CONTENTS

Acknowledgements	d
Abstract in Thai	f
Abstract in English	i
List of Tables	р
List of Figures	r
List of Abbreviations	х
List of Symbols	Z
Statement of Originality in Thai	bb
Statement of Originality in English	cc
Chapter 1 Introduction and Research Objective	1
1.1 Introduction SUM19101010101010101	1
1.2 Research objectives	2
1.3 Usefulness of the research	3
Chapter 2 Theoretical Background	4
2.1 Transparent conducting films	4
2.1.1 P-type semiconductor	5
2.1.2 N-type semiconductor	6

2.2	Oxide	based materials	8
	2.2.1	Indium tin oxide films	10
	2.2.2	Zinc oxide films	13
2.3	Ultrasor	nic spray pyrolysis	16
2.4	Litera	ture Review	20
	2.4.1	Indium tin oxide	20
	2.4.2	Zinc oxide	22
Chapter	3 Exper	imental Procedures	24
3 1	Film	preparation	24
5.1	3 1 1	Substrate Cleaning	24 24
	2.1.2		24
	5.1.2	rinn preparation	23
3.2	Film (Characterization	26
	3.2.1	X-ray diffraction (XRD) method	26
	3.2.2	Scanning electron microscope (SEM)	28
	3.2.3	Atomic force microscope (AFM)	31
	3.2.4	UV visible spectrophotometer	33
	3.2.5	Four point probe technique	35
Chapter -	4 Resul	ts and Discussion (Part I): Indium Tin Oxide (ITO) Films	37
4.1	Film	preparation มหาวิทยาลัยเชียงใหม	37
	4.1.1	Starting solution preparation	37
	4.1.2	Spray coating SPESE PVE C	38
4.2	Resul	ts and discussion	38
	4.2.1	Thickness	39
	4.2.2	Crystal structure	40
	4.2.3	Morphology	42
	4.2.4	Optical properties	46
	4.2.5	Electrical properties	49

Chapter 5	Results and Discussion (Part II): ITO/Au/ITO Multilayer Films	51
5.1	Film preparation	51
	5.1.1 Starting solution preparation	51
	5.1.2 Film deposition	51
5.2	Results and discussion	53
	5.2.1 Thickness	54
	5.2.2 Crystal structure	55
	5.2.3 Morphology	57
	5.2.4 Optical properties	62
	5.2.5 Electrical properties	65
	5.2.6 Performance	66
		C 0
Chapter 6	Results and Discussion (Part III): Mg Doped ZnO Films (I)	68
6.1	Film preparation	68
	6.1.1 Starting solution preparation	68
	6.1.2 Spray coating	69
6.2	Results and discussion	70
	6.2.1 Thickness	70
	6.2.2 Crystal structure	73
	6.2.3 Morphology	76
	6.2.4 Optical properties	87
	6.2.5 Electrical properties	93
Chapter 7	Results and Discussion (Part IV): Mg Doped ZnO Films (II)	95
7.1	Film preparation	95
	7.1.1 Starting solution preparation	95
	7.1.2 Spray coating	96
7.2	Results and discussion	96
	7.2.1 Thickness	97
	7.2.2 Crystal structure	98

	7.2.3	Morphology	100
	7.2.4	Optical properties	103
	7.2.5	Electrical properties	106
Chapter 8	Result	s and Discussion (Part V): In-Mg Codoped ZnO Films	107
8.1	Film p	preparation	107
	7.1.1	Starting solution preparation	107
	7.1.2	Spray coating	107
8.2	Result	s and discussion	108
	8.2.1	Thickness	109
	8.2.2	Crystal structure	110
	8.2.3	Morphology	112
	8.2.4	Optical properties	115
	8.2.5	Electrical properties	117
Chapter 9	Conclu	usions	119
References	5	EL LELZA	121
Curriculun	n Vitae	The season of the	133
		MAI UNIVERS	
	ลิขส	สิทธิมหาวิทยาลัยเชียงไหม	
	Cop	yright [©] by Chiang Mai University	
	Αİ	l rights reserved	

LIST OF TABLES

2.1	Type of oxide based materials, dopant elements	8
	and n-type TCO films	
2.2	The properties of TCO films achieved by different	17
	deposition techniques	
4.1	Specifications of materials and compositions of the	37
	starting solutions for ITO films used in this study	
4.2	Thickness of ITO films with different Sn concentrations	40
4.3	Crystallite sizes of (222) and (400) planes of ITO	41
	films with different Sn concentrations	
5.1	Thicknesses of ITO/Au/ITO multilayer films with	55
	different Au intermediate layer thicknesses	
5.2	Crystallite size of (222) and (400) plane of ITO/Au/ITO	56
	multilayer films with different Au intermediate layer	
S	thicknesses	
5.3	The transmission coefficient at wavelength of 550 nm	66
C	of ITO/Au/ITO multilayer films with difference Au	
A	intermediate layer thicknesses	
6.1	Specifications materials and compositions of the starting	69
	solutions for Mg doped ZnO films used in this study	
6.2	Thickness of Mg doped ZnO films with different Mg	73
	concentrations deposited on a glass substrates heated	
	at 350-450°C	
	 2.1 2.2 4.1 4.2 4.3 5.1 5.2 5.3 6.1 6.2 	 2.1 Type of oxide based materials, dopant elements and n-type TCO films 2.2 The properties of TCO films achieved by different deposition techniques 4.1 Specifications of materials and compositions of the starting solutions for ITO films used in this study 4.2 Thickness of ITO films with different Sn concentrations 4.3 Crystallite sizes of (222) and (400) planes of ITO films with different Sn concentrations 5.1 Thicknesses of ITO/Au/ITO multilayer films with different Au intermediate layer thicknesses 5.2 Crystallite size of (222) and (400) plane of ITO/Au/ITO multilayer films with different Au intermediate layer thicknesses 5.3 The transmission coefficient at wavelength of 550 nm of ITO/Au/ITO multilayer films with difference Au intermediate layer thicknesses 6.1 Specifications materials and compositions of the starting solutions for Mg doped ZnO films used in this study 6.2 Thickness of Mg doped ZnO films with different Mg concentrations deposited on a glass substrates heated at 350-450°C

Table	6.3	Crystallite size of (002) and (101) plane of Mg doped	76
		ZnO films with different Mg concentrations deposited	
		on a glass substrates heated at 350-450°C	
Table	7.1	Specifications of materials and compositions of the	96
		starting solutions for Mg doped ZnO films used in this study	
Table	7.2	Thickness of Mg doped ZnO films with different Mg	98
		concentrations	
Table	7.3	Crystallite size of (002) and (101) plane of Mg doped	99
		ZnO films with different Mg concentration	
Table	8.1	Specifications materials and compositions of the starting	108
		solutions of In-Mg codoped ZnO films used in this study	
Table	8.2	Thickness of In-Mg codoped ZnO films different In	110
		concentrations	
Table	8.3	Crystallite size of (002) and (101) planes of In-Mg	111
		codoped ZnO with different In concentration	
		THAT UNIVERSITY	

LIST OF FIGURES

Figure	2.1	Phase space of binary oxides of TCO films	5
Figure	2.2	The schematic of a Si crystal lattice doped with B impurity atom	5
Figure	2.3	The schematic of band diagram of p-type semiconductor	6
Figure	2.4	The schematic of a Si crystal lattice doped with As impurity atom	7
Figure	2.5	The schematic of band diagram of p-type semiconductor	7
Figure	2.6	In ₂ O ₃ crystal structure: cubic (bixbyite-type) (a) and hexagonal	10
		(corundum-type) (b)	
Figure	2.7	Cation sites: b site (a) and d site (b) in bixbyite type	11
Figure	2.8	Dependence of resistivity, carrier density, and Hall	12
		mobility on SnO ₂ content for the deposited ITO films.	
		The substrate deposition tempera-ture was kept at 250 $^{\circ}$ C	
		and the oxygen pressure was 10 mTorr during deposition	
Figure	2.9	Typical transmission, reflectance, and absorption spectra	13
		for the ITO film grown at 200 °C and 10 mTorr of oxygen.	
	8	The film thickness was 300 nm	
Figure	2.10	ZnO crystal structure: cubic rocksalt (a), cubic zinc blend (b)	14
	C	and hexagonal wurtzite (c) when shaded gray and black sphere	
	Α	denoted Zn and O atom, respectively	
Figure	2.11	The hexagonal wurtzite structure model of ZnO.	14
		The tetrahedral coordination of Zn-O is shown	
Figure	2.12	Carrier density, mobility (a) and resistivity (b) of undoped	15
		ZnO film with different oxygen pressure	
Figure	2.13	Typical transmittance, reflectance, and absorbance spectra	16
		for the Al doped ZnO film	
Figure	2.14	The mechanisms of particle formation and decomposition reaction	19

Figure	2.15	Schematic representations of spray pyrolysis deposition apparatus	19
Figure	2.16	The dispersion of particle in droplet of ultrasonic nozzle	20
		and air spray nozzle	
Figure	3.1	Schematic diagram of the substrate cleaning	24
Figure	3.2	Schematic diagram of film coating	25
Figure	3.3	Scheme of the X-ray diffraction geometry	27
Figure	3.4	XRD pattern of ZnO powder	27
Figure	3.5	X-ray diffractometer (PANalytical, X' pert Pro MPD)	28
Figure	3.6	Schematic diagram of SEM	29
Figure	3.7	Electrons produced in SEM	29
Figure	3.8	Scanning electron microscope	30
Figure	3.9	The Image of AFM probe	31
Figure	3.10	Principle of AFM	32
Figure	3.11	Digital Instruments Nanoscope III Scanning Probe Microscope	32
Figure	3.12	Electromagnetic spectrum	33
Figure	3.13	Schematic diagram of the absorption process	33
Figure	3.14	PerkinElmer Lambda 35 UV/VIS Spectrophotometer	35
Figure	3.15	Four point probe technique	35
Figure	3.16	Hewlett Packard 3458A multimeter	36
Figure	4.1	Schematic diagram of ITO film preparation	38
Figure	4.2	Images of ITO films with different Sn concentrations deposited on glass substrates	39
Figure	4.3	SEM cross section microstructures of ITO films with	39
U	А	different Sn concentrations deposited on glass substrates	
Figure	4.4	The XRD patterns of ITO films with different Sn concentrations	41
Figure	4.5	SEM images of ITO films with different Sn concentrations	43
Figure	4.6	AFM images of top ITO films with different Sn concentrations	44
Figure	4.7	Average grain size and surface roughness of ITO films	46
		with different Sn concentrations	
Figure	4.8	Transmittance (a) and absorbance (b) spectra of ITO films	47
		with different Sn concentrations	

Figure	4.9	The $(\alpha h \nu)^2$ versus $h \nu$ plots (a) and the band gap of ITO films	48
		with different Sn concentrations	
Figure	4.10	The sheet resistance and the resistivity of ITO films with	50
		different Sn concentrations	
Figure	5.1	Schematic diagram of ITO/Au/ITO multilayer film preparation	52
Figure	5.2	Image of ITO/Au/ITO multilayers films with	53
		different Au intermediate layer thicknesses	
Figure	5.3	The cross section microstructures of ITO/Au/ITO multilayers	54
		films with different Au intermediate layer thicknesses	
Figure	5.4	XRD patterns of ITO/Au/ITO multilayer film with different	56
		Au intermediate layer thicknesses	
Figure	5.5	SEM images of ITO/Au/ITO multilayer films with different	57
		Au intermediate layer thicknesses	
Figure	5.6	AFM images of ITO/Au/ITO multilayer films with different	58
		Au intermediate layer thicknesses	
Figure	5.7	Average grain size and surface roughness of ITO/Au/ITO	59
		multilayer films with different Au intermediate layer thicknesses	
Figure	5.8	AFM images of Au layer with different Au layer thicknesses	60
Figure	5.9	Average grain sizes and surface roughness of Au layer	62
		with different Au layer thicknesses	
Figure	5.10	Transmittance (a) and absorbance (b) spectra of ITO/Au/ITO	63
	a	multilayer films with different Au intermediate layer thicknesses	
Figure	5.11	The $(\alpha h v)^2$ versus $h v$ plots (a) and the band gap of ITO/Au/ITO	64
	٨	multilayer films with different Au intermediate layer thicknesses	
Figure	5.12	The sheet resistance and the resistivity of ITO/Au/ITO	65
		multilayer films with difference Au intermediate layer thickness	
Figure	5.13	The figure of merit of ITO/Au/ITO multilayer films with	67
		different Au intermediate layer thicknesses	
Figure	6.1	Schematic diagram of Mg doped ZnO film preparation	69

Figure	6.2	The appearance of Mg doped ZnO films with different Mg	70
		concentrations deposited on glass substrates heated at	
		350-450°C	
Figure	6.3	SEM cross section microstructures of Mg doped ZnO films	71
		with different Mg concentrations deposited on glass substrates	
		heated at 350°C (a), 400°C (b) and 450°C (c)	
Figure	6.4	The XRD patterns of Mg doped ZnO films with different	75
		Mg concentrations on glass substrate deposited on a glass	
		substrates heated at 350° C (a), 400° C (b) and 450° C (c)	
Figure	6.5	Fracture surface of microscope glass substrate	75
Figure	6.6	SEM images of Mg doped ZnO films with different Mg	77
		concentrations deposited on a glass substrates heated at	
		350°C (a), 400°C (b) and 450°C (c)	
Figure	6.7	AFM images of Mg doped ZnO films with different Mg	80
		concentrations deposited on a glass substrates heated at	
		350°C (a), 400°C (b) and 450°C (c)	
Figure	6.8	Average grain size and surface roughness of	86
		Mg doped ZnO films with different Mg concentrations	
		deposited on a glass substrates heated at 350 - 450°C	
Figure	6.9	Transmittance spectra of Mg doped ZnO with different	87
		Mg concentrations deposited on a glass substrates heated	
	ລ	at 350°C (a), 400°C (b) and 450°C (c)	
Figure	6.10	Absorbance spectra of Mg doped ZnO films with different	89
		Mg concentrations deposited on a glass substrates heated at	
	A	350°C (a), 400°C (b) and 450°C (c)	
Figure	6.11	The $(\alpha h v)^2$ versus $h v$ plots of Mg doped ZnO films with	91
		different Mg concentrations deposited on a glass substrates	
		heated at 350° C (a), 400° C (b) and 450° C (c) and band gap (d)	
		of these films	
Figure	6.12	Sheet resistance (a) and resistivity (b) of Mg doped ZnO films	93
		with different Mg concentrations deposited on a glass substrates	
		heated at 350-450°C	

Figure	7.1	The appearance of Mg doped ZnO films with different Mg	96
		concentrations	
Figure	7.2	The cross section microstructures of Mg doped ZnO films	97
		with different Mg concentrations	
Figure	7.3	The XRD patterns of Mg doped ZnO films with different	99
		Mg concentrations	
Figure	7.4	SEM images of Mg doped ZnO films with different Mg	100
		concentrations	
Figure	7.5	AFM images of Mg doped ZnO films with different Mg concentrations	101
Figure	7.6	Average grain size and surface roughness of Mg doped	103
		ZnO films with different Mg concentrations	
Figure	7.7	Transmittance (a) and absorbance (b) spectra of Mg doped	104
		ZnO films with different Mg concentrations	
Figure	7.8	The $(\alpha h v)^2$ versus $h v$ plots of Mg doped ZnO films with	105
		different Mg concentrations (a) and band gap (d) of these films	
Figure	7.9	The sheet resistance and the resistivity of of Mg doped	106
		ZnO films with different Mg concentrations	
Figure	8.1	The appearance of In-Mg codoped ZnO films with different	108
		In concentrations	
Figure	8.2	The cross section microstructures of In-Mg codoped ZnO	109
	ล	films with different In concentrations	
Figure	8.3	The XRD patterns of In-Mg codoped ZnO films with	111
	Δ	different In concentrations	
Figure	8.4	SEM images of Mg doped ZnO films with different In	112
		concentrations	
Figure	8.5	AFM images of In-Mg codoped ZnO with different In	113
		concentrations	
Figure	8.6	Average grain size and surface roughness of In-Mg doped	115
		ZnO films with different In concentrations	
Figure	8.7	Transmittance (a) and absorbance (b) spectra of In-Mg	116
		cpodoped ZnO films with different In concentrations	

Figure	8.8	The $(\alpha h v)^2$ versus $h v$ plots of In-Mg codoped ZnO with	117
		different Mg concentrations (a) and band gap (b) of these films	
Figure	8.9	The sheet resistance and the resistivity of of In-Mg codoped	118
		$7n\Omega$ with different In concentration	

LIST OF ABBREVIATIONS

a-Si:H	Hydrogenated amorphous silicon
μc-Si:H	Microcrystalline silicon
ТСО	Transparent conductive oxide
In ₂ O ₃	Indium oxide
SnO ₂	Tin oxide
CdO	Cadmium oxide
ZnO	Zinc oxide
ITO Q	Tin doped indium oxide or indium tin oxide
ITiO	Titanium doped indium oxide
ATO	Antimony doped tin oxide
FTO	Fluorine doped tin oxide
CdO: Sn	Tin doped cadmium oxide
Cd _{O:} Al	Aluminium doped cadmium oxide
AZO	Aluminium doped zinc oxide
GZO	Gallium doped zinc oxide
CuAlO ₂	Copper aluminium oxide
CuScO ₂	Copper scandium oxide
CuYO ₂	Copper yttrium oxide
CuInO ₂ opyright	Copper indium oxide
CuGaO ₂	Copper gallium oxide
CuCrO ₂	Copper chromium oxide
Ca ₂ Al _{1.5} Fe _{0.5} SiO ₇	Calcium aluminium iron silicate
CVD	Chemical vapor deposition
MBE	Molecular beam epitaxy
PLD	Pulsed laser deposition
RF	Radio frequency
DC	Direct current

HCl	Hydrochloric
DI	Deionized
XRD	X-ray diffraction
JCPDS	Joint Committee on Powder Diffraction Standards
FWHM	Full width at half maximum
SEM	Scanning electron microscope
BSEs	Backscattered electron
AFM	Atomic force microscope
UV	Ultraviolet
VIS	Visible
SD	Standard deviation

LIST OF SYMBOLS

Ω	Ohm
V	Volt
S	Second
min	Minute
h	Hour
Hz	Hertz
s S	Siemens
К	Kelvin
°C	Degree Celsius
g 785	gram
cm	Centimeter
nm	Nanometer
μm	Micrometer
Å	Angstrom
Bg	Energy band gap or band gap (eV)
σ	Conductivity (S)
^ρ ລິມສິກຄົ້າ	Resistivity (Ω .cm)
R _s	Sheet resistance (Ω /sq)
N Copyright	Carrier concentration (cm ⁻³)
µ All ri	Hall mobility (cm ² /Vs)
А	Absorbance
Т	Transmittance
R	Reflectance
α	Absorption coefficient
Ι	Transmitted radiation
Io	Incident radiation
d	Spacing of planes of atom

ข้อความแห่งการริเริ่ม

- วิทยานิพนธ์นี้ได้นำเสนอการผลิตฟิล์มนำไฟฟ้าแบบโปร่งใส ด้วยวิธีการที่ใช้ต้นทุนต่ำและ สึกษาสมบัติต่างๆ ได้แก่ ความเป็นผลึก โครงสร้างทางจุลภาค สมบัติทางแสง และสมบัติ ทางไฟฟ้าของฟิล์มนำไฟฟ้าแบบโปร่งแสงนี้
- เพื่อพัฒนาประสิทธิภาพและลดต้นทุนการผลิตฟิล์มนำไฟฟ้าแบบโปร่งใส สำหรับประยุกต์ ใช้งานด้านเซลล์แสงอาทิตย์

STATEMENTS OF ORIGINALITY

- 1. This thesis presents the fabrication of transparent conducting films with low cost process and studies the properties as the crystal structure, microstructure, optical properties and electrical properties of these films.
- 2. In order to develop the performance and reduce the cost of production of the transparent conducting films for using in solar cell application.

