Sample code MSB2). 4.4.12 SEM image of the product prepared using 5.0 mmol Sr(CH₃CO₂)₂, 104 (NH₄)₆Mo₇O₂₄·4H₂O as starting reagents and a 270 w microwavehydrothermal for 15 min (Sample code MSB2). 4.4.13 SEM image of the product prepared using 5.0 mmol Sr(CH₃CO₂)₂, 105 (NH₄)₆Mo₇O₂₄·4H₂O as starting reagents and a 270 w microwavehydrothermal for 30 min (Sample code MSB3). 4.4.14 SEM image of the product prepared using 5.0 mmol Sr(CH₃CO₂)₂, 105 (NH₄)₆Mo₇O₂₄·4H₂O as starting reagents and a 270 w microwavehydrothermal for 30 min (Sample code MSB3). 4.4.15 SEM image of the product prepared using 5.0 mmol SrCl₂·6H₂O, 106 (NH₄)₆Mo₇O₂₄·4H₂O as starting reagents and a 270 w microwavehydrothermal for 5 min (Sample code MSC1). 4.4.16 SEM image of the product prepared using 5.0 mmol SrCl₂·6H₂O, (NH₄)₆Mo₇O₂₄·4H₂O as starting reagents and a 270 w microwavehydrothermal for 15 min (Sample code MSC2).

4.4.17 SEM image of the product prepared using 5.0 mmol SrCl₂·6H₂O, 107 (NH₄)₆Mo₇O₂₄·4H₂O as starting reagents and a 270 w microwavehydrothermal for 30 min (Sample code MSC3). 108 4.4.18 (a, b) TEM and HRTEM images, and (c, d) SAED and simulated patterns of image of the product prepared using 5.0 mmol $Sr(NO_3)_2$, (NH₄)₆ Mo₇O₂₄·4H₂O as starting reagents and a 270 w microwavehydrothermal for 30 min (Sample code MSA3). 4.4.19 Schematic illustration for the formation of hierarchical architecture 109 of SrMoO₄ 4.4.20 Raman spectra of the MSA3, MSB3 and MSC3 products, the 111 product prepared using 5.0 mmol Sr(NO₃)₂, and (NH₄)₆Mo₇O₂₄·4H₂O as starting reagents and a 270 w microwavehydrothermal for 5, 15, and 30 min respectively. 4.4.21 UV-visible absorption of the MSC3 product, the product prepared 112 using 5.0 mmol Sr(NO₃)₂, and (NH₄)₆Mo₇O₂₄·4H₂O as starting reagents and a 270 w microwave-hydrothermal for 30 min. 4.4.22 the $(\alpha hv)^2$ vs hv plot of the MSC3 product, the product prepared 113 using 5.0 mmol Sr(NO₃)₂, and (NH₄)₆Mo₇O₂₄·4H₂O as starting reagents and a 270 w microwave-hydrothermal for 30 min.

ABBREVIATIONS AND SYMBOLS

 $^{\circ}C = Degree Celcius$

mm = Millimeter

nm = Nanometer

 $\mu m =$ Micrometer

 $\text{\AA} = \text{Angstrom}$

mg = Milligram

ml = Milliliter

EDS = Energy Dispersive X-ray Spectroscopy

FT-IR = Fourier-Transform Infrared Spectrometry

PL = Photoluminescence Spectrometry

SEM = Scanning Electron Microscopy

TEM = Transmission Electron Microscopy

XRD = X-Ray Diffraction Spectrometer

JCPDS = The Joint Committee for Powder Diffraction

Standards