
CHAPTER 1

Introduction

Copulas are functions that link joint distribution functions to their univariate marginal

distribution functions. This connection is given by Sklar’s Theorem which states that if

H is an n-dimensional joint distribution function with continuous univariate marginal dis-

tribution functions F1, F2, . . . , Fn, then there exists a unique n-copula C : [0, 1]n → [0, 1]

such that

H (x1, x2, . . . , xn) = C (F1 (x1) , F2 (x2) , . . . , Fn (xn)) (1.1)

for all (x1, x2, . . . , xn) ∈ [−∞,∞]n .

Classical examples of copulas are the independence copula Πn (x1, x2, . . . , xn) =

x1x2 · · ·xn, the comonotonicity copula Mn (x1, x2, . . . , xn) = min (x1, x2, . . . , xn) , and the

countermonotonicity copula W 2 (x1, x2) = max (x1 + x2 − 1, 0) .

If the marginal distribution functions F1, F2, . . . , Fn of the joint distribution function

H are non-continuous, then there are infinitely many copulas C satisfying Equation (1.1).

Note that C is uniquely determined on Ran (F1)× · · · ×Ran (Fn) .

Roughly speaking, an n-subcopula is a restriction of an n-copula on
n∏

i=1
Ai where

Ai are subsets of [0, 1] containing 0 and 1 for all i. In other words, an extension of an

n-subcopula S is an n-copula C which agrees with S on its domain.

Since all C satisfying Equation (1.1) is uniquely determined on Ran (F1) × · · · ×

Ran (Fn) , there is a unique subcopula S whose domain is Ran (F1) × · · · × Ran (Fn)

satisfying

H (x1, x2, . . . , xn) = S (F1 (x1) , F2 (x2) , . . . , Fn (xn)) (1.2)

for all (x1, x2, . . . , xn) ∈ [−∞,∞]n . It can easily be seen that all copulas satisfying Equa-

tion (1.1) extend the unique subcopula S. Hence, we can consider the charecterization of

all copulas satisfying Equation (1.1) as the subcopula extension problem.

In 1974, Sklar [12] proved that any bivariate subcopula can be extended to a bivari-

ate copula but, generally, the extension is not unique. The multivariate case was proved

later by the same author [1] which is also not unique in general.

In 2012, Amo, Carrillo, and Fernndez-Snchez [2] introduced a constructive method,

by means of doubly stochastic measures, to describe all bivariate copulas satisfying Equa-
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tion (1.1). The method is called E-process. Moreover, Amo et al. discussed the idea of

using n-stochastic measures to the multivariate case but they are unable to provide the

formula for the extension. The difficulty of using the idea is how to construct suitable

n-stochastic measures in order to obtain copulas satisfying Equation (1.1) since there are

too many cases to consider. However, there are several researchers trying to extending

subcopulas in various special cases. These publications relating to subcopula extension

problem are discussed in details in Chapter 2.

In 2002, Carley [3] found the maximum and minimum extensions of a given finite

bivariate subcopula. His results are given in Theorem 2.38 and Theorem 2.39 respectively.

In 2007, Klement, Kolesrov, Mesiar, and Sempi [6] defined horizontal b-section of a

copula C by fixing the second coordinate of a bivariate copula C with a constant b ∈ (0, 1) .

Even if the horizontal b-section of a given copula C is not a subcopula, we still consider

it as a subcopula by extending its domain to [0, 1] × {0, b, 1} . This is possible because

a copula is grounded and has uniform marginals. Thus, this can be considered as a

subcopula extension problem. Klement et al. provided a copula, the greatest copula, and

the smallest copula that extend the horizontal b-sections of a given copula C. Their results

are stated in Theorem 2.43, Theorem 2.44, and Theorem 2.45, respectively.

In 2007, Baets and Meyer [7] provided a method to construct a new bivariate copula

from a given copula by redefining the given copula in a given rectangle. Their main result,

Theorem 2.46, states that the new defined function must also be 2 -increasing in the given

rectangle and coincides with the given copula at their boundaries.

In 2008, Siburg and Stoimenov [9] provided a new way of constructing n-copulas

by scaling and gluing finitely many n-copulas. The gluing construction of two copulas is

given in Theorem 2.48 and the gluing construction of n-copulas is given in Theorem 2.49.

In 2009, Durante, Saminger-Platz, and Sarkoci [4] provided a method to construct a

new copula from a given copula and a collection of copulas. The given copula is considered

as the background copula. For each copula in the given collection, it associates with a

rectangle in the unit square. Thus, there is a collection of rectangles in the unit square

associated with the given collection of copulas. If each pair of the rectangles in the

collection of rectangles is either disjoint or has common points just on their boundaries,

then a function defined as in Theorem 2.50 is a copula.

In 2013, Baets, Meyer, Fernndez-Snchez, and beda-Flores [8] proved the existence

of a 3 -copula with some given values of a 3 -quasi-copula. In other words, Baets et al.

stated in Theorem 2.57 that there is a 3 -copula agrees with a given 3 -quasi-copula at a

given point. This is also true for the case of two given points as it is stated in Theorem
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2.58.

In 2013, Gonzlez-Barrios and Hernndez-Cedillo [5] generalized the results of Baets

and Meyer [7] to higher dimensions (see Theorem 2.59) and also provided a multivariate

patchwork construction of n-copulas in n-boxes. In Theorem 2.60, Gonzlez-Barrios and

Hernndez-Cedillo provided a 3 -copula constructed from given two 3 -copulas and a 3 -box

R with (1, 1, 1) as one of its vertices. Their result in 3 -dimensions is generalized to higher

dimensions as in Theorem 2.61.

In this thesis, we characterize all multivariate copulas satisfying Equation (1.1) in

the case of the ranges of all marginal distribution functions are discrete, equivalently,

all copulas extending the unique discrete subcopula satisfying Equation (1.2). Our main

result may be considered as an extension in higher dimensions of the result of Amo et

al.[2] in the case of discrete random variables. Nevertheless, proofs are quite different. In

this work, we do not use stochastic measures but instead proving the result directly from

the definitions.

The organization of this thesis is as follows. In the following chapter, the prelimi-

naries including subcopula extensions are diccussed. In Chapter 3, we present the form of

all copulas satisfying Equation (1.1) in the case of the ranges of all marginal distribution

functions are discrete. Based on our result, we illustrate in Chapter 4 one application of

this work through copula approximations. Finally, we give concluding remarks in Chapter

5.
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