CONTENTS

	Page
Acknowledgement	d
Abstract in Thai	e
Abstract in English	g
List of Tables	9 m
List of Figures	n
List of Abbreviations	r
List of Symbols	Soft.
Statement of Originality	w u
Chapter 1 Introduction	71
1.1 Research Objectives	4
1.2 Usefulness of the Research	4
Chapter 2 Literature Review	5
2.1 Crystalline structure, properties and application of metal oxides	5
2.1.1 MoO ₃	5
2.1.2 CuO	8
2.2 Microwave synthesis	12
2.2.1 Introduction	12
2.2.2 Microwave heating	14
1). Microwave versus conventional neating	14
2). Interaction of interowave with materials	21
2.3.1 Power transfer to the plasma	21
rights reser	

		2.3.2 microwave plasma application for materials synthesis	24
	2.4	DC electrical heating	29
		2.4.1 Direct current heating method	29
		2.4.2 Basic configuration of the system	29
		2.4.3 DC pulse current energizing effect	30
		2.4.4 Synthesis by using direct electrical current heating method	31
	2.5	Gas sensor based on metal oxide semiconductor	32
Cha	apter 3	Experimental Procedure	37
	3.1	Chemical reagents and equipment	37
		3.1.1 Chemical reagents	37
		3.1.2 Equipment	37
	3.2	Experimental procedure	38
		3.2.1 MoO ₃ : Synthesis using plasma microwave method	38
		and optical characterization	
		1) Synthesis of MoO ₃	38
		2) Characterization	39
		3.2.2 CuO: Synthesis using DC electrical heating method,	40
		characterization and gas sensing measurement	
		1). Synthesis of CuO	40
		2). Characterization	40
		3). Fabrication and measurement of sensor	41
	3.3	Characterization techniques	43
		3.3.1 X-ray diffraction	43
		3.3.2 Scanning electron microscopy	44
		3.3.3 TEM, HRTEM and SAED	45
		3.3.4 Luminescence spectroscopy	46
		3.3.5 UV-Vis spectroscopy	47
		3.3.6 Raman spectrometry	48

	3.3.7 Fourier transform infrared spectroscopy	48
	3.3.8 System source meter	49
	3.3.9 X-ray photoelectron spectroscopy	49
	3.3.9 High DC electrical power supply	50
Chapter 4	Results and Discussion	51
4.1	MoO ₃	51
	4.1.1 XRD, SAED, and HRTEM	51
	4.1.2 SEM	53
	4.1.3 Raman and FTIR analyses	56
	4.1.4 PL emission	58
4.2	CuO	59
	4.2.1 XRD	59
	4.2.2 TEM and SEM	62
	4.2.3 FTIR	67
	4.2.4 PL and UV-Vis	68
	4.2.5 XPS	70
	4.2.5 V-I Characteristic Curve	72
	4.2.6 Gas Sensing Measurement	73
Chapter 5	Conclusions	79
References	S	82
List of put	blications	94

95 Appendix Appendix A 96 Appendix B 110 Appendix C 111 Curriculum Vitae 112 International publications 114

ลิ<mark>ขสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

Page

Table 2.1	Some physical properties of MoO ₃	7
Table 2.2	Structural parameters of CuO	9
Table 2.3	Key physical properties of CuO at room temperature (300 K)	10
Table 2.4	Microwave-Active Elements, Natural Minerals, and Compounds	19
Table B.1	Camera constant (L λ) at 200 kV of JEOL-TEM	109
Table B.2	NH ₃ gas flow rate controlled by gas regulator	110
	(Cole-Parmer model PMR 1-010333)	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

Figure 2.1	The structures [36] of a) α -MoO ₃ , b) ReO ₃ and c) unit cell for	6
	the lattice of ReO ₃ . The octahedral symmetry is emphasized in c)	
Figure 2.2	Crystal structure of CuO (tenorite). The special atomic positions	8
	for Cu are (1/4, 1/4, 0), (3/4, 3/4, 0), (1/4, 3/4, 1/2), and (3/4, 1/4,1/2)	
	and for oxygen are $(0, y, 1/4)$, $(0, 1/2 + y, 1/4)$, $(0, _y, 3/4)$, and $(1/2, -1/2)$	
	1/2 - y, 3/4) with y = 0.416(2). The small light spheres and large dark	
	spheres represent Cu and oxygen atoms, respectively.	
Figure 2.3	(a and b) Optical images of CuO nanobelt-based two-layered	11
	SWCNTs and CuO nanobelts mixed with SWCNT (9:1 weight ratio)	
	electrode. (c) Edge of SWCNTs and CuO nanobelts. (d) Galvanostation	c
	charge/discharge curves measured with a current density of 5 A/g for	
	different electrodes. (e) Cycling performance for SWCNTs and CuO	
	nanobelts mixed with SWCNT electrode at a current density of	
	5 A/g in 1.0 M LiPF6/EC: DEC.	
Figure 2.4	Composition of electromagnetic wave	12
Figure 2.5	Electromagnetic spectrum and it's interaction with molecule	13
Figure 2.6	Comparison heating mechanism between conventional and	15
	microwave oven	
Figure 2.7	Heating mechanism of water due to microwave field.	20
Figure 2.8	Schematic diagram of Cober microwave system used in	25
	the synthesis of binary nitride materials by reaction with	
	a nitrogen plasma.	
Figure 2.9	Schematic diagram of (a) the apparatus for plasma modification	26
	by making use of an atmospheric microwave plasma torch and	
	(b) the construction of the plasma nozzles.	

Figure 2.10	A photograph of the microwave plasma in operation for	27
	the treatment of Al sample.	
Figure 2.11	Schematic presentation of the synthetic system of MgO	28
	nanoparticles with the atmospheric microwave plasma torch.	
	The inset shows the plasma emission of green color after	
	completion of the synthesis.	
Figure 2.12	A schematic diagram of microwave plasma equipment	29
Figure 2.13	A schematic diagram of direct current heating method	30
	apparatus	
Figure 2.14	Pulsed current flow through powder particles	31
Figure 2.15	Schematic diagram for change of the sensor resistance upon exposure	34
	to the reducing gas in the cases of n-type and p-type MOS sensors	
Figure 2.16	Formation of electronic core-shell structures in (a) n-type and	35
	(b) p-type oxide semiconductors	
Figure 3.1	Schematic diagram of microwave induced plasma system.	39
Figure 3.2	Schematic diagram of lab-made DC electrical heating method	42
Figure 3.3	Diagram of lab-made gas sensing measurement system	42
Figure 3.4	Picture of lab-made gas sensing measurement system	43
Figure 3.5	X-ray diffractometer	44
Figure 3.6	Scanning electron microscope	45
Figure 3.7	Transmission electron microscope	46
Figure 3.8	Luminescence spectrometer	47
Figure 3.9	UV-VIS spectrophotometer	47
Figure 3.10	Raman spectroscope	48
Figure 3.11	Fourier transform infrared spectroscope	48
Figure 3.12	System source meter	49
Figure 3.13	X-ray photoelectron spectrometer	50
Figure 3.14	High DC current power supply	50

Figure 4.1	Diffractrogram of processed α -MoO ₃ for 40, 50, and 60 min	52
Figure 4.2	a) SAED pattern and b) HRTEM image of α -MoO ₃ processed	53
	for 60 min.	
Figure 4.3	SEM images of MoO ₃ crystals processed for 40 min	54
Figure 4.4	SEM images of MoO ₃ crystals processed for 50 min	54
Figure 4.5	SEM images of MoO ₃ crystals processed for 60 min (x 1,000)	55
Figure 4.6	SEM images of MoO ₃ crystals processed for 60 min (x 5,000)	55
Figure 4.7	a) Raman analysis of α -MoO ₃ processed for 40, 50 and 60 min.	57
	b) FTIR spectrum of α -MoO ₃ processed for 60 min.	
Figure 4.8	PL emissions of α -MoO ₃ processed for 40, 50, and 60 min.	59
Figure 4.9	XRD patterns of the samples synthesized for 1, 3, 6, 9, 12	61
	and 15 min processing times.	
Figure 4.10	TEM image of the 15 min as-synthesized CuO sample and its	62
	simulated crystal structure.	
Figure 4.11	SEM image of the sample synthesized for 1 min.	63
Figure 4.12	SEM image of the sample synthesized for 3 min.	64
Figure 4.13	SEM image of the sample synthesized for 6 min.	64
Figure 4.14	SEM image of the sample synthesized for 9 min.	65
Figure 4.15	SEM image of the sample synthesized for 12 min.	65
Figure 4.16	SEM image of the sample synthesized for 15 min.	66
Figure 4.17	FTIR spectra of the samplessynthesized for 1, 3, 6, 9, 12 and	67
	15 min processing times.	
Figure 4.18	PL peaks of CuO processed at different length of time	69
Figure 4.19	Direct band gap estimation of 15 min synthesized CuO	70
Figure 4.20	XPS spectra of the 15 min as-synthesized CuOsample:	71
	(a) Cu 2p and (b) O 1s.	
Figure 4.21	Symmetric current and voltage behavior for 15 min processed	73
	CuO at various temperature	

Figure 4.22	Dynamic respond-recovery curve of 15 min synthesized CuO	74
	at different working temperature	
Figure 4.23	Sensitivity of 15 min processed CuO at various working temperature	75
Figure 4.24	Current density characteristic of the 15 min as-synthesized	76
	CuO sample at different NH ₃ concentrations.	
Figure 4.25	Sensitivity of the 15 min as-synthesized CuO sample at	77
	different NH2 concentrations	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF ABBREVIATIONS

A	Ampere
Å	Angstrom
a.u.	Arbitrary Unit
°C	Degree Celsius
cm	Centimeter
cm ³	Cubic centimeter
DC	Direct Current
deg	Degree
Eg	Energy Gap
eV	Electron Volt
FESEM	Field-Emission Scanning Electron Microscopy
FTIR	Fourier Transform Infrared Spectroscopy
FWHM	Full Width at Half Maximum
g	Gram
GHz	Gigahertz
HRTEM	High Resolution Transmission Electron Microscopy
I	current
JCPDS	Joint Committee on Powder Diffraction Standards
m	Meter
MHz	Magahertz
min	minute
NIR	Near-Infrared
nm	Nanometer
ppm	part per million
PL C	Photoluminescense
S	Second
S	Sensitivity

SAED	Selected Area Electron Diffraction
TEM	Transmission Electron Microscopy
TGA	Thermogravimetric Analysis
UV	Ultraviolet

X-Ray Diffraction

Micrometer

volt

Watt

Visible

V

vis W

XRD

μm

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

LIST OF SYMBOLS

wavelength
theta
permittivity
the real component of permittivity
the imaginary component of permittivity
the electron mass
the average electron-neutral collision frequency
power absorbed from the field per electron
absorption coefficient
frequency

θ

 m_{ϵ} $artheta_{c}$

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

t

ข้อความแห่งการริเริ่ม

- วิทยานิพนธ์นี้ได้นำเสนอวิธีการสังเคราะห์โลหะออกไซด์ที่มีโครงสร้างระดับไมโครและ นาโนเมตร ซึ่งสารกลุ่มโลหะออกไซด์ที่มีขนาดดังกล่าวสามารถนำมาประยุกต์ใช้งานได้อย่าง หลากหลาย โดยแสดงสมบัติทั้งเชิงกายภาพและเคมีที่ดีกว่าสารชนิดเดียวกันที่มีโครงสร้าง ขนาดใหญ่(bulk materials) โดยเฉพาะการนำมาใช้งานที่เกี่ยวข้องกับสมบัติทางแสงและ การรับรู้ก๊าซ
 - ความบกพร่องบริเวณผิวของโครงสร้างโลหะออกไซด์ชนิดการเกิดที่ว่างของออกซิเจน เป็นผล ให้สารสามารถตอบสนองการรับรู้ก๊าซได้ดียิ่งขึ้น โดยสามารถทำการวิเคราะห์ความบกพร่อง ดังกล่าวจากสมบัติทางแสงด้วยวิธีโฟโต้ลูมิเนสเซนส์

2)

3) การใช้งานสารโลหะออกไซด์ที่มีโครงสร้างในระดับไมโครและนาโนเมตรมีแนวโน้มที่เพิ่ม มากขึ้น ดังนั้นการศึกษาหาวิธีการสังเคราะห์ที่ง่าย รวดเร็ว และไม่มีของเสียจากการสังเคราะห์ จึงเป็นหัวข้อที่มีความสำคัญเป็นอย่างมาก ซึ่งเครื่องมือที่ถูกพัฒนาขึ้นมาโดยใช้หลักการให้ ความร้อนด้วยคลื่นไมโครเวฟ และไฟฟ้ากระแสตรง นับเป็นวิธีที่มีความเหมาะสมสำหรับ การสังเคราะห์ในลักษณะดังกล่าว

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

STATEMENT OF ORIGINALITY

- 1) In this thesis, metal oxides with micro- and nanostructured were presented their synthesizing method. Metal oxides in micro and nano scale can be used in a variety technological application and show a better properties both chemical and physical compare with the their bulk materials. Especially, optical and gas sensing application are widely applied.
- 2) Defect at the metal oxide surface, oxygen vacancy, is the cause to make a substance having a better gas response. The imperfect determination is examined by employing photoluminescence analytical method.
- 3) Metal oxides with micro- and nanostructured show a higher using by trend. Therefore, the low cost, simply, rapid and environmental friendly synthesizing method should be considered as an important topic of nanoscience and technology. Microwave and directly electrical applying technique are suitable processing for heat generation corresponding with the future trend of materials synthesis.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved