
CHAPTER 2

Preliminaries

In this chapter, the overview basic concepts, notations and mathematical definitions

of linear systems and NNs with time delays are given. Also, the underlying concepts

of stability and synchronization, important definitions, lemma, propositions and results,

which will be used in later chapters, are provided.

2.1 Notations

We give some important notations will be used throughout this thesis:

R+ denote the set of all non-negative real numbers;

Rn denote the n-dimensional Euclidean space;

Matrix M is positive definite (M > 0) if xTMx > 0 for all x ∈ Rn, x ̸= 0;

Matrix M is semi-positive definite (M ≥ 0) if xTMx ≥ 0 for all x ∈ Rn;

Matrix M is negative definite (M < 0) if xTMx < 0 for all x ∈ Rn, x ̸= 0;

Matrix M is semi-negative definite (M ≤ 0) if xTMx ≤ 0 for all x ∈ Rn;

M > 0 (M ≥ 0) denote the square symmetric positive (semi-) definite matrix;

M < 0 (M ≤ 0) denote the square symmetric negative (semi-) definite matrix;

M > N (M ≥ N) denote the M −N matrix is square symmetric positive (semi-) definite

matrix;

M < N (M ≤ N) denote the M −N matrix is square symmetric negative (semi-) definite

matrix;

Mn×m denote the space of all (n×m) matrices;

AT denotes the transpose of the vector/matrix A;

A−1 denote the inverse of a non-singular matrix A;

A is symmetric if A = AT ;

I denotes the identity matrix;

λ(A) denotes the set of all eigenvalues of A;

λmax(A) = max {Re λ : λ ∈ λ(A)},

λmin(A) = min {Re λ : λ ∈ λ(A)};

⟨x, y⟩ or x⊤y− the scalar product of two vector x, y ;
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∥x∥ denotes the Euclidean vector norm of x;

∥ · ∥cl = sup
−h≤θ≤0

{∥x(t+ θ)∥, ∥ẋ(t+ θ)∥};

L2([0, t],Rm) denotes the set of all the Rm-valued square integrable functions on [0, t];

C([0, t],Rn) denotes the set of all Rn-valued continuous functions on [0, t];

∥x∥c denotes the continuous norm max
a≤ξ≤b

∥ϕ(ξ)∥ for ϕ ∈ C([0, t],Rn);

xt = {x(t+ s) : s ∈ [−h, 0]}, ∥xt∥ = sup
s∈[−h,0]

∥x(t+ s)∥;

⊗ denote the Kronecker product.

2.2 Model Formulation and Some Preliminaries

2.2.1 Neural networks

In this section, an isolated NNs (the ith) with constant delay will be consid-

ered, which can be described by the following differential equation:

ẋi(t) = −Cxi(t) +Af(xi(t)) +Bf(xi(t− τ)) + I(t), (2.1)

where xi(t) = (xi1(t), xi2(t), . . . , xin(t))
T ∈ Rn is the state vector of the ith delayed

neural network. In each neural network C = diag(c1, c2, . . . , cn) > 0 is a diagonal ma-

trix with cj representing the rate with which the jth neuron will reset its potential to

the resting state in isolation, A = (aij)n×n and B = (bij)n×n denote the connection

weight and the discretely delayed connection weight matrices, respectively, f(xi(t)) =

(f1(xi1(t)), f2(xi2(t)), . . . , fn(xin(t)))
T denote the neuron activation function vector, con-

stant τ > 0 stands for the discrete time delay, and I(t) = (I1(t), I2(t), . . . , In(t))
T ∈ Rn is

an external input vector.

The initial conditions of the above ith delayed NNs (2.1) are always assumed

to be:

xij(θ) = ϕij(θ) ∈ C([−τ, 0],R), ∀j = 1, 2, ..., n, (2.2)

in which ϕij(θ), (j = 1, 2, ..., n) are continuous functions.

Next, the configuration of an array of coupled NNs is formulated. We consider

an array of linearly delay coupled system consisting of N identical delayed NNs with each

network being an n-dimensional dynamical system as (2.1). The dynamical behavior of

the array of coupled systems can be described by the following differential equations:
ẋi(t) = −Cxi(t) +Af(xi(t)) +Bf(xi(t− τ)) + I(t)

+
N∑
j=1

gijΓxj(t), i = 1, 2, ..., N,
(2.3)
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where xi(t) = (xi1(t), xi2(t), . . . , xin(t))
T ∈ Rn is the state vector of the ith delayed

neural network. Γ = diag(γ1, γ2, . . . , γn) ∈ Rn×n is the constant inner-coupling matrix

of nodes, which describe the individual coupling between networks. G = (gij)N×N is the

outer-coupling configuration matrix of the system.

For the coupling configuration matrix G and the activation functions in the

NNs (2.3), we have the following conditions:

1. The coupling configuration matrix G = (gij)N×N is symmetric G = GT ,

and satisfies:
N∑
j=1

gij =

N∑
j=1

gji = 0, i = 1, 2, . . . , N.

2. fr(·)(r = 1, 2, . . . , n) are Lipschitz continuous, i.e., there exist constants

lr > 0, (r = 1, 2, . . . , n) such that

|fr(x1)− fr(x2)| ≤ lr|x1 − x2|, r = 1, 2, . . . , n,

where x1, x2 ∈ R.

For convenience, we denote L = diag(l1, l2, . . . , ln).

Example 2.2.1. Consider the system (2.1) is presented in [10], where x(t) = [x1(t), x2(t)]
T

is the state vector of the network. f(xi(t)) = 0.5(|xi+1| − |xi− 1|) is the activation func-

tions. I(t) = [0, 0]T is an external input vector. τ = 0.95 is constant delay and the other

parameters are as follows:

C =

 1 0

0 1

 , A =

 1 + π
4 20

0.1 1 + π
4

 , B =

 −1.3π
√
2

4 0.1

0.1 −1.3π
√
2

4

 ,

which is described by the following differential equations: ẋ1(t) = −x1(t) + 1.79f(x1(t)) + 20f(x2(t))− 1.44f(x1(t− 0.95)) + 0.1f(x2(t− 0.95))

ẋ2(t) = −x2(t) + 0.1f(x1(t)) + 1.79f(x2(t)) + 0.1f(x1(t− 0.95))− 1.44f(x2(t− 0.95)).

Obviously, the activation function f is globally Lipschitz continuous with L = diag(1, 1).

The chaotic behavior of neural network (2.1) shown in Fig. 1.1, with the initial condition

x(t) = (0.1, 0.1)T , t ∈ [−1, 0].

Next, consider a dynamical system (2.3) consisting of three linearly coupled

identical models. Let the outer-coupling and the inner-coupling configuration matrix are

as follows, respectively.

G =


−8 2 6

2 −4 2

6 2 −8

 , Γ =

 1 0

0 1

 ,
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Figure 2.1: Chaotic trajectory of NNs (2.1) with initial condition x(t) = (0.1, 0.1)T , t ∈
[−1, 0].

Then, the coupled NNs can be described by the following differential equations:

ẋ11(t) = 1.79f(x11(t)) + 20f(x12(t))− 1.44f(x11(t− 0.95)) + 0.1f(x12(t− 0.95))

−9x11(t) + 2x21(t) + 6x31(t),

ẋ12(t) = 0.1f(x11(t)) + 1.79f(x12(t)) + 0.1f(x11(t− 0.95))− 1.44f(x12(t− 0.95))

−9x12(t) + 2x22(t) + 6x32(t),

ẋ21(t) = 1.79f(x21(t)) + 20f(x22(t))− 1.44f(x21(t− 0.95)) + 0.1f(x22(t− 0.95))

−5x21(t) + 2x11(t) + 2x31(t),

ẋ22(t) = 0.1f(x21(t)) + 1.79f(x22(t)) + 0.1f(x21(t− 0.95))− 1.44f(x22(t− 0.95))

−5x22(t) + 2x12(t) + 2x32(t),

ẋ31(t) = 1.79f(x31(t)) + 20f(x32(t))− 1.44f(x31(t− 0.95)) + 0.1f(x32(t− 0.95))

−9x31(t) + 6x11(t) + 2x21(t),

ẋ32(t) = 0.1f(x31(t)) + 1.79f(x32(t)) + 0.1f(x31(t− 0.95))− 1.44f(x32(t− 0.95))

−9x32(t) + 6x12(t) + 2x22(t).

2.2.2 Controller

• Sampled-data feedback control

We consider the synchronization for general complex dynamical networks
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with control denoted by the form:

ẋi(t) = f(xi(t)) + c

N∑
j=1

gijAxj(t− τ(t)) + ui(t), i = 1, 2, ..., N, (2.4)

where xi(t) ∈ Rn and ui(t) ∈ Rn are the state variable and the control input of the node

i, respectively. f : Rn −→ Rn is a continuous vector-valued function. The scalar τ(t)

denotes the time-varying delay satisfying

0 ≤ τ(t) ≤ µ, τ̇(t) ≤ ν,

where µ and ν are known positive constants. c > 0 is the coupling strength. A =

(aij)n×n ∈ Rn×n is a constant inner-coupling matrix of the nodes. G = (gij)N×N is

the outer-coupling matrix of the network, where gij is defined as follows: if there is a

connection between node i and node j(j ̸= i), then gij = gji = 1; otherwise, gij = gji = 0,

and the diagonal elements of matrix G are defined by

gii = −
∑N

j=1, j ̸=i
gij = −

∑N

j=1, j ̸=i
gji , i = 1, 2, . . . , N.

Let the synchronization error of system (2.4) be ei(t) = xi(t)−s(t) where s(t) ∈ Rn is the

state trajectory of the unforced isolate node ṡ(t) = f(s(t)). Then, synchronization error

dynamics of complex network is given by:

ėi(t) = f̄(ei(t)) + c
N∑
j=1

gijAej(t− τ(t)) + ui(t), i = 1, 2, ..., N, (2.5)

where f̄(ei(t)) = f(xi(t))− f(s(t)).

The following sampled-data feedback controllers are adopted:

ui(t) = Kiei(tk), tk ≤ t < tk+1,

where Ki is feedback controllers to be determined. e(tk) is discrete measurement of e(t)

at the sampling instant tk, and tk satisfies the following conditions:

0 = t0 < t1 < t2 · · · < tk < · · · < lim
k−→+∞

tk = +∞.

It is assumed that tk+1 − tk ≤ ρ for k ≥ 0 where ρ > 0 is a positive scalar and the largest

sampling interval, i.e., the sampling interval is bounded. Define a sawtooth function

d(t) : [0,∞) → R as follows:

d(t) = t− tk, tk ≤ t < tk+1.
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It is easily found that

0 < d(t) < ρ,

and the sampled-data state feedback controllers takes the following form

ui(t) = Kiei(t− d(t)).

Consequently, the error system of the complex network is obtained as follows:

ėi(t) = f̄(ei(t)) + c
N∑
j=1

gijAej(t− τ(t)) +Kiei(t− d(t)), i = 1, 2, ..., N. (2.6)

• Intermittent feedback control

We present the synchronization by the intermittent feedback method. Con-

sider a class of chaotic master (driver) systems: ẋ(t) = Ax(t) +Bf(x(t)), t > 0,

x(t0) = x0.
(2.7)

In using intermittent feedback controls to synchronize system (2.7), the corresponding

slave (response) system is designed as ẏ(t) = Ay(t) +Bf(y(t)) + k(t)(x(t)− y(t)), t > 0,

y(t0) = y0.
(2.8)

where x, y ∈ Rn are the state vectors of systems (2.7) and (2.8), respectively. A,B ∈

Rn×n.f : Rn → Rn are nonlinear functions. We assume that f : Rn −→ Rn is a Lipschitz

continuous function: there exists a positive constant L such that, for all x, y ∈ Rn,

∥ f(x)− f(y) ∥≤ L ∥ x− y ∥,

and k(t) is the intermittent control gain defined by:

k(t) =

 K, t0 + nω ≤ t ≤ t0 + nω + δ

0, t0 + nω + δ < t ≤ t0 + (n+ 1)ω
,

where K ∈ Rn×n is a constant control gain. ω > 0 is the control period. And δ > 0 is the

control width. This controller, our goal is to design suitable δ, ω and K such that system

(2.8) synchronizes system (2.7).

Let e(t) = y(t) − x(t) be the synchronization error between the states of

the drive system (2.7) and the response system (2.8). Then, for t ∈ (0,∞), we have the

following error system:

ė(t) =

 Ae(t) +B(f(y(t))− f(x(t)))−Ke(t), t0 + nω ≤ t ≤ t0 + nω + δ

Ae(t) +B(f(y(t))− f(x(t))), t0 + nω + δ < t ≤ t0 + (n+ 1)ω.
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2.3 Definitions and Lemmas

Consider a dynamical system described by

ẋ(t) = f(t, x(t)) (2.9)

where x ∈ Rn and f is a vector having components fi(t, x1, ..., xn), i = 1, 2, ..., n. We

shall assume that the fi are continuous and satisfy standard conditions, such as having

continuous first partial derivatives so that the solution of (2.9) exists and is unique for

the given initial conditions. If fi do not depend explicitly on t, (2.9) is called autonomous

(otherwise, nonautonomous). If f(t, c) = 0 for all t, where c is some constant vector, then

it follows at once from (2.9) that if x(t0) = c then x(t) = c for all t ≥ t0. Thus solutions

starting at c remain there, and c is said to be an equilibrium or critical point. Clearly,

by introducing new variables x́i = xi − ci we can arrange for the equilibrium point to

be transferred to the origin; we shall assume that this has been done for any equilibrium

point under consideration (there may well be several for a given system (2.9)) so that we

then have f(t, 0) = 0, t ≥ t0.

2.3.1 Autonomous systems

Consider the autonomous system

ẋ = f(x) (2.10)

where f : D → Rn is locally Lipschitz map from a domain D ⊂ Rn into Rn. We shall

always assume that f(x) satisfies f(0) = 0, and study stability of the origin x = 0.

Definition 2.3.1. [20]: The equilibrium point x = 0 of (2.10) is

(i) stable if for each ϵ > 0, there is δ = δ(ϵ) > 0 such that

∥x(0)∥ < δ ⇒ ∥x∥ < ϵ, ∀t ≥ 0,

(ii) unstable if it is not stable, that is, there exists ε > 0 such that for every δ > 0

there exist an x(0) with ∥x(0)∥ < δ so that ∥x(t1)∥ ≥ ε for some t1 > 0. If this

holds for every x(0) in ∥x(0)∥ < δ the equilibrium is completely unstable.

(iii) asymptotically stable if it is stable and δ can be chosen such that

∥x(0)∥ < δ ⇒ lim
t→∞

x(t) = 0.
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Definition 2.3.2. [20]: A function V (·) : Rn → R is said to be Lyapunov function if it

satisfies the following:

1. V (x) and all its partial derivatives
∂V

∂xi
are continuous.

2. V (x) is positive definite, i.e. V (0) = 0 and V (x) > 0 for x ̸= 0 in some

neighbourhood ∥ x ∥≤ k of the origin.

3. The derivative of V with respect to (2.10), namely

V̇ =
∂V

∂x1
ẋ1 +

∂V

∂x2
ẋ2 + ...+

∂V

∂xn
ẋn

=
∂V

∂x1
f1 +

∂V

∂x2
f2 + ...+

∂V

∂xn
fn (2.11)

is negative semidefinite i.e. V̇ (0) = 0, and for all x satisfy ∥x∥ ≤ k, ˙V (x) ≤ 0.

Theorem 2.3.1. [20]: Let x = 0 be an equilibrium point for (2.10) and D ⊂ Rn be a

domain containing x = 0. Let V (x) : D → R be a continuously differentiable function,

such that

V (0) = 0 and V (x) > 0 in D − {0},

V̇ (x) ≤ 0 in D.

Then, x = 0 is stable. Moreover, if

V̇ (x) < 0 in D − {0},

then x = 0 is asymptotically stable.

Theorem 2.3.2. [20]: Let x = 0 be an equilibrium point for (2.10). Let V (x) : Rn → R

be a continuously differentiable function, such that

V (0) = 0 and V (x) > 0, ∀x ̸= 0,

∥x∥ → ∞ ⇒ V (x) → ∞,

V̇ (x) < 0, ∀x ̸= 0,

then x = 0 is globally asymptotically stable.

Theorem 2.3.3. [20]: Let x = 0 be an equilibrium point for (2.10) and f : D → Rn is

continuously differentiable and D is a neighborhood of the origin. Let

A =
∂f

∂x
(x) |x=0 .

Then,

1. The origin is asymptotically stable if Re(λi) < 0 for all eigenvalues of A.

2. The origin is unstable if Re(λi) > 0 for one or more of the eigenvalues of A.
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2.3.2 Nonautonomous systems

Consider the nonautonomous system

ẋ(t) = f(t, x(t)), x(t0) = x0, x ∈ Rn, t ∈ R+, (2.12)

where f : R+×D → Rn is piecewise continuous in t and locally Lipschitz in x on R+×Rn

and D ⊂ Rn is domain that contains the origin x = 0. The origin is an equilibrium point

for (2.12) if

f(t, 0) = 0, ∀t ≥ t0.

Definition 2.3.3. [20]: The equilibrium point x = 0 of the system (2.12) is

(i) stable if, for each ϵ > 0, there is δ = δ(ϵ, t0) > 0 such that

∥x(t0)∥ < δ ⇒ ∥x(t)∥ < ϵ, ∀t ≥ t0 ≥ 0, (2.13)

(ii) uniformly stable if, for each ϵ > 0, there is δ = δ(ϵ) > 0, independent of t0, such

that (2.20) is satisfied,

(iii) unstable if not stable,

(iv) asymptotically stable if it is stable and there is c = c(t0) > 0 such that x(t) → 0

as t → ∞, for all ∥x(t0)∥ < c,

(v) uniformly asymptotically stable if it is uniformly stable and there is c > 0,

independent of t0, such that for all ∥x(t0)∥ < c, x(t) → 0 as t → ∞, uniformly in t0,

for each ϵ > 0, there is T = T (ϵ) > 0 such that

∥x(t)∥ < ϵ, ∀t ≥ t0 + T (ϵ), ∀∥x(t0)| < c,

(vi) globally uniformly asymptotically stable if it is uniformly stable and, for each

pair of positive numbers ϵ and c, there is T = T (ϵ, c) > 0 such that

∥x(t)∥ < ϵ, ∀t ≥ t0 + T (ϵ, c), ∀∥x(t0)| < c.

Definition 2.3.4. [39]: The equilibrium point x = 0 of the system (2.12) is exponentially

stable if there exist three positive real constants ϵ,K and λ such that

∥x(t)∥ ≤ K∥x0∥e−λ(t−t0), ∀∥x0∥ < ϵ, t ≥ t0,

The largest constant λ which may be utilized in above inequality is called the rate of

convergence.
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Definition 2.3.5. [20]: A continuous function α : [0, a) → [0,∞] is said to belong to class

K if it is strictly increasing and α(0) = 0. It is said to belong class K∞ if a = ∞ and

α(r) → ∞ as r → ∞.

Example 2.3.4. [20]: We give some example for class K and class K∞ :

1. α(r) = tan−1 r is strictly increasing since α′(r) = 1
1+r2

> 0. It belong to class K,

but not to class K∞ since lim
r→∞

α(r) =
π

2
< ∞.

2. α(r) = rc, for any positive real number c, is strictly increasing since α′(r) = crc−1 >

0. Moreover, lim
r→∞

α(r) = ∞, thus, it belong to class K∞.

Definition 2.3.6. [20]: A continuous function β : [0, a)× [0,∞] → [0,∞] is said to belong

to class KL if, for each fixed s, the mapping β(r, s) belong to class K with respect to r

and, for each fixed r, the mapping β(r, s) is decreasing with respect to s and β(r, s) → 0

as s → ∞.

Example 2.3.5. [20]: We give some example for class KL :

1. β(r, s) = r
ksr+1 , for any positive real number k, is strictly increasing in r since

∂β

∂r
=

1

(ks+ 1)2
> 0

and strictly decreasing in s since

∂β

∂s
=

−kr2

(ks+ 1)2
< 0.

Moreover, β(r, s) → 0 as s → ∞. Hence, it belong to class KL.

Lemma 2.3.6. [20]: The equilibrium point x = 0 of (2.12) is

(1) uniformly stable if and only if there exist a class K function α(.) and a positive

constant c, independent of t0, such that

∥x(t)∥ ≤ α(∥x(t0)∥), ∀t ≥ t0 ≥ 0, ∀∥x(t0)∥ < c, (2.14)

(2) uniformly asymptotically stable if and only if there exist a class KL function β(., .)

and a positive constant c, independent of t0, such that

∥x(t)∥ ≤ β(∥x(t0)∥, t− t0), ∀t ≥ t0 ≥ 0, ∀∥x(t0)∥ < c, (2.15)

(3) globally uniformly asymptotically stable if and only if inequality (2.15) is satisfied

for any initial state x(t0).
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Definition 2.3.7. [20]: The equilibrium point x = 0 of (2.12) is exponentially stable if

inequality (2.15) is satisfied with

β(r, s) = kre−γs, k > 0, γ > 0

and is globally exponentially stable if this condition is satisfied for any initial state.

Definition 2.3.8. [32]: The function W (x) is said to be positive (negative) definite if

W (x) > 0(−W (x) > 0) and W (x) = 0 if and only if x = 0. The function W (x) is said to

be positive (negative) semi-definite if W (x) ≥ 0(−W (x) ≥ 0).

Definition 2.3.9. [32]: The function W (x) is said to be radially unbounded, positive

definite if W (x) is positive definite and W (x) → ∞ as ∥x∥ → ∞.

Let Bϵ be a ball of size ϵ around the origin,

Bϵ = {x ∈ Rn : ∥x∥ < ϵ}.

Definition 2.3.10. [38]: A function V (·) : R+×Rn → R is said to be Lyapunov function

if it satisfies the following:

(i) V (t, x) and all its partial derivatives
∂V

∂t
,
∂V

∂xi
are continuous for all i = 1, 2, 3, ..., n.

(ii) V (t, x) is positive definite function, i.e., V (0) = 0 and V (t, x) > 0, x ̸= 0, ∀x ∈ Bϵ.

(iii) The derivative of V (t, x) with respect to system (2.12), namely

V̇ (t, x) =
∂V

∂t
+

∂V

∂x1
ẋ1 +

∂V

∂x2
ẋ2 + ...+

∂V

∂xn
ẋn

=
∂V

∂t
+

∂V

∂x1
f1 +

∂V

∂x2
f2 + ...+

∂V

∂xn
fn. (2.16)

V̇ (t, x) is negative semi-definite i.e., V̇ (t, 0) = 0 and ∀x ∈ Bϵ, V̇ (t, x) ≤ 0.

Theorem 2.3.7. [20]: Let x = 0 be an equilibrium point for (2.12) and D ⊂ Rn be a

domain containing x = 0. Let V : R+ ×D → R be a continuously differentiable function,

such that

W1(x) ≤ V (t, x) ≤ W2(x), (2.17)

∂V

∂t
+

∂V

∂x
f(t, x) ≤ −W3(x) (2.18)

∀t ≥ t0 ≥ 0, ∀x ∈ D where W1(x), W2(x) and W3(x) are continuous positive definite

functions on D. Then, x = 0 is uniformly asymptotically stable.
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Corollary 2.3.8. [20]: Suppose that all the assumptions of Theorem 2.3.7 are satisfied

globally (for all x ∈ Rn) and W1(x) is radially unbounded. Then, x = 0 is globally

uniformly asymptotically stable.

Corollary 2.3.9. [20]: Suppose all the assumptions of Theorem 2.3.7 are satisfied with

W1(x) ≥ k1∥x∥c, W2(x) ≤ k2∥x∥c, W3(x) ≥ k3∥x∥c

for some positive constants k1, k2, k3 and c. Then, x = 0 is exponentially stable. Moreover,

if the assumptions hold globally, then, x = 0 is globally exponentially stable.

Theorem 2.3.10. [20]: Let x = 0 be an equilibrium point for the nonlinear system

ẋ(t) = f(t, x)

where f : [0,∞) ×D → Rn is continuously differentiable, D = {x ∈ Rn|∥x∥2 < r}, and

Jacobian matrix [∂f∂x ] is bounded and Lipschitz on D, uniformly in t. Let

A(t) =
∂f

∂x
(t, x)|x=0.

Then, the origin is an exponentially stable equilibrium point for nonlinear system if and

only if it is an exponentially stable equilibrium point for linear system

ẋ(t) = A(t).

Theorem 2.3.11. [20]: Let x = 0 be an equilibrium point for the nonlinear system

ẋ(t) = f(t, x)

where f : [0,∞) × D → Rn is continuously differentiable, D = {x ∈ Rn|∥x∥ < r}, and

Jacobian matrix [∂f∂x ] is bounded and Lipschitz on D, uniformly in t. Let β(., .) be a class

KL function and r0 be a positive constant such that β(r0, 0) < r. Let D0 = {x ∈ Rn|∥x∥ <

r0}. Assume that the trajectory of the system satisfied

∥x(t)∥ ≤ β(∥x(t0)∥, t− t0), ∀x(t0) ∈ D0, ∀t ≥ t0 ≥ 0.

Then, there is a continuously differentiable function V : [0,∞) × D0 → R that satisfies

the inequalities

α1(∥x∥) ≤ V (t, x) ≤ α2(∥x∥),
∂V

∂t
+

∂V

∂x
f(t, x) ≤ −α3(∥x∥),

∥∂V
∂x

∥ ≤ α4(∥x∥),

where α1(.), α2(.), α3(.) and α4(.) are class K function defined on [0, r0]. If the system is

autonomous, V can be chosen independent of t.
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2.3.3 Nonautonomous systems with time delay

We consider the nonautonomous system with time-delay of the form [18]

ẋ(t) = f(t, x(t− h)), ∀t ≥ 0,

x(t0 + θ) = ϕ(θ), ∀θ ∈ [−h, 0], (2.19)

where x(t) ∈ Rn is the state variable, h ∈ R+ is the delay and f : R+ × C(C([−h, 0],

Rn)) → Rn. ϕ(t) is a continuous vector-valued initial condition. We assume f(t, 0) = 0

so that system (2.19) admits the trivial solution. We also assume that system (2.19) has

an existence and uniqueness solution.

Definition 2.3.11. For the system described by (2.19), the trivial solution x(t) = 0 is

said to be

(i) stable if for any t0 ∈ R and any ϵ > 0, there exists a δ = δ(t0, ϵ) > 0 such that

∥xt0∥c < δ ⇒ ∥x(t)∥ < ϵ, ∀t ≥ t0,

(ii) uniformly stable if it is stable and δ(t0, ϵ) can be chosen independently of t0,

(iii) asymptotically stable if it is stable, and for any t0 ∈ R and any ϵ > 0 there exists

a δa = δa(t0, ϵ) > 0 such that

∥xt0∥c < δa ⇒ lim
t→∞

= 0,

(iv) uniformly asymptotically stable if it is uniformly stable and there exists a δa > 0

such that for any η > 0, there exists a T = T (δa, η), such that

∥xt0∥c < δa ⇒ ∥x(t)∥ < η, ∀t ≥ t0 + T.

Suppose that u, v, w : R+ → R+ are continuous nondecreasing functions,

where additionally u(s) and v(s) are positive for s > 0, and u(0) = v(0) = 0. If there

exist a continuous differentiable functional V : R+ × C → R such that

u(∥ϕ(0)∥) ≤ V (t, x(t)) ≤ v(∥ϕ∥),

the equilibrium point x∗ = 0 of system (2.19) is

(i) uniformly stable if

V̇ (t, x(t)) ≤ −w(∥ϕ(0)∥),

18



(ii) uniformly asymptotically stable if

V̇ (t, x(t)) ≤ −w(∥ϕ(0)∥),

where w(s) > 0 for s > 0,

(iii) globally uniformly asymptotically stable if

V̇ (t, x(t)) ≤ −w(∥ϕ(0)∥),

and u(s) is radially unbounded.

Definition 2.3.12. [21]: A functional V : R+×C → R+ is called a Lyapunov-Krasovskii

functional for the system (2.19) if it has the following properties. There exist λ1, λ2, λ3 > 0

such that

(i) λ1∥x(t)∥2 ≤ V (t, xt) ≤ λ2∥xt∥2,

(ii) V̇ (t, xt) ≤ −λ3∥x(t)∥2.

Lemma 2.3.12. [18]: Consider the non autonomous time-delay system (2.19). If there

exist a Lyapunov function V (t, xt) and λ1, λ2 > 0 such that for every solution x(t) of the

system, the following conditions hold,

(i) λ1∥x(t)∥2 ≤ V (t, xt) ≤ λ2∥xt∥2,

(ii) V̇ (t, xt) ≤ 0,

then the solution of the system is bounded, i.e., there exists N > 0 such that ∥x(t, ϕ)∥ ≤

N∥ϕ∥,∀t ≥ 0.

Lemma 2.3.13. [21]: Consider the autonomous time-delay system (2.19). If there exist

a Lyapunov-Krasovskii function V (xt) and λ1, λ2, λ3 > 0 such that for every solution x(t)

of the system, the following conditions hold,

(i) λ1∥x(t)∥2 ≤ V (xt) ≤ λ2∥xt∥2,

(ii) V̇ (xt) ≤ −λ3∥x(t)∥2,

then the solution of the system (2.19) is exponentially stable.
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Lemma 2.3.14. [6] : Let ⊗ denote the notation of Kronecker product. Then, the following

relationships hold:

(1) (αA)⊗B = A⊗ (αB),

(2) (A+B)⊗ C = A⊗ C +B ⊗ C,

(3) (A⊗B)(C ⊗D) = (AC)⊗ (BD).

Lemma 2.3.15. [64]: Let e = (1, 1, . . . , 1)T , EN = eeT , and U = NIN − EN , P ∈

Rn×n, x = (xT1 , . . . , x
T
N )T , and y = (yT1 , . . . , y

T
N )T with xk, yk ∈ Rn, (k = 1, 2, . . . , N), then

xT (U ⊗ P )y =
∑

1≤i<j≤N

(xi − xj)
TP (yi − yj).

Proposition 2.3.16. [18] (Cauchy inequality): For any symmetric positive definite ma-

trix N ∈ Mn×n and x, y ∈ Rn we have

±2xT y ≤ xTNx+ yTN−1y.

Lemma 2.3.17. For P is an n× n positive definite matrix, and let B1, B2 be an n × n

any real matrices, U = NIN −EN , x = (xT1 , . . . , x
T
N )T , and y = (yT1 , . . . , y

T
N )T are defined

as Lemma 2.3.15. Then, for x = (xT1 , . . . , x
T
N )T and y = (yT1 , . . . , y

T
N )T with appropriate

dimensions, the following holds:

±2xT (U ⊗B1B2)y ≤ xT (U ⊗B1 P−1 BT
1 )x+ yT (U ⊗BT

2 P B2)y

Proof: By Lemma 2.3.16, we have

±2xTB1B2y ≤ xTB1 P−1 BT
1 x+ yTBT

2 P B2y,

where P ∈ Rn×n is positive definite matric, x, y ∈ Rn, and B1, B2 are any real matrices,

we can obtain that:

±2xT (U ⊗B1B2)y = ±2
N∑

1≤i<j≤N

(xi − xj)
TB1B2(yi − yj),

≤ xT (U ⊗B1 P−1 BT
1 )x+ yT (U ⊗BT

2 P B2)y.

�

Proposition 2.3.18. [18](Jensen’s inequality): For any symmetric positive definite ma-

trix M > 0, scalar γ > 0 and vector function ω : [0, γ] → Rn such that the integrations

concerned are well defined, the following inequality holds(∫ γ

0
ω(s) ds

)T

M

(∫ γ

0
ω(s) ds

)
≤ γ

(∫ γ

0
ωT (s)Mω(s) ds

)
.
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Lemma 2.3.19. [70]: For any constant symmetric matrix M ∈ Rn×n, M = MT > 0,

0 ≤ hm ≤ h(t) ≤ hM , t ≥ 0, and any differentiable vector function x(t) ∈ Rn, we have

(a)
(∫ t

t−hm

ẋ(s)ds
)T

M
(∫ t

t−hm

ẋ(s)ds
)

≤ hm

∫ t

t−hm

ẋT (s)Mẋ(s)ds,

(b)
(∫ t−hm

t−h(t)
ẋ(s)ds

)T
M

(∫ t−hm

t−h(t)
ẋ(s)ds

)
≤ (h(t)− hm)

∫ t−hm

t−h(t)
ẋT (s)Mẋ(s)ds

≤ (hM − hm)

∫ t−hm

t−h(t)
ẋT (s)Mẋ(s)ds.

Lemma 2.3.20. [70]: For any constant symmetric matrix M > 0, scalar h > 0, and

vector function ẋ(t) : [−h, 0] → Rn such that the following integral is well defined, then

−h

∫ t

t−h
ẋT (s)Rẋ(s)ds ≤

 x(t)

x(t− h)

T −M M

M −M

 x(t)

x(t− h)

 .

Lemma 2.3.21. [34]: Let M be a positive semi-definite matrix, α(.) : (−∞, a] → [0,+∞)

be a scalar function and F (.) : (−∞, a] → Rn be a vector function. If the integrations

concerned are well defined, the following inequality holds:(∫ a

−∞
α(s)F (s)ds

)T

M

(∫ a

−∞
α(s)F (s)ds

)
≤

∫ a

−∞
α(s)ds

∫ a

−∞
α(s)F T (s)MF (s)ds.

Lemma 2.3.22. [18] (Schur complement lemma): Given constant symmetric matri-

ces X,Y, Z with appropriate dimensions satisfying X = XT , Y = Y T > 0. Then X +

ZTY −1Z < 0 if and only ifX ZT

Z −Y

 < 0 or

−Y Z

ZT X

 < 0.

Lemma 2.3.23. [61]: Given matrices Q = QT , H, E and M = MT > 0 with appropriate

dimensions. Then

Q+HFE + ETF THT < 0,

for all F satisfying F TF ≤ M , if and only if there exists an ϵ > 0 such that

Q+ ϵHHT + ϵ−1ETME < 0.

Lemma 2.3.24. [18]: Given a positive definite matrix Q ∈ Rn×n and x ∈ Rn, then

λm(Q)xTx ≤ xTQx ≤ λM (Q)xTx

where λM (Q) = max{Reλ : λ ∈ λ(Q)} and λm(Q) = min{Reλ : λ ∈ λ(Q)}.
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2.3.4 Synchronization

Consider a dynamical system described by

ẋ = f(t, x(t)), (2.20)

ẏ = g(t, x(t), y(t)), (2.21)

where x, y ∈ Rn, f : R+ ×Rn → Rn and g : R+ ×Rn ×Rn → Rn are assumed to be

analytic functions.

Let x(t, x0) and y(t, x0, y0) be solutions to (2.20) and (2.21) respectively. The

solutions x(t, x0) and y(t, x0, y0) are said to be synchronized if

lim
t→∞

∥ x(t, x0)− y(t, x0, y0) ∥= 0.

Definition 2.3.13. [44]: System (2.3) is said to be asymptotically synchronized if the

following holds:

lim
t→∞

∥xi(t)− xj(t)∥ = 0, i, j = 1, 2, · · ·N.

Definition 2.3.14. [10]: System (2.3) is said to be exponentially synchronized if there

exist two constants α > 0 and M > 0 such that for all ϕi0(s) (i = 1, 2, ..., N) and for

sufficiently large T > 0:

∥xi(t)− xj(t)∥ ≤ Me−αt,

for all t > T, i, j = 1, 2, ..., N.

Definition 2.3.15. [63]: The complex dynamical networks (2.4) is said to be synchronized

if

x1(t) = x2(t) = · · · = s(t) as t −→ ∞, (2.22)

where s(t) is a solution of an isolated node, satisfying

ṡ(t) = f(s(t), s(t− h(t))).

2.3.5 Numerical analysis

Fourth-Order Runge-Kutta Method

In order to solve an initial-value problem

dx

dt
= f(t, x), x(t0) = x0,

where x = [x1, x2, . . . , xn]
T and f = [f1, f2, . . . , fn]

T .
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The best known Runge-Kutta method of the first stage and fourth order is

given by

Xi+1 = Xi +
1

6
(k1 + 2k2 + 2k3 + k4)

where

k1 = hf(ti, Xi),

k2 = hf(ti +
h

2
, Xi +

k1
2
),

k3 = hf(ti +
h

2
, Xi +

k2
2
),

k4 = hf(ti + h,Xi + k3),

where Xi is an approximation of x(ti) when Xi = [Xi1, Xi2, . . . , Xin]
T , ti = t0 + ih, h is

step size and ki = [ki1, ki2, . . . , kin]
T , ∀i = 1, . . . , 4.
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