CONTENTS

Acknowledgement	d
Abstract in Thai	f
Abstract in English	i
List of Tables	q
List of Figures	S
List of Abbreviations	cc
List of Symbols	ff
Statement of Originality in Thai	gg
Statement of Originality in English	hh
Chapter 1 Introduction	1
1.1. Introduction to ferroelectric glass-ceramics	1
1.2. Objective	5
1.3. Usefulness of the Research	5
Chapter 2 Theory and Literature Review	6
2.1. Ferroelectric Property for Glass-ceramics	6
2.1.1. Ferroelectric Characteristics	7
2.1.2. Perovskite Type Structure	11
2.1.3. Potassium Sodium Niobate	14
2.2. Glass-Ceramics	21
2.2.1. Theory of Glass and Glass-ceramics	24
2.2.2. Hypothesis of Crystallization in Glass-ceramic	29

	2.2.3. Transparent Ferroelectric Glass-Ceramics (TFCGs)	32
	2.2.4. Material System	33
	1) Tellurite glass	35
	2) Silicate glass	36
2.3.	Rare Earth Doped Material	37
	2.3.1. The Study of Er_2O_3 Dopant to TeO_2 Glass System	41
	2.3.2. The Study of Er ₂ O ₃ Dopant Effect to Ceramics System	44
	2.3.3. The Study of Er ₂ O ₃ Dopant Effect to Silicate Glass System	47
Chapter 3	Experimental Procedure	50
3.1.	Chemical Reagents and Laboratory Instruments	51
	3.1.1. Chemical Reagent Lists	51
	3.1.2. Laboratory Instruments	52
3.2.	Sample Preparation	52
	3.2.1. Powder Preparation	52
	3.2.2. Glass Preparation	56
	3.2.3. Crystallization Process	58
3.3.	Glass-ceramics Characterization	59
	3.3.1. Thermal Analysis	59
	3.3.2. Densification Analysis	61
	3.3.3. Phase Analysis	62
	1) X-ray Difractometer	62
	2) Raman Spectroscopy	62
	3) FTIR spectroscopy operating system	63
	3.3.4. Microstructure Analysis	64
	3.3.5. Measurement of Optical Properties	65
	1) Transmittance (%) and Absorbance	65
	2) Refractive Index	67
	2.1) Reflectometry	68
	2.2) Ellipsometry	68
	2.3) Photoluminescence	70
	3.3.6. Electrical Measurement	72

Chapter 4	Results and Discussion (Part I)	74
	Materials Characterization of Potassium Sodium	
	Niobate Based Tellurite Glass and Glass-ceramic	
4.1.	The Characterization Of KNN-TeO2 Glass and Glass-Ceramics	74
	4.1.1. Thermal Behavior Determination	76
	4.1.2. Densification Investigation	79
	4.1.3. Structural Formation	80
	1) Phase Composition Studied By XRD	80
	2) Phase Formation Studied By FTIR	83
	4.1.4. Microstructure Observation	84
	4.1.5. Electrical Property	88
	1) Dielectric Constant at Room Temperature	88
	2) Dielectric Constant at Different Temperature	88
	4.1.6. Optical Properties	94
	1) Transmittance	94
	2) Refractive Index	95
	4.1.7. Conclusion	99
4.2.	The Characterization of Er ₂ O ₃ Doped KNN-TeO ₂	100
	Glass and Glass-ceramic	
	4.2.1. Thermal Behavior Determination	100
	4.2.2. Densification Investigation	105
	4.2.3. Structural Formation	106
	4.2.4. Microstructure Observation	111
	4.2.5. Electrical Property	114
	4.2.6. Optical Properties	117
	1) Absorbance	117
	2) Refractive Index and Energy Band Gap	120
	3) Photoluminescence	124
	4.2.7. Conclusion	125

Chapter 5	Results and Discussion (Part II)	126
]	Materials Characterization of Potassium Sodium	
]	Niobate Based Silicate Glass and Glass-Ceramic	
5.1.	The Characterization of KNN-SiO2 Glass and Glass-Ceramics	126
	5.1.1. Thermal Behavior Determination	127
	5.1.2. Densification Investigation	129
	5.1.3. Structural Formation	130
	1) Phase Composition Studied by XRD	130
	2) Phase Formation Studied by Raman	130
	5.1.4. Microstructural Observation	134
	5.1.5. Electrical Property	137
	5.1.6. Optical Properties	139
	5.1.7. Conclusions	143
5.2.	The Characterization of Er ₂ O ₃ Doped KNN-SiO ₂	144
	Glass and Glass-Ceramic	
	5.2.1. Thermal Behavior Determination	144
	5.2.2. Densification Investigation	147
	5.2.3. Structural Formation	149
	1) Phase Composition Studied By XRD	149
	2) Phase Formation Studied By Raman	151
	5.2.4. Microstructural Observation	152
	5.2.5. Electrical Property	155
	5.2.6. Optical Properties	156
	1) Absorbance	156
	2) Photoluminescence spectra	163
	5.2.7. Conclusions	166
Chapter 6	Conclusions	167
6.1.	General Conclusions	167
	6.1.1. KNN-TeO ₂ Glasses and Glass-ceramics and	167
	Effect of Er ₂ O ₃ Dopant	
	6.1.2. KNN-SiO ₂ Glasses and Glass-ceramics and	168

Effect of Er ₂ O ₃ Dopant	
6.2. Recommendation for Future Work	172
References	173
List of publications	188
Appendix	189
Appendix A	189
Appendix B	191
Curriculum Vitae	192
A LAN	
The the second	
ALL THE S	
Chi asti	
VAI UNIVER	
ลขสทธมหาวทยาลยเชยงเหม	
Copyright [©] by Chiang Mai University	
All rights reserved	

LIST OF TABLES

Table 2.1	The type of non-polar (non-centrosymmetric) point groups.	8
Table 2.2	List of cations regularly formed perovskite-structured oxides	13
	with the ionic radius.	
Table 2.3	The tolerance factor of some perovskite and their properties.	13
Table 2.4	Electrical property of lead-free systems vs PZT.	19
Table 2.5	Dielectric and piezoelectric properties of lead free KNN based	19
	ceramic systems.	
Table 2.6	The summarized of favorable properties of glass-ceramics.	23
Table 2.7	Optical parameter of Er ³⁺ in various solid host materials.	38
Table 2.8	Density, refractive index, concentration of Er ³⁺ inside glass,	42
	glass transition -crystallization temperature and glass	
	stability.	
	Ch Str	
Table 3.1	Nominal composition of the starting powders used in this	53
	study.	
Table 3.2	Quantitative analysis of calcined KNN powder at 900 °C for	55
G1	5 hours by EDS technique.	
Table 3.3	Chemical compositions of the prepared glass samples.	57
A	ll rights reserved	
Table 4.1	Thermal profile data of 2 glass compositions from DTA	78
	measurement.	
Table 4.2	The calculated average crystallite sizes in two glass	83
	compositions.	
Table 4.3	Refractive indices of various heat treatment temperature	99
	glass-ceramics samples of two glass composition.	
Table 4.4	Density and thermal profile data of all glass samples.	103

Table 4.5 Summary of crystal morphology and crystallite sizes. 112 Refractive index and energy band gap of each glass Table 4.6 121 composition. Table 5.1 128 The thermal profile and glass stability factor of 75KNN- $25SiO_2$ and $80KNN-20SiO_2$ glasses. (T_g = Glass transition temperature, $T_x = T_c$ onset point, $T_c = Crystallization$ temperature, $\Delta T = Glass stability)$ Physical properties data of 75KNN-25SiO₂ and 80KNN-Table 5.2 137 $20SiO_2$ glass systems. (*L, length, D, diagonal values, d, crystallite size) Refractive index of 75KNN-25SiO2 and 80KNN-20SiO2 Table 5.3 139 glass systems. Table 5.4 The stability of glass-ceramics from their DTA thermal 146 profile. Calculated energy band gap (E_g) of the Er^{3+} doped KNN-SiO₂ Table 5.5 163 glass-ceramics heat treated at various temperatures. Table 6.1 transition 170 Comparison of glass temperature $(T_g),$ crystallization temperature (T_c), glass stability factor (ΔT), density (ρ), refractive index (n), energy band gap (Eg) and dielectric constant (ɛr) at various frequency for KNN based tellurite glass system with related works. of glass transition temperature (T_g), Table 6.2 Comparison 171 crystallization temperature (T_c), glass stability factor (ΔT), density (ρ), refractive index (n), energy band gap (Eg) and dielectric constant (ε_r) at various frequency for KNN based

r

silicate glass system with related works.

LIST OF FIGURES

Figure 1.1	AM1.5 terrestrial solar spectrum.	3
Figure 1.2	Energy conversion process presented by energy level	4
	diagrams.	
Figure 2.1	The flow-chart of piezoelectric and subgroups divided by structural symmetry.	9
Figure 2.2	Hysteresis loops and polarization of ferroelectric materials.	11
Figure 2.3	The perovskite crystal structure.	12
Figure 2.4	Binary phase diagram KNbO ₃ –NaNbO ₃ .	16
Figure 2.5	The transformation of KNN crystal structure at different	17
	temperature. Here P stands for the direction of polarization.	
Figure 2.6	The comparison between KNN based ceramics and others	20
	material (a.) dielectric permittivity as a function of Curie	
	temperature, (b) piezoelectric coefficient as a function of	
	temperature.	
Figure 2.7	Schematic images of (A) glass, (B) crystal, and (C) glass-	21
	ceramic.	
Figure 2.8	Glass-ceramics mechanism after applied heat treatment	24
A	temperature. (a) Nuclei formation, (b) nuclei growth and (c)	
14	crystal structure in glass matrix.	
Figure 2.9	The comparative illustrate between crystal type structure and	25
	amorphous type structure of silicate glass.	
Figure 2.10	The schematic of glass atoms arrangement with the effect of	26
	slow cooling rate and fast cooling rate from liquid glass to	
	atoms structure.	

Figure 2.11	The volume change of glass and crystal compared with	28
	temperature.	
Figure 2.12	Schematic depiction of rates of nucleation and crystal growth	30
	in glass.	
Figure 2.13	Tellurite glass structure.	35
Figure 2.14	Silicate glass structure.	36
Figure 2.15	The Er ₂ O ₃ dopants in various applications.	39
Figure 2.16	Energy levels of triple charge RE ions.	40
Figure 2.17	Energy level of Er ³⁺ ions in Nb ₂ O ₅ -TeO ₂ glass after applied	41
	975 nm and 798 nm excitation source. GSA is ground state	
	absorption, ESA is excited state absorption and ET is energy	
	transfer.	
Figure 2.18	Thermal profile of 60TeO ₂ -20GeO ₂ -10Nb ₂ O ₅ -10K ₂ O (6T2G)	43
	and $80TeO_2$ -10Nb ₂ O ₅ -10K ₂ O (8T0G) with different mol% of	
	Er_2O_3 . (T _g =glass transition temperature, T _{c1} and	
	T _{c2} =crystallization temperature)	
Figure 2.19	XRD patterns of heat treatment sample. a) glass 8T0G	43
	systems with different percent of Er_2O_3 , b) glass TeO_2	
	systems with different composition ranging from 30 - 70	
	mol% TeO ₂ .	
Figure 2.20	SEM micrograph KNbO3 ceramic with different percent of	45
ລິ	Er^{3+} dopants.	
Figure 2.21	The effect of annealing temperature on photoluminescence	45
A	intensity.	
Figure 2.22	The XRD results of KNN doped with various Er_2O_3 contents.	46
Figure 2.23	The up-conversion luminescence spectra of KNN ceramics	47
	doped with various Er ₂ O ₃ content.	
Figure 2.24	Energy level of KNN ceramics doped with Er ₂ O ₃ .	47
Figure 2.25	FESEM and TEM image of heat-treated glasses at 800°C. (a)	48
	and (b) FESEM observed of glass heat treated for 3 h and 50	

	h,(c) and (d) SAED from TEM of glass heat treated for 50 h	
	and HRTEM image of lattice fringe.	
Figure 2.26	Dielectric constant of as-received glass and heat treated glass.	48
Figure 2.27	Photoluminescence measurement with different excitation	49
	source (a) λ_{ex} = 377 nm and (b) λ_{ex} = 980 nm.	
Figure 3.1	The diagram of conventional glass-ceramic method	51
	comparing with incorporation method.	
Figure 3.2	Schematic diagram of powder preparation process.	54
Figure 3.3	X-ray diffraction patterns of KNN with 5 mol% of Na ₂ CO ₃	54
	and K_2CO_3 in ratio 1:1 and calcined at 900°C for 5 h.	
	$(K_{0.5}Na_{0.5}NbO_3 phase)$	
Figure 3.4	The SEM image of KNN powder obtained cubic crystal sizes	55
	100-200 nm at 900 °C for 5 hours.	
Figure 3.5	Platinum crucible.	56
Figure 3.6	Electric furnace.	57
Figure 3.7	Stainless steel plates.	58
Figure 3.8	Schematic diagram of KNN based TeO2 glass preparation	58
	process.	
Figure 3.9	Schematic diagram of KNN based SiO ₂ glass preparation	58
	process.	
Figure 3.10	Schematic diagram Crystallization process for glass ceramics.	59
Figure 3.11	Differential thermal analyzer, DTA.	60
Figure 3.12	Precision weighing balance.	61
Figure 3.13	X-ray diffractometer.	63
Figure 3.14	Raman spectrometer.	64
Figure 3.15	FTIR spectroscopy operating system.	64
Figure 3.16	SEM-EDS spectroscopy.	65
Figure 3.17	UV-Vis-NIR spectrophotometer.	66
Figure 3.18	Schematic diagram of refraction by light from air to glass to	67
	air.	

Figure 3.19	Refractometer.	69
Figure 3.20	Ellipsometer.	70
Figure 3.21	Fluorescence spectrometer.	72
Figure 3.22	Schematic diagram of fluorescence spectrometer adjustment.	72
Figure 3.23	Coating electrode in irregular shape sample.	73
Figure 3.24	LCZ meter.	73
Figure 4.1	Appearance of as-received glasses ($30KNN-70TeO_2$) melted at various temperatures and times; (a) $1000^{\circ}C$ for 15 minutes, (b) $900^{\circ}C$ for 15 minutes. (c) $800^{\circ}C$ for 15 minutes. (d) $800^{\circ}C$	75
	for 30 minutes and (e) 800°C for 60 minutes	
Figure 4.2	Thermal analysis (DTA) of KNN-TeO ₂ glasses which were melted at 900°C for 15 minutes and quenched between stainless steel plates at room temperature	76
Figure 4.3	Physical appearances of 30KNN- 70TeO ₂ glass-ceramics after various heat treatment (HT) temperatures a) annealed glass at 300°C, b) HT at 325°C, c) HT at 350°C, d) HT at 420°C and e) HT at 522°C.	78
Figure 4.4	Physical appearances of 20KNN- 80TeO ₂ glass-ceramics at various heat treatment temperatures (HT) a) annealed glass at 300°C b) HT at 325°C, c) HT at 350°C, d) HT at 408°C and e) HT at 498°C.	79
Figure 4.5	Density of glass and glass-ceramics comparing with HT temperature.	80
Figure 4.6	XRD patterns of two series of glass-ceramics 30KNN- 70TeO ₂ (a) and 20KNN-80TeO ₂ (b) after various HT temperatures. (\bullet =KNbTeO ₆ peaks, $\otimes =\alpha$ -TeO ₂ peaks, * =KNN solid solution, \bullet =Na ₂ Nb ₄ O ₁₁ peaks and u=unidentified phases)	81
Figure 4.7	FTIR patterns of $20KNN-80TeO_2$ and $30KNN-70TeO_2$ systems after heat treatment at T_{c1} and T_{c2} .	84

v

Figure 4.8	SEM-EDS of 30KNN- 70TeO ₂ glass-ceramics heat treated at	86
	different temperatures.	
Figure 4.9	SEM-EDS of 20KNN- 80TeO2 glass-ceramics heat treated at	87
	different temperatures.	
Figure 4.10	Dielectric constant (a) and dielectric loss (b) of two series of	89
	glass-ceramics at various HT temperatures and frequencies.	
Figure 4.11	Dielectric constant and loss of glass-ceramics 30KNN-	90
	70TeO_2 heat treated at 420°C (T _{c1}) for 4 hours.	
Figure 4.12	Dielectric constant and loss of glass-ceramics 30KNN-	91
	70TeO_2 heat treated at 522°C (T _{c2}) for 4 hours.	
Figure 4.13	Dielectric constant and loss of glass-ceramics 20KNN-	92
	80TeO_2 heat treated at 408°C (T _{e1}) for 4 hours.	
Figure 4.14	Dielectric constant and loss of glass-ceramics 20KNN-	93
	80TeO_2 heat treated at 498°C (T _{c2}) for 4 hours.	
Figure 4.15	The percent transparent of glass-ceramic which heat treated at	96
	various temperatures.	
Figure 4.16	Refractive index of glass-ceramic which heat treated at	97
	various temperatures.	
Figure 4.17	Photo energy of glass-ceramics 30KNN-70TeO2 and 20KNN-	98
	80TeO ₂ .	
Figure 4.18	Thermal analysis of 30KNN-70TeO2 glass doped with 0-1	102
8	mol% of Er2O3. (AB.) Glass composition of 30KNN-	
CI	70TeO ₂ . (CD.) Glass composition of 0.5 mol% Er ₂ O ₃ doped	
C	30KNN-70TeO ₂ . (EH.) Glass composition of 1.0 mol%	
A	Er ₂ O ₃ doped 30KNN-70TeO ₂ .	
Figure 4.19	The appearances of glass 30 KNN- 70 TeO2 doped with Er_2O_3	104
	of about 0.5 mol% and heat treatment for 4 hours at various	
	temperatures.	
Figure 4.20	The appearances of glass $30KNN-70TeO_2$ doped with Er_2O_3	104
	of about 1.0 mol% and heat treatment for 4 hours at various	
	temperatures.	

Figure 4.21	Density of glass ceramics 30KNN-70TeO ₂ doped with 0.5	105
	mol% Er_2O_3 in system C. and D.	
Figure 4.22	Density of glass ceramics 30KNN-70TeO ₂ doped with 1.0	106
	mol% Er ₂ O ₃ in system E., F., G., and H.	
Figure 4.23	XRD pattern of glass ceramics 30KNN-70TeO ₂ doped with	108
	0.5 mol% Er_2O_3 in system C. and D. (melted at 800°C for	
	15min (C.) and 30min (D.), respectively) after heat treatment	
	at various temperature.	
Figure 4.24	XRD patterns of glass ceramics 30KNN-70TeO2 doped with	109
	1.0 mol% Er_2O_3 in system E. and F. (melted at 800°C for	
	30min (E.) and 60min (F.)) after heat treatment at various	
	temperature.	
Figure 4.25	XRD patterns of glass ceramics 30KNN-70TeO2 doped with	110
	1.0 mol% Er_2O_3 in system G. and H. (melted at 900°C for	
	30min (G.) and 60min (H.)) after heat treatment at various	
	temperature.	
Figure 4.26	SEM micrographs of glass ceramics 30KNN-70TeO ₂ doped	112
	with 0.5 mol% Er_2O_3 in system C. and D. (melted at 800°C	
	for 15min (C.) and 30min (D.), respectively) after heat	
	treatment at various temperature.	
Figure 4.27	SEM micrographs of glass ceramics 30KNN-70TeO ₂ doped	113
8	with 1.0 mol% Er ₂ O ₃ in system E., F., G. and H. (melted at	
d	800°C for 30min (E.) and 60min (F.) and melted at 900°C for	
Co	30min (G.) and 60min (H.)) after heat treatment at various	
A	temperature.	
Figure 4.28	Dielectric constants and dielectric losses of glass ceramics	114
	30KNN-70TeO ₂ doped with 0.5 mol% Er ₂ O ₃ in system C. and	
	D. (melted at 800°C for 15min (C.) and 30min (D.),	
	respectively) after heat treatment at various temperature.	
Figure 4.29	Dielectric constants of glass ceramics 30KNN-70TeO2 doped	115
	with 1.0 mol% Er ₂ O ₃ in system E., F., G. and H.	

Х

Figure 4.30	Dielectric losses of glass ceramics 30KNN-70TeO2 doped	116
	with 1.0 mol% Er ₂ O ₃ in system E., F., G. and H.	
Figure 4.31	Absorbance spectra of glass ceramics 30KNN-70TeO ₂ doped	118
	with 0.5 mol% Er_2O_3 in system C. and D. after heat treatment	
	at different temperatures.	
Figure 4.32	Absorbance spectra of glass ceramics 30KNN-70TeO ₂ doped	119
	with 1.0 mol% Er_2O_3 in system E. and G. after heat treatment	
	at different temperatures.	
Figure 4.33	The absorption coefficient comparing with heat treatment	120
	temperature of 30KNN-70TeO2 doped 0.5 mol% and 1.0	
	mol% of Er ₂ O ₃ .	
Figure 4.34	Photo energy of glass ceramics 30KNN-70TeO ₂ doped with	122
	0.5 mol% Er ₂ O ₃ in system C. and D. after heat treatment at	
	different temperatures.	
Figure 4.35	Photo energy of glass ceramics 30KNN-70TeO ₂ doped with	123
	1.0 mol% Er ₂ O ₃ in system E. and G. after heat treatment at	
	different temperatures.	
Figure 4.36	Photoluminescence patterns of glass 30KNN-70TeO ₂ doped	124
	with 0.5 mol% Er ₂ O ₃ samples in system C. and D.	
Figure 4.37	Photoluminescence patterns of glass 30KNN-70TeO ₂ doped	125
	with 1.0 mol% Er_2O_3 in system E. and G.	
8	12	
Figure 5.1	The KNN-SiO ₂ glass appearances obtained by melted at	127
C	1300°C for 15 min.	
Figure 5.2	DTA traces of the as-quenched glasses from 2 glass series.	128
Figure 5.3	The appearance of glass-ceramics from 2 glass series with	129
	different heat treatment temperature. (ac. 75KNN-25SiO2	
	and df. 80KNN-20SiO ₂)	
Figure 5.4	The density of 2 glass series varied with heat treatment	129
	temperature.	

Figure 5.5	XRD patterns of glass-ceramic samples at various temperatures. a) 75KNN-25SiO ₂ system, b) 80KNN-20SiO ₂	132
Figure 5.6	Raman spectra of glass-ceramic samples at various temperatures. a) 75KNN-25SiO ₂ system, b) 80KNN-20SiO ₂	133
Figure 5.7	system. SEM micrographs of glass-ceramic samples after heat treatment at various temperatures	135
Figure 5.8	EDS analysis from SEM micrograph of glass-ceramics 75KNN-25SiO ₂ and 80KNN-20SiO ₂ which heat treatment at different temperatures.	136
Figure 5.9	The dielectric constant and dielectric loss of 2 glass series heat treated at various temperature	138
Figure 5.10	Percent transmittance of as-quenched glasses and glass- ceramic samples at various HT temperatures.	140
Figure 5.11	The absorption spectrum of as-quenched glasses and glass- ceramic samples at various HT temperatures.	141
Figure 5.12	The energy band gap values of as-quenched glasses and glass- ceramic samples at various HT temperatures.	142
Figure 5.13	Thermal profile data of all glass samples by using DTA.	145
Figure 5.14	The appearance of glasses and glass-ceramics of 70KNN- $30SiO_2$ at various heat treatment temperatures. (a) doped 0.5mol% Er ₂ O ₃ (b) doped 1.0mol% Er ₂ O ₃ .	146
Figure 5.15	The appearance of glasses and glass-ceramics of 75KNN- 25SiO ₂ at various heat treatment temperatures. (a) doped 0.5mol% FraO ₂ (b) doped 1.0mol% FraO ₂	147
Figure 5.16	The appearance of glasses and glass-ceramics of 80KNN- 20SiO ₂ at various heat treatment temperatures. (a) doped 0.5mol% Er ₂ O ₂ (b) doped 1.0mol% Er ₂ O ₂	147
Figure 5.17	The density of glass ceramics 70 KNN- 30 SiO ₂ doped with 0.5 mol% and 1.0 mol% of Er ₂ O ₃ .	148

Figure 5.18	The density of glass ceramics $75KNN-25SiO_2$ doped with 0.5	148
	mol% and 1.0 mol% of Er_2O_3 .	
Figure 5.19	The density of glass ceramics $80KNN-20SiO_2$ doped with 0.5	149
	mol% and 1.0 mol% of Er_2O_3 .	
Figure 5.20	XRD pattern of $70KNN-30SiO_2$ and $80KNN-20SiO_2$ glass-	150
	ceramics doped 0.5-1.0mol% Er_2O_3 heat treated at various	
	temperatures.	
Figure 5.21	The raman spectra of $70KNN-30SiO_2$ and $80KNN-20SiO_2$	153
	doped 0.5 and 1.0 mol% Er_2O_3 and heat treated at T_g and T_c ,	
	respectively.	
Figure 5.22	SEM micrographs of glass-ceramics 70KNN-30SiO ₂ doped	154
	0.5–1.0 Er_2O_3 heat treatment at 550°C (a, d), 600°C (b, e) and	
	650°C (c, f).	
Figure 5.23	SEM micrographs of glass-ceramics 80KNN-20SiO ₂ doped	154
	0.5–1.0 Er_2O_3 heat treatment at 500°C (a, d), 550°C (b, e) and	
	570°C (c, f).	
Figure 5.24	Dielectric constant and dielectric loss of 2 glass-ceramic	156
	conditions after various heat treatment temperatures.	
Figure 5.25	Absorption spectra of the Er^{3+} doped KNN-SiO ₂ glass-	158
	ceramics heat treated at various temperatures.	
Figure 5.25	(continue) Absorption spectra of the Er^{3+} doped KNN-SiO ₂	159
8:	glass-ceramics heat treated at various temperatures.	
Figure 5.26	Plots of $(\alpha hv)^2$ versus hv of the Er ³⁺ doped 70KNN-30SiO ₂	160
Co	glass-ceramics.	
Figure 5.27	Plots of $(\alpha hv)^2$ versus hv of the Er^{3+} doped 75KNN-25SiO ₂	161
	glass-ceramic.	
Figure 5.28	Plots of $(\alpha hv)^2$ versus hv of the Er^{3+} doped 80KNN-20SiO ₂	162
	glass-ceramics.	
Figure 5.29	Schematic of glass-ceramics composition.	164
Figure 5.30	Photoluminescence spectra of 75KNN-25SiO ₂ doped	165
	0.5mol% Er_2O_3 and 1.0mol% Er_2O_3 under 310-415 nm	
	excitation.	

- Figure 5.31 Photograph of glass ceramics $75KNN-25SiO_2$ doped 165 0.5mol% Er₂O₃ (1) 0.5HT500, (2) 0.5HT550, (3) 0.5HT600, and 1.0mol% Er₂O₃ (4) 1.0HT500, (5) 1.0HT550 (6) 1.0HT600 luminescence under 310-415 nm excitation.
- Figure 5.32 Energy level diagram of Er^{3+} ions with luminescence 166 mechanism.

ลิ<mark>ขสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

LIST OF ABBREVIATIONS

ASTM	American Standard Testing of Materials
a.u.	Arbitrary Unit
BT	Barium Titanate
cm	Centimeter
°C	Degree Celcius
CIP	Cold Isostatic Pressure
DTA	Differential Thermal Analysis
E	Electric Field
Ec	Coercive Field
Eg	Energy Gap
eV	Electron Volt
EDS	Energy Dispersive Spectroscopy
FE	Ferroelectric
FESEM	Field Emission Scanning Electron Microscopy
FTIR	Fourier Transform Infrared Spectroscopy
FWHM	Full-Width at Half Maximum
g	Grams
GHz	Gigahertz
h	Hour
h Copyri	Planck's Constant
HP A L	Hot Isostatic Pressure
HT	Heat treatment
Hz	Hertz
IR	Infrared
JCPDS	Joint Committee on Powder Diffraction Standards
KN	Potassium Niobate
KNN	Potassium Sodium Niobate
kHz	Kilohertz

k _p	Coupling Factor Coefficient
LN	Lanthanide
LN	Lithium Niobate
m	Meter
mm	Millimeter
μm	Micrometer
MHz	Megahertz
Mol%	Percent by Mol
MPB	Morphotopic Phase Boundary
n	Refractive Index
NIR	Near-Infrared
NLO	Non-Linear Optical
nm	Nanometer
NN	Sodium Niobate
Р 🦉	Polarization
Ps	Spontaneous Polarization
Pr	Remnant Polarization
pC/N	Picocoulomb per Newton
PL	Photoluminescence
PLZT	Lead Zirconate Titanate
PMN	Lead Manganese Niobate
PT	Lead Titanate
PZT	Lead Zirconate Titanate
RE Copyr	Rare Earth by Chiang Mai University
s All	Second minuet
SHG	Second Harmonic Generation
T _C	Curie Temperature
T _c	Crystallization Temperature
Tg	Glass Transition Temperature
T _x	Onset of Crystallization Temperature
T _m	Melting Temperature
TFGC	Transparent Ferroelectric Glass-ceramics

- TGG Template Grain Growth
- UV Ultraviolet
- VIS Visible
- Wt% Percent by Weight
- XRD X-ray Diffractometer

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF SYMBOLS

Alpha, Absoption Coefficient α λ Lamda, Wavelength θ Theta, Degree Raman Streching Mode, Frequency ν 210423 Dielectric Loss 40 tanδ Dielectric constant εr ΔT **Glass Stability** TRAG MAI U ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

ข้อความแห่งการริเริ่ม

- งานวิจัยนี้ได้นำเสนอแก้วเซรามิกระบบใหม่จากสารเฟร์โรอิเล็กทริกโพแทสเซียมโซเดียม ในโอเบตที่เจือแร่หายากชนิดเออร์เบียมไดออกไซด์ เพื่อให้ได้แก้วเซรามิกที่มีคุณสมบัติไฟฟ้า เชิงแสงที่นำไปประยุกต์ใช้เป็นซับสเตรตโปร่งแสงและสามารถเพิ่มประสิทธิภาพเซลล์ แสงอาทิตย์ได้
- นอกจากนี้ในงานวิจัย ยังได้นำเสนอวิธีการปรับปรุงการเตรียมแก้วเซรามิกที่เรียกว่าวิธีอินคอร์-ปอเรชั่นในขั้นตอนก่อนการหลอมแก้ว เนื่องจากเป็นที่ทราบกันดีว่ากระบวนการเตรียมแก้ว เซรามิกมักประสบปัญหาการผันผวนขององก์ประกอบของสารตัวเติมในระหว่างกระบวนการ หลอมเสมอ ทำให้งานนี้สามารถปรับปรุงแก้วเซรามิกให้มีองก์ประกอบที่ต้องการได้

STATEMENT OF ORIGINALITY

- This dissertation represent the new system of ferroelectric glass-ceramic potassium sodium niobate with erbium dioxide rare earth dopants, in order to increase electrooptic property for transparent substrate, lead to the increase of solar cell efficiency.
- 2) In addition, this research also offers an alternative method as the incorporation method in glass-melting step. It is well known that in glass melting step always suffered from composition fluctuation of additives during melting at high temperature. Hence, the incorporation method is useful for create glass-ceramics with desired phase composition.

