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1)

2)

3)

STATEMENT OF ORIGINALITY

In this thesis, metal oxides with micro- and nanostructured were presented
their synthesizing method. Metal oxides in micro and nano scale can be used in
a variety technological application and show a better properties both chemical and
physical compare with the their bulk materials. Especially, optical and gas sensing

application are widely applied.

Defect at the metal oxide surface , oxygen vacancy, is the cause to make
a substance having a better gas response. The imperfect determination is

examined by employing photoluminescence analytical method.

Metal oxides with micro- and nanostructured show a higher using by trend.
Therefore, the low cost, simply, rapid and environmental friendly synthesizing
method should be considered as an important topic of nanoscience and
technology. Microwave and directly electrical applying technique are suitable
processing for heat generation corresponding with the future trend of materials

synthesis.



