CHAPTER 2

Preliminaries

Let [—o00, 00] denote the set of extended real numbers.

For any a,b € [—00, 00] in which a < b, denote (a,b] := {z € [-00, 0] |a < x < b},
[a,b] :={z € [-o0,00] |a <z < b}, and I:= [0, 1].

If a € [—00,00]", then it means that a = (a1,az,...,a,) where a; € [—o0, 0] for
all 4.
For any real number k, denote ; o T (R T

We will write a < 3 whenever a; < b; for all i and a < ; whenever a; < b; for all
i

For a < b, denote <2, b} =

s
—s

(a;, b;] and an n-box [Z, b} = [a;, b;] .

i=1 i

)

2.1 Distribution Functions

Definition 2.1. A subset A of [—00, o] is said to be discrete if
inf |x—y|>0
yeA\{x}
for all z € A.
Note that any discrete subset of [—00, 00| is countable.
Definition 2.2. Let f : [a,b] — [—00,00]. Then f is said to be nondecreasing if
flx) < fy)

whenever a < x <y <b.

Definition 2.3. Let f : [a,b] — L. Then f is said to be continuous from the right if for

every = € [a,b] and every € > 0, there exists § > 0 such that
[f (@) = f(y) <e
whenever a <z <y <x+9 <b.

Definition 2.4. Let f : [-o00, 00] — L. Then f is called a distribution function if it satisfies

the following properties



1. lim f(x)=0 and le f(x)=1,

T—r—00

2. f is nondecreasing, and
3. f is continuous from the right.

If a function f : I — T is nondecreasing, continuous from the right, f (0) = 0, and
f (1) =1, then the function f can be extended to a distribution function by additionally
defining f (z) =0 when z < 0 and f (z) = 1 when = > 1.

Example 2.5. For each a € (—o00,00), a function , : [—00,00] — {0, 1} defined by

0 ifzx€[-o0,a),
da (7) =
1 ifzx € [a,o0]
is a distribution function.

Proof. Let a € (—o00,00).

1. It is obvious that J, (—o0) = 0 and lim d, (z) = 1.

T—00

2. Next, we show that f is nondecreasing. Let x < y. If x = y, there is nothing to

prove. Assume that x < y. There are three cases to consider.

Casel. a<z<y
In this case, §, (z) =1 = 04 () .

Case2. x<a<y
In this case, 0 = ¢, (z) < 64 (y) = 1.

Case3. x<y<a
In this case, dq () =0 = d, (v) -

Therefore, 6, (x) < d, (y) whenever z < y.

3. Last, we show that ¢, is continuous from the right.
Let x € [—00,00] and € > 0. There are two cases to consider.
Casel. x>a

Choose § =€ > 0.
For any y € [z,2+0), [0a (y) —0q (z)| =1 — 1] =0 < €.



Case?2. xz<a
Choose § = “5* > 0.

For any y € [z,2+0), [0a (y) — 04 ()| =0 —0] =0 < €.
Thus, §, is continuous from the right.

By 1., 2., and 3., d, is a distribution function.

O]

Definition 2.6. For any H : © x R — R, define the difference ALH : © — R by setting
AYH (0) = H (0,b) — H (0, a)
for all # € © and a,b € R in which a < b.

n

Definition 2.7. Let A; C [—oo,00] for all i = 1,2,...,n. For any H : [[ A; — I, define
i=1

Vi by setting

Vi <H (ai7bi]> p= AZ%...AZZ H

i=1
for all a;,b; € A; in which a; < b;.

Example 2.8. Let H : [—o00,00]> — . We have ARH (t) = H (t,b2) — H (t,a2) and
VH ((al,bl] X (az,bg]) = Azll AZQQ H
b b
= A (alH)
= AZH(b)—AZH (1)
= (H (b1,b2) — H (b1,a2)) — (H (a1,b2) — H (a1, a2))
= H(bl,bQ) — H(bl,ag) — H(al,bg) —|—H(a1,a2)
for all ay,as, by, by € [—00,00] in which a; < b; and ag < bs.

n
Proposition 2.9. Let A; C [—o0,00] for alli = 1,2,...,n. For any H : [[A; — I and
i=1
all a;,b; € A; in which a; < b;,

Vi (H (ai,bi]) = > (_1)N(“) H(?)
=1 ?E}i{l{ai,bi}

where N (?) is the number of © such that v; = a.



n
Definition 2.10. Let A; C [—o0,00] for all i = 1,2,...,n. A function H : [[A; — Iis

=1
Vi ( (%M) >0,
i1

for all a;,b; € A; in which a; < b;.

said to be n-increasing if

n
Definition 2.11. Let A; C [—o0,00] for all ¢ = 1,2,...,n. A function H : [[A; — Lis
i=1
said to be continuous from the right in each argument if, for each k = 1,2,...,n and each

€ > 0, there exists 6 > 0 such that
|H($1,$2,...,$k,...,$n) _H($17$27--->yk>---»$n)| <€

for all (x1,x9,...,2,) € [[A; and all y € A N (2, 5 + I].
i=1

Definition 2.12. Let H : [—00,00]" — I. Then H is called a joint distribution function

if it satisfies the following properties

1. lim H (2) —0,

T;——00,3i

2. lim H (E) — 1,
x;—00,Vi
3. H is n-increasing, and

4. H is continuous from the right in each argument.

Let H be a joint distribution function. For each ¢ = 1,2,...,n, the function F; :
[—00,00] — I defined by F; (x;) = H (E\) , where all the coordinates of = are equal to 0o

except possibly x;, is called a marginal distribution function of H.
Remark 2.13. Fvery marginal distribution function is a distribution function.

Example 2.14. A function &y : [—o0, 00]*> — I defined by

1 ifz>0,y>0,
50 (;U: y) —
0 otherwise

is a joint distribution function.
Proof. Let x,y € [—00,00]. It is obvious that
1. 6o (z,—00) = 0 and dy (—oo,y) =0, and

2. lim lim dp (z,y) = lim lim &y (z,y) = 1.

T—00Y—>00 Y—>00L—00



Next, we show that dp is 2-increasing. Let a,b,c,d € [—00, 00| be such that a < b

and ¢ < d. To show that Vj, ((a,b] x (¢,d]) > 0, there are nine cases to consider.

Casel. b>a>0andd>c>0
In this case,
‘/;50 ((a7 b] X <C> d]) = do (ba d) +do (a,c) — 0o (ba C) — 0o (avd)
=14+1-1-1
=0-
Case2. b>a>0andd>0>c
In this case,
‘/50 ((CL, b] x (67 d]) = do (ba d) +do (CL,C) —do (ba C) —do (a7d)
=140-0-1

=0z

Case3. b>a>0and0>d>c¢
In this case,
V;So ((a7 b] X (C7 d]) = do (ba d) +do (a7 C) — do (ba C) — 9o (G, d)
=0+0-0-0
= 0.
Cased. b>0>aandd>c>0
In this case,
‘/50 ((CL, b] X (Ca d]) = do (ba d) + do (a’ C) —do (ba C) —do (a> d)
=14+0-0-1
= 0.
Caseb. b>0>aandd>0>c
In this case,
V;So ((CL, b] X (C, d]) = do (b7 d) +do (CL, C) — do (b7 C) — do (CL, d)
=14+0-0-0

=1>0.



Case 6.

Case 7.

Case 8.

Case 9.

b>0>aand 0>d>c
In this case,
V;So (((Z, b] X (Ca d]) =do (ba d) + do ((l,C) —do (ba C) —do (a7d)
=0+0-0-0
= 0.
0>b>aandd>0>c
In this case,
‘/250 ((CL, b] X (Ca d]) = do (ba d) +do (a,c) — do (b7 C) — do ((I,d)
=0+0—-0-0
= 0.
0>b>aandd>c>0
In this case,
Vs, ((a,b] x (¢,d]) = do (b,d) + o (a,c) — g (b, c) — 0o (a,d)
=0+0-0-0
= 0.
0>b>aand 0>d>c
In this case,
V;SO ((CL, b] X (Ca d]) = 60 (b’ d) + do (a,c) —do (ba C) — do (a’d)
=0+0-0-0

=0.

Thus, Vs, ((a,b] x (¢,d]) >0, ¥ (a,b] x (¢,d] C [—o0,00]?.

Finally, we show that &g is continuous from the right in each argument.

Let 2,y € [—00,00] and € > 0. There are four cases to consider.

Case 1.

Case 2.

x>0,y >0
Choose § =€ > 0.
For any xt € [x,2 4 ), |0 (z,y) —do (xF,y)| =1 —1|=0<e.

z<0,y>0

Choose §; = —5 >0 and dy = € > 0.

For any T € [z,2 + 61), |00 (z,y) — o (T, )| =10 -0 =0 < ¢
and for any y* € [y,y + 82), |60 (z,y") — b0 (z,y)| =10 - 0| =0 < e.



Case3. x>0,y <0
Choose 6; = € > 0 and dy = —§ > 0.
For any o € [z,x + 61), |0 (x,y) — o (zT,y)| =0 -0 =0 <€
and for any y* € [y,y + d2), [0 (z,yT) — o (z,y)| =10 —0] =0 < .

Cased. x <0,y <0
Choose 61 = —§ >0 and d = —% > 0.
For any xt € [x,x 4 1), |0 (z,y) — 0o (zT,9)| =0 -0 =0 <€
and for any y* € [y,y + 82), |00 (z,y") — o (z,y)| =10 -0 =0 < e.

Thus, &g is continuous from the right in each argument.
Therefore, Jg is a joint distribution.

If F: [—00,00] — I is defined by

1 ifx >0,
F(x)=
0 ifx<0
and G : [—o0, 00| — [ is defined by
1 ify >0,
Gy) =
0 ify<O

then F' and G are marginal distribution functions of dg.

O

Theorem 2.15. Let H : 1" — 1 be a function satisfying the following properties

1. H (f) = 0 whenever at least one coordinate ofz 1s equal to 0,

2. H (T) 14

3. H is n-increasing, and

4. H is continuous from the right in each argument.

Define H : [—o00,00]" — T by
H(?) = H((@1VO) AL (22 VO) AL, ... (zn VO)A L)

for each x = (x1,22,...,2y) € [—00,00|". Then H is a joint distribution function and

coincides with H on I"™.

10



Proof. Let # = (x1,@a,...,4n) € [~00,00]" and § : [—00,00] — I be defined by & (z) =
(x vV 0) A 1. We have

H(z) = H((ziVO)AL (23 VO)AL..., (z,V0)ATL)

- H(l’l,.fUQ,..-,fEn)
= 4 (%)

for any z eln. Thus, H coincides with H on I".

Next, we show that H is a joint distribution function.

1. If there is at least one coordinate of = which is equal to —oo, says xp = —o0, then

H(;) = H(8(x1),0(x2), .8 (€k),---,0 (zn))
= H((x1),0(22),...,0(—00),...,0(xy))
= H(8(x1).6(®2),...,0,...,8 ()

2. Let z; oo foralli=1,2,...,n. We have z; > 1 for all 7. It follows that

lim H (z1,29,...,2,) = lim H (6 (x1),6(z2),...,0(x,))
T;—00,Yi T;—00,Y1i
= lim H(1,1,...,1)
T;—00,Vi
= Mh(h 1. 1)
]

LN By \

3. Let (E, b] C [—00,00]". Since 0 <d(a) <6 (b) <1, it follows that

VH <<E’ b:|> ] Z (—]_)N(ul’“?v“'v“n) I;[ (uh U2,y .- - aun)

n
(u1,u2,..c;un)€ []{ai,bi}
i=1

1=

L 3 (=1)NOurzeun) B (8 (ug) |6 (ug), ..., 6 (un))

(u1,u2,...,;un)€ [T {ai,bi}
=1

= Z (—1)NErv2etn) [ (9 0, 0y)

(V1,02,..-10n) € _Iz[l{é(ai),é(bi)}

k3

- ((5@),5@)}) >0.

4. Next, we show that H is continuous from the right in each argument. Let i €

{1,2,...,n} and € > 0. There are three cases to consider.

11



Casel. x; <0
By choosing v = —x; > 0, we have

H (21,29, Tiy e @n) — H (21,22, Yir ey )
= [H (6 (1) ,6 (x2) 1 ..., 8 (xi),. ... 6 (xn))
CH (5 (21),8(22) -8 (Ys) sy 8 ()]
= [H (6 (21),6 (x2),...,0,....6 (xn))
—H (5 (21),8(22),-..0,...,6 (zn))]
=0

<€

for all y; € x4, z; +7) = [z, + (—24)) = [2:,0) .
Case2. 0<z;<1

Since H = H on I and H is continuous from the right in each argument,

there is nothing to prove in this case.

Case 3. x;>1
By choosing v = € > 0, we have

H (21,29, Tiy oy @n) — H (21,22, Uiy sy )
= H (6 (21),6 (x2) 5 ..., 8 (z1), ..., 6 (zn))
—H(5(21),8(22) ey 8 (Ys) ey 8 (zn))]
= [H (6(z1),0(z2),..,1,...,8(zn))
—H (5 (21),8(z2) ... 1,. .., 8 (zn))]
=0

<{c
for all y; € [z;, 2 +7) = [x5, 2 +€) .

By 1. - 4., we conclude that His a joint distribution function and coincides with

H on I".
O

A function on I" with the properties 1. - 4. in Theorem 2.15 can be considered as a
joint distribution function because it can be extended to a joint distribution function by

Theorem 2.15.

12



2.2 Probability Measures

Definition 2.16. Let Q be a nonempty set and 2 denote the power set of Q. A class

¥ C 29 is called a o-algebra on Q if it satisfies the following properties
1. 0 e,
2. if E€ ¥, then B¢ =Q\ E € X, and
o0
3. if By, Ey, E3, ... € X, then U Ep e
k=1
The ordered pair (€2, Y) is called a measurable space and the elements of ¥ are called
measurable sets.

Let 2 be a nonempty set. For any A C 29, denote the intersection of all o-algebras

containing A by o (A). Note that o (A) is the smallest o-algebra containing A.

Definition 2.17. Let Q C [—o0, 00| where n € N and & be the set of all open subsets of
Q). Then o (0) is called the Borel o-algebra on §2 which specifically be denoted by % ().
The elements of # (§2) are called Borel sets.

Theorem 2.18. Let Q C [—o00,00|" where n € N and

AZ{(H(%,@]) na | —OoﬁaiﬁbiSooforallizl,Z,...,n}_
i=1
Then B () = o (A).

Definition 2.19. Let €2 be a nonempty set and ¥ be a o-algebra on €. A function

w2 — T is called a probability measure if it satisfies the following properties
1. p(0) =0 and u(Q) =1, and
2. for any countable collection {E;},. , of elements in 3 such that E; N E = ) when
€S ies
Definition 2.20. Let % (I) be the Borel o-algebra on I,

= {D CI|D= U (ag, bg] for some n € N such that (a;, b;] N (aj,b;] = 0 whenever i # j}U{@}

and 7 : ' — I be defined by 7 () = 0 and

T (kg a, br ) Zbk — ag

13



where kgl (ag,bx] # 0. A function A : & (I) — I defined by

A(A) := inf {ir (D) |A C iDn, (Dn), C r}
n=1 n=1

is called the Lebesgue measure on I.
Remark 2.21. X is a probability measure on 1.

Theorem 2.22. Let Q be a nonempty set and A C 2% be nonempty and closed under
finite intersections. If Py and Py are probability measures on o (A) such that P, = Py on

A, then P, = P> on o (A).

n
Theorem 2.23. Let A; C [—o00,00] for alli=1,2,...,n. Let H :[[ A; = I and
i=1

S;:{<E,b] CHAi| oo<aiSbi<ooforalli:1,2,...,n}.

=1

Then Vi - S — 1 defined as in Definition 2.7 can be extended to a probability measure on

% <ﬁ1 AZ-) .

If H is continuous, then the measure Vi satisfies

w ([2:7]) = (7)),
and hence we may define

Vir <f[ [ai,bi]> =) (_1)N(“>H<?)

. ve [T {aibi)
i=1
directly where N (?) is the number of 7 such that v; = a;.

Definition 2.24. Let (Q2,.A,P) be a probability space. A random wvariable is a Borel
measurable function from €2 to R. A random vector is a Borel measurable function from

Q to R".

Definition 2.25. For any random variable X defined on a probability space (£2,.4,P),

its distribution function is a function F'x defined by
Fx (z)=P(X <)

for all z € R.

14



Definition 2.26. A random variable X defined on a probability space (Q2,.4,P) is said

to be discrete if there exists a discrete subset A of R such that
P(XeA)=1,
that is, the support of the distribution function of X is discrete.

Definition 2.27. For any random vector (Xi,...,X,) defined on a probability space
(Q, A, P), its (joint) distribution function is a function H defined by

H(z1,z2,...,2) =P (X1 <z1,...,Xpn < zp)
for all x; € R where i =1,2,...,n.
Definition 2.28. A random vector (X1, Xs,...,X,,) is said to be discrete if X; is discrete

foralli=1,2,...,n.

2.3 Subcopulas and Copulas

Definition 2.29. Let A; be subsets of I containing 0 and 1 for all ¢ = 1,2,...,n. Then

n
S []Ai — Lis called an n-subcopula (or, subcopula, for brevity) if it satisfies the following
i=1
properties

1. S is grounded, i.e., S (5) = 0 if u has at least one coordinate which is equal to 0,

2. S has uniform marginals, i.e., S (ﬂ) = uy, if all the coordinates of u are equal to 1

except possibly uy, and
3. S is n-increasing.

A subcopula whose domain is I" is called an n-copula (or, copula, for brevity).
Theorem 2.30. Every subcopula is uniformly continuous on its domain.
Definition 2.31. Let S be an n-subcopola. Then an n-copula C'is called an extension
of S if

C (?) =5 (2) (2.1)

for all z in the domain of S.

Theorem 2.32. [1, Appendiz 1] An extension of any n-subcopula always exists, that is,

given any n-subcopula S, there is an n-copula C' satisfying Equation (2.1).

15



What follows are a few simple but important examples of copulas. Let M™, II" and

W™ be given by

for all u € (uy,uz,...,

The function W™ is a copula when n = 2 and fails to be an n-copula for any n > 2.

min (ug, ug, ..., Uy),

ULUD * * * Uy,

max (u; +ug + -+ +up, —n+1,0)

un) € I". The function M™ and II" are n-copulas for all n > 2.

Example 2.33. The function M™ defined by Equation (2.2) is a copula.

Proof. Let u el

1. If u has at least one coordinate which is equal to 0, then M"™ (1_;) = 0.

2. If all the coordinates of u are equal to 1 except possibly uy, then M™" (E) = uy,

since 0 < uy < 1.

. Next, we show that M"™ is n-increasing by proving that

Varn ([3, b]) = max (min (b1, by, . .., by) — max (ay,az, ..., a,),0)

for all n-box B := [E, b] c1m

Let [E, b} be an n-box. Rearrange a1, as,...,a, in ascending order and rename
them with /s so that 1y < ro < --- < r, = max(ay,as,...,a,). Let s; := b;
whenever r; = aj. We have r; <'s; for all i = 1,2,...,n and min (b1, bo,...,b,) =
51 < 89 < --- < s,. Note that,
Vin | |a, b = Z (—1) M (v)
?Eﬁ{ai,bi}
=1
S e 1A (8 mimogroans . @)
Vi,l)ie{ai,bi}
N(ﬂ) .
= Z (-1) min (uy, ug, . .., Up)

Vi, ug€{r;,s:}
() o (@)

. n
we I {ri,si}
i=1

= v ([7.7).

16



n

For each k =1,2,...,n, let Vi be the set of all elements of [] {r;, s;} such that the

=1
first appearance of r;’s is at the kth coordinate.

Note that ﬁl friosit = (UBZl Vi) U (51,52, 07) (31,2, 50)}

Let v € V/z, and, for each j = k+1,k+2,...,n, let U_,:j and U?j be the elements of Vy,
such that all coordinates of 1)7]- and v?j are the same except for the jth coordinate
which the jth coordinate of v?j is r; and that of v?j is s;.

Since 1, < r; < s; for all j > k and min (s1,892,...,5,) < s; for all j, it follows

that if there exists ¢ < k such that min (s1, s2,...,5,) < s; < rg, then M"™ (?) =

min (s1, S2, ..., S,) . Hence,
£ ($> _ min (81, 82, ...,8,) if min(s1,892,...,8,) <7k
Tk otherwise.
Then,
M" (vjj) = M" (v@)
forall j = k+1,k4+2,...,n. Since vjj and vﬁj are different at exactly one coordinate,

—

it follows that (—1)N(U”> + (—1)N(v5j) = 0. Hence,

=

N

00 2 (i) + 0N ae () = o

g

—

Thus, (—1)N<v> M <$) = 0 for each k.

?EV}C

Since [] {r:,si} = ( 7 Vk) U{(s1,52,--.,7n),(S1,82,...,8n)}, it follows that
i=1

we(FA) = X 0O

. n
ve]{risi}
i=1

_ 3 ()N () apm (?)

?E(Uz;ll Vk)u{(s1,sg,...,rn),(sl,527...,sn)}
- Y O (3)

+ ()Nt D AT (51, 5, 7))

+ (—) NGl A (51,50, 50))
= 0+ (=DM M ((s1,52,...,70)) + (=) M" ((s1,52,...,50))
= M"((s1,82,---,8n)) — M" ((s1,82,...,74))

= min(s1,s2,...,8,) —min(s1,82,...,7) .

17



Thus, we have Vjn <[?, ?]) depends on r,. There are two cases to consider.

Case 1. min (s1,82,...,8,) < Ty
Then min (s1, $2,...,8,) = min (s1,82,...,7y) .
Thus,
VMn([r,SD = min(sy,82,...,8,) —min(s1,82,...,7)
= 0
= max (min (s1,52,...,5n) — Tn,0)
= max (min (b1, by, ...,b,) —max (a1, as,...,a,),0).
Case 2. min(s1,82,...,8,) > Ty
Since s; > min (s1, S2,...,8,) > 1y, for all 4, it follows that
min (81, 82,...,T,) = T
= max (r1,72,...,"n)
= max (a1, az,...,ap).
Thus,
VMﬂ([T,SD = min (s, S2,...,8,) —min (s1,$2,...,7n)
= min(s1,892,...,8,) — Ty
= min (b,be,...,b,) —max(ay,ag,...,a,)
= max (min (b1, be,...,b,) — max (aj,as,...,a,),0).
Therefore,
Vagn ([4 bD = Vi ([723])
= max (min (b1, ba,...,b,) —max (a1, as,...,a,),0)
> 0.

By 1.-3., we conclude that M™ is a copula.

Example 2.34. The function II" : I" — I defined by Equation (2.2) is an n-copula.
Proof. Let U= (ug,ug,...,uy) € 1™

1. If w has at least one coordinate which is equal to 0, then II" (E) =0.

18



2. Tf all the coordinates of u are equal to 1 except possibly uy, then IT" (17) = Ug.

3. Next, we show that II" is n-increasing. Let [E, b} be an n-box. Since b; —a; > 0

for all 7 and

(b1 —a1) (b2 —az) - (bp —an) = Z V1V2 " Up
Vi=1,2,...,n;v;€{b;,—a; }

— Z Hn(Ul,UQ,“' 7vn)

Vi:1,2,...,n;vi€{bi,fai}

- > ()

- )
XS _Hl{bi,—az‘}
i=

2 n
vE _H {bi,ai}
=k

S a(col

it follows that Vin <[E, b]) = (by —a1) (by —az) - (b —ay) > 0. Hence, II" is

n-increasing.

By 1.-3., II" is a copula.
O

Example 2.35. The function W : I" — I defined by Equation (2.2) is a copula when

n = 2 but it fails to be an n-copula for any n > 2.

Proof. Let u,v € I, then

1.
W2 (u,0) = max(u+0-—1,0)
= max (u = 1,0)
= 0
and

W2(0,v) = max(0+v—1,0)
= max(v—1,0)

= 0,
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W?(u,1) = max(u+1—1,0)
= max (u,0)
= 0
and
W?(1,v) = max(l1+v—1,0)
= max (v,0)
=10

3. Next, we show that W? is 2-increasing. Let m,n,s,t € I be such that m < n and

s < t. There are nine cases to consider.

Casel. m+s—1<m+t—1<0andn+s—-1<n+t—-1<0
Thus,
Vivz (fm,n] x [s,t]) = W2 (n,t) + W2 (m, s) — W2 (n,s) — W? (m, 1)
=max (n+t—1,0) + max (m+s—1,0)
—max (n+s—1,0) —max (m+t—1,0)
—0+0-0—-0
=0
Case2. m+s—1<m+t—1<0andn+s—-1<0<n+t—-1
Thus,
Vivz ([m,n] x [s,t]) = W2 (n,t) + W2 (m, s) — W2 (n,s) — W? (m, 1)
=max(n+t—1,0) + max(m+s—1,0)
—max (n+s—1,0) —max (m+1t—1,0)
=n+t—1>0.
Case3. m+s—1<m+t—1<0and0<n+s—-1<n+t—-1
Thus,
Viv ([m,n] x [s,t]) = W2 (n,t) + W2 (m, s) — W2 (n,s) — W? (m,t)
=max (n+t—1,0) + max (m+ s — 1,0)
—max(n+s—1,0) —max (m+t—1,0)
=n+t—-1)+0—-(n+s—-1)—-0

=t—s>0.
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Cased. m+s—1<0<m+t—landn+s—1<n+t—1<0
Since m < n, it follows that 0 < m+t—1 < n+t—1 < 0 which is a

contradiction. Thus, this case is impossible.
Case. m+s—1<0<m+t—1land0<n+s—-1<n+t-1
Thus,
Vivz ([m,n] x [s,1]) = W2 (n,t) + W2 (m,s) — W2 (n,s) — W? (m, 1)
=max (n+t—1,0) + max (m+ s — 1,0)
—max (n+s—1,0) —max (m+t—1,0)
=n+t—-1)—(n+s—1)—0—(m+t—1)
=1-5—-—m>0.
Case6. m+s—1<0<m+t—landn+s—-1<0<n+t—-1
Thus,
Viz ([myn] x [s,]) = W2 (n,t) + W2 (m,s) — W2 (n,s) — W? (m, 1)
=max (n+t—1,0) + max(m+ s — 1,0)
—max (n+s—1,0) —max (m -+t —1,0)
=mn+t—1)—(m+t—1)
=n—-—m>0.
Case7. 0<m+s—-1l<m+t—landn+s—-1<n+t—1<0

Since m < n, it follows that 0 < m+s—1 < n+s—1 < 0 which is a

contradiction. Thus, this case is impossible.
Case8. 0<m+s—1l<m+t—landn+s—-1<0<n+t—1

Since m < n, it follows that 0 < m+s—1<n+s—1 < 0 which is a

contradiction. Thus, this case is impossible.
Case9. 0<m+s—1<m+t—1landO0<n+s—-1<n+t-—1
Thus,

Vive (fm,n] x [s,t]) = W2 (n,t) + W? (m, s) — W? (n,s) — W? (m,t)
=max (n+¢—1,0) + max (m +s — 1,0)
—max (n+ s — 1,0) — max (m +t — 1,0)
=m+t-1)+(m+s—1)
—(n+s—1)—(m+t—1)

=0.

21



By all of the nine cases, Vyy2 ([m,n] x [s,t]) >0, ¥V [m,n],[s,t] C L

Therefore, W? is a copula.

Next, we show that

o )

|3

for any n > 2 and hence, W™ fails to be an n-copula.

N n
Since v = (v1,v2,...,v,) € |] {%,1} , we have
i=1

wmn (5) = max(vy+va+---+v,—n+1,0)

= max (8 (7) (5) + (0= ¥ (7)) =+ 1,0)
—  max ]\@+n—N(?>—n+1,o

N (5)

2

= max | 1—

-0

There are three cases to consider since W" (?) depends on N (?)

Case 1.

Case 2.

Case 3.

N(?)zz

N ()

2)

By dividing both sides of the inequality by 2, we have > 1, and then

120 <
Thus, (—1) (%) prm (?) — 1)) oy = 0.

N(v)=1
Since N (?) =1, it follows that all the coordinates of v are equal to 1 except

possiply v, which is equal to %

Thus, W" (?) = max (1 = Ngv),0> = max (1 - O) = %

Then, ()" () wm () = (<1)* () = -4

N (?) ~0
Since N <5\> =0, it follows that v=1.

Thus, we have W™ <1) =max (1 — %,0) =1.

Then, (—1)" (") (T) —(-1°(1) = 1.
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Since Vyyn ([% , T]) = 3 (_1)N(U) wmn (?) and n > 2, it follows that
?Elf[l{(li,bi}

Vg (ETD = 0+ (—i) (n) +1
7

Therefore, W™ is not n-increasing for n > 2. Hence, it fails to be an n-copula for n > 2.

Theorem 2.36. [10, Theorem 2.10.12] If S is an n-subcopula, then
wr (E) <S (2) < M" (Z) (2.3)
for every W in the domain of S.

The functions W™ and M"™ are known as the Fréchet-Hoeffding bounds.

By Theorem 2.36, we have
wn (7)< 0 (i) < o () o
for any copula C and all u € I since any copula is a subcopula.

Theorem 2.37. (Sklar’s Theorem) Let H be a joint distribution function with marginal

distribution functions Fi, Fs, ..., F,,. Then there exists an n-copula C such that
H (21,22, ...;an) = C (Fi (1), F2 (%2) , ..., Fn (20)) (25)

for alz = (x1,22,...,2y) € [—00,00]|" . Moreover, C is uniquely determined on Ran (Fy)x
Ran (F3) X ... x Ran (F,), where Ran (F;) denote the range of F;, for alli € {1,2,...,n}.
Conwversely, if C' is an n-copula and Fy, Iy, ..., F,, are distribution functions, then the func-
tion H defined by equation (2.5) is a joint distribution functions with marginal distribution

functions Fy, Iy, ..., F,.

2.4 Subcopula Extensions

In 2002, Carley [3] found the maximum and minimum extensions of a given finite

bivariate subcopula as Theorem 2.38 and Theorem 2.39 below.
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Theorem 2.38. [3, Theorem 1] Let S be a bivariate subcopula whose domain is {ag, a1, ..., am}X
{bo,b1,...,bp}, where 0 =ag < a1 < -+ < apm=1and0=by <by <---<b, =1 and

the blocks of I? associated with S be the rectangles of the form Bij = [ai—1, a;] x [bj—1,b;],
1<i<m,1<j<n. Then, Mg :1? =1 defined by

Mg (z,y) = Zmax (min (x — ayj,y — Bij, Vs (Bij)) ,0),
]
where

a1 =0, Bi1 =0,
;i1 =i + Vs (Bij),  Bit1,j = Bij + Vs (Byj),
aiy11 = %m + Vs (Bim) ., Bij+1 = Bnj + Vs (Brj)

is the mazximum extension of S.

Theorem 2.39. [3, Theorem 2] Let S be a bivariate subcopula whose domain is {ag, a1, . .., am}x
{bo,b1,...,bp}, where 0 =ap < a1 < -+ <apm=1and0=by <by <---<b, =1 and

the blocks of I? associated with S be the rectangles of the form Bj; = [a;—1,a;] % [bj_1,b;],
1<i<m, 1< 75 <n. Then, Ws: 12 1 defined by

Ws (z,y) = > _max[min (2 — i, Vs (By)) + min (y — 655, Vs (Bij)) — Vs (By) , 0],
i
where

Yim = 07 5n1 T 07
Yigm—j = Vim—j+1 + Vs (Bim—j+1)s  On—ij = On—it1,j + Vs (Bn-it+1;),
Yiomn = V,i—1 + Vs (Bii—1),  Onj =061,j-1+ Vs (Bij-1)

is the minimum extension of S.

Example 2.40. Let S : {0, %, 1} x {0, %, 1} — I be defined by S (a,b) = ab. All corre-

sponding constants related to Mg and Wg are given in the figure 2.1. Thus, we have

Mg (z,y) = max <min (x,y, 2) ,O>

n . 1 3 3 0
max (min |z — =,y — =, =
27y 878 Y



1 1 3 7
3 8 8 3 8 8
1 1
3 3 1
8 8 0 2
0 0
0 1 1 0 1 1
2 2
Vg Qi
1 3 7 ¥ 1
5 1 8 5 0 2
1 1
3 1 5
0 8 8 8
0 0
0 1 1 0 1 1
2 2
Bi; Vij
1
7 3
3 8 4
1
3
3 0
0
0 1 i
2

Figure 2.1: The corresponding constants related to Mg and Wy

is the maximum extension of S and

: 13 . 33 3
Ws (z,y) = max [mln <x8,8>+m1n <y8’8> 8’0}

[ 4 5 3 . 3 3
+ max _mm (a: 3 8) + min <y, 8) — 8,0]

[ 1 . 71\ 1
+ max _mln <x, 8) + min <y — 8’8) — 8,0]

[ 11 . 31\ 1
+ max _mln <x— 2’8> + min <y— 4’8) — 8,0}

is the minimum extension of S.

In 2007, Klement, Kolesrov, Mesiar, and Sempi [6] defined horizontal b-section of
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the copula C by fixing the second coordinate of a bivariate copula C' with a constant

b € (0,1). The precise definition of horizontal b-section is given as follows.

Definition 2.41. Let b € (0,1) be a fixed number. The horizontal b-section of a bivariate

copula C' is the function hcy : I — I given by
hqb (a;) =C (13, b)
for all x € 1.

Remark 2.42. All horizontal b-sections of copulas are mondecreasing and 1-Lipschitz

functions.

Let W? and M? be the Fréchet-Hoeffding lower and upper bounds of bivariate

copulas as previously defined by Equation (2.2). Thus,
hwzp < hep < hazp (2.6)

for any bivariate copula C. Klement et al. [6] considered nondecreasing and 1-Lipschitz

functions A such that
max (x +b—1,0) < h(z) < min (x,b) (2.7)

for a fixed b in (0,1) and all € I and provided a copula, the greatest copula, and the
smallest copula such that their horizontal b-sections coincide with h.

More precisely, let 74, be the set of all nondecreasing, 1-Lipschitz functions h sat-
isfying the same bounds as in Inequality (2.6) for a fixed b € (0,1). Then a copula, the
greatest copula, and the smallest copula such that their horizontal b-sections coincide

with h are given in Theorem 2.43, Theorem 2.44, and Theorem 2.45, respectively.

Theorem 2.43. [6, Proposition 2.1] Let b € (0,1) and h € 4. Then the function Cy, :
12 — I defined by
%@) if y < b,

(1=y)h(@)+(y=b)z
b

Ch (x,y) =

otherwise

is a copula such that héh p = N
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Theorem 2.44. [6, Theorem 3.1] Let b € (0,1) and h € 7. Then the function C, : 12 —
I defined by

y ify < h(z),

_ h(x) if h(xz) <y <b,

Ch(l',y):
y—b+h(z) ifo<y<az+b—~h(z),

T otherwise

is the greatest copula such that héh p = N

Theorem 2.45. [6, Theorem 3.2] Let b € (0,1) and h € s%. Then the function C), : 12 —
I defined by

P

y—b+h(z) ifb—h(x)<y<b,
Qh<m7y):

h (x) fo<y<l-—az+h(z),

z+y—1 otherwise

is the smallest copula such that hg, p = h.

This can be considered as a subcopula extension problem. Let S : I x {0,b,1} — I
be defined by
0 ify =0,
S(x,y) = h(x) ify=0,
x ify =1.
It is not hard to show that .S is a bivariate subcopula and the copulas given in Theorem
2.43, Theorem 2.44, and Theorem 2.45 are actually the extensions of S.
In 2007, Baets and Meyer [7] provided a method to construct a new bivariate copula
from a given copula by redefining the old given copula in a given rectangle. The following
theorem tells that the new defined function is a copula if and only if it is 2-increasing in

the given rectangle and coincides with the old one at the boundaries.

Theorem 2.46. [7, Proposition 7] Consider a copula C, a rectangle [u,u'] x [v,v'] C T2,
and a [u,u'] x [v,v'] = 1 mapping D. Let Q : 12 — T be defined by

D (x, if (x, u, '] x [v,v'],
SR G FEE R R

C(x,y) otherwise.

Thus, Q is a copula if and only if C" and D coincide on the boundaries of [u,u'] x [v,v']

and D is 2-increasing on [u,u'] X [v,v'].
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This can be considered as a subcopula extension problem. Let S : ({0,1} U [u, u]) x

({0,1} U [v,2']) — T be defined by

0 ifr=0o0ry=0,
Y ife =1,
S(z,y) =
x ify=1,
D (z,y) if (z,y) € [u,u] x [v,07].

Then S is a bivariate subcopula such that S, u/|x[v,./) = D and one of its extensions is Q.
In addition, Baets and Meyer provided a copula construction method by considering

a given copula as a background copula and a collection of copulas as foreground copulas.

The method is given in the Theorem 2.47 below.

Theorem 2.47. [7, Theorem 2] Consider two collections ((u;,u;)),c , and <<vj, %))je/

of nonempty pairwise disjoint open subintervals of (0,1). Consider a copula C°, called

background copula, a collection (Cifj) 28
1) ies je s

a collection |\ (u;, u’,v;, v of positive multipliers. For anyi € % and j € ,
R R
i€s . jE S

of copulas, called foreground copulas, and

define the [u;, u}] x [Uj,vg} — R mapping Di?,j by

7

b b b r—U; Y — U4
Di,j (m,y) =C (':va) - A (ui,u;,vj,v’) C (U, —’U/Zz" . — lj])
J

and Q : 12 = 1 by

JCEERICAC =)
Q(z,y) = +D§’7j (x,y) if (z,y) € [ui,u)] X [Uj,?);} :
C? (z,y) otherwise.

If for alli € F and j € Z it holds that Df,j is 2-increasing on [u;, uj| X [vj,vg} , then Q

is a copula.

This can be considered as a subcopula extension problem.

Let S : ({0,1} U (ZEU] [ui,u;]>> x <{o,1} U (jeuj [vj,vﬂ» — T be defined by S = Q

on its domain. Then S is a subcopula such that

_ O A b
S(l‘,y) - )\(UhU;;anaU;‘) Cl'J (U; _Ui’ U; _Uj> +D’L,j (‘T?y)

for all (z,y) € [u;,u’] x |vi,v:| and one of its extensions is Q.
Y i Jr 7y
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In 2008, Siburg and Stoimenov [9] provided a new way of constructing n-copulas by
scaling and gluing finitely many n-copulas. Firstly, they illustrated the gluing construction

in its most basic form, gluing two copulas.

Theorem 2.48. [9, Theorem 2.1] For any two n-copulas C1, Ca, any indexi € {1,2,...,n},

and any number 0 € (0,1). Partition the unit cube as:
I" = Ix---x[0,0x---xDHUIx---x[0,1] x---x1I),
and then define C1 ®4,—9 Co : I" = 1 by setting

(01®xi:902)(.rl,...,l‘i,...,l'n) — 901(3:‘1,...,%,...,1:”) (2-8)
if 0 <ux; <0, and
(Cl ®xi:9 02) (I‘l, ooy Lgyens ,xn)

(2.9)
:(1—9)02 (xl,...,

:L',L'—(g

1.—-6

,...,xn> +0C) (z1,...,1,...,2,)
if 0 < x; < 1. Thus, C1 ®z,—¢ Ca is an n-copula.

In Theorem 2.49 below, Siburg and Stoimenov provided the gluing method for the
general case of finitely many copulas. This can also be realized by sequentially gluing two

copulas as described in the previous theorem.

Theorem 2.49. [9, Theorem 2.2] Fiz any i € {1,2,...,n} and number 0 such that

0=6y<b1 < --- <Oy =1, and let Cy,...,Cxn be n-copulas. Partition the unit cube as:
n
" = UHX e X [Og—1,0k) x - x T
k=1

and then define by & Ci: 1" =1 by

i =0y,

r;— O,
( ® Ck;> (X1, s Tiyeooy) = (O —Op—1) Ck <:E1,...,Zk1,...xn>
@i =0 Or — 01
+0k—1Ck—1 (xla ceey 17 s 7xn) )
if x; € [Ok—1,0k) with 1 < k < N. Thus, the function ® Cj is an n-copula.
This can be considered as a subcopula extension problem. Let Ci,...,Cy be n-

copulas. For a fixed i € {1,2,...,n} and number 6; such that 0 =0y < 0; < --- <Oy =1,
let S:Tx -+ x{0,01,...,0n_1,0n} X ... x T — T be defined by

O — Op—1’
+0k—1c’k—1 ('rla sy 17 s 7xn) )

i — O
S(xl,...,xi,...xn) = (Gk—ek,l)Ck <$1,...,$k1 :cn>
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if z; =0, with 1 <k <N, and
S(x1,.. o Tiy. o xy) =0,

if z; = 0y = 0. Then S is an n-subcopula and one of its extensions is ®9 Cl.

In 2009, Durante, Saminger-Platz, and Sarkoci [4] provided a Hxlghi)d to construct
a new copula from a given copula (which is considered as the background copoula) and
a given collection of copulas. For each copula in the given collection, it associates with a
rectangle in the unit square such that each pair of the rectangles is either disjoint or has
common points just on their boundaries.

For each rectangle in the associated collection of rectangles, the desired new copula

is given by redefining the background copula as in the Theorem 2.50 below.

Theorem 2.50. [4, Theorem 2.2] Let {C;},c , be a collection of copulas and

let {R; = [a},ab] x [bi, b)) }ie,f/ be a collection of rectangles R; in I? with boundaries OR;
such that R; N R; C OR; N OR;, for every i # j, i.e., R; and R; have common points just
on their boundaries. Let C be a copula and put \; := Vo (R;). Let C:12 51 be defined

by
e <%~<[aa SR A GET ,yD)
C@9) = +C (2.b9) + C (aiy) — C (a}, b)) if (,y) € R; with A # 0,
C(z,y) otherwise

for every (x,y) € I2. Then Cisa copula.

This also can be considered as a subcopula extension problem by letting

S : <{o,1} U <-UJ [ag,ag]» X <{0,1} U <,u] [bi,b@])) — T be defined by S = C on
1€ 1€.

its domain. This function S is a subcopula such that

Sy = AC (VC (orl > 015 Vo (o] <ba,y]>)

+C (x,b’i) +C (ail,y) - C (ai,bﬁ)

for all (z,y) € R; with \; # 0 and one of its extensions is C.
In 2012, Amo, Carrillo, and Fernndez-Snchez [2] characterized all bivariate copulas
associated with non-continuous random variables. More precisely, let H : [—o0, 00]2 — 1

be a joint distribution function with marginal distribution functions ' and G and S :

Ran (F) x Ran (G) — I be the unique subcopula satisfying
S(F(x),G(y) =H (z,y) (2.10)
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for all z,y € [—00, 0] .

Since F'is nondecreasing and continuous from the right, it follows that the connected
components of Ran (F') are either an interval or a singleton.

Let S1 be the family constituted by the closures of connected components of Ran (F'),
Py be the class of elements in S; which are singletons, and D; := S} \ P;.

The complement in I of the union of all elements of S is a union of disjoint open
intervals. Let O1 be the family of all the closure of these disjoint open intervals.

With T" as an index set, write T := {T} := [as, b [T} € D1 U O1}yp -

Similarly, there exists the corresponding sets S5, P, Dy, O and
J = {Jj = ¢j,d;]|J; € D2 U Oz}, with an index set A for the distribution function G.

For any T; € O1, we select a family of distribution functions Fy; : I — I satisfying

1

xr =
by — ay

> BiiFj (x) (2.11)
J

for all « € I, where ;5 := Vs ([a¢, bs] % [¢j,d;]) .

For each J; € Oz, we select a family of distribution function Gy; : I — I satisfying

v = ﬁZﬁtjth (2) (2.12)
i G

for all « € I, where ;; := Vs ([ar, bf] % [}, d;]) .
In the case of T} € Dy and 3 # 0, Fyj is defined by

F (@) = ﬁltjvg (a6, (b — a8 @ + ad] x [c5, dy]) (2.13)

In the case of J; € Dy and 3;; # 0, Gy; is defined by
1
Gij (y) = EVS (laz, be] x [ej, (dj — ¢5)y + ¢5]). (2.14)
J

With the above notations, the characterization of all bivariate copulas associated with

non-continuous random variables can be presented as follows.

Theorem 2.51. [2, Theorem /] Let H : [—00,00]2 — T be a joint distribution function
with given marginal distribution functions F and G. Then, C is a copula satisfying the
equation

C(F(z),Gy) = H (z,y) (2.15)

if and only if C can be expressed in the form

C(z,y) = S (z,y) when (z,y) € Ran (F) x Ran (G)
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and

C(x,y) =5 (at, ¢j) + B (th (H) ,Gj <3__CZ>>
J J
+ Zﬁt/ Gy (d — cj) (2.16)

t'eSy

ag
+ Y BBy <bt _at>

J EZ
when (z,y) ¢ Ran (G) x Ran (G) and (z,y) € T; x Jj, where Cyj are copulas, Fyj and Gyj
are distribution functions satisfying Equations (2.11)-(2.14) with Sy := {t'|ay < a;} and

Zj = {J'lejy <} -

In fact, all copulas satisfying Equation (2.15) are extensions of the unique subcopula
S satisfying Equation (2.10).
Furthermore, in [2], Amo et al. also described the upper and lower bounds of the

set of all copulas extending the unique subcopula S, that is, the function
US (z,y) :=sup{C (z,y) | C is a copula extending S},
and the function
LS (z,y) :=inf {C (z,y) | C is a copula extending S} .

For any index ¢t € I', the interval T} is divided into indexed subintervals (in A) in
such a way that the interval T/ := [at, bﬂ C T; is an interval of length Vg (7; x J;), and
VS (Tt X J]/) s 1.6., CLt = at+zcj/<0j VS (Tt X JJ/)

and b! = al + Vs (T} x J;) . In the same manner, the interval J; is also divided into indexed

its lower extreme is given by a;+> . .
J J

subintervals Jf, i.e., for any index j € A and any t € T,

Ji= [ df) = e+ Y Vs (Ty x Jj) el + Vs (Th x Jj)

J G5 &
ay <ag
Then, Fj; is defined by
0 if Off s at —
Fj(z) =  d=tg 4 2= ai i Gz o < b (2.17)
J bgfag b] bt_at - = bt—at’
i_
1 if 20 < <,
t—at
and Gy; is defined by
ctfc
0 if0 <z < cj ,
J
Gijlz) = GGy 4 99 979 <4< 470 (2.18)
J d§,c§ dt — ; dj o= — dj—Cj’
dt—c;
1 if i <zr<1
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The copulas US and LS are given as in Theorem 2.52 and Theorem 2.53 below.

Theorem 2.52. [2, Theorem 11] If we choose the function Fy; and Gy; defined by Equation
(2.17) and Equation (2.18) respectively, and Cyj = M?, then C defined by Equation (2.16)
is the copula US.

Theorem 2.53. [2, Theorem 12] If we choose the function Fy; and Gy; defined by Equation
(2.17) and Equation (2.18) respectively, and Cy; = W2, then C defined by Equation (2.16)
is the copula LS.

Theorem 2.52 and 2.53 above include the result due to Carley in [3] as a particular
case, that is, when the sets Ran (F') and Ran(G) are finite.

In 2013, Baets, Meyer, Fernndez-Snchez, and beda-Flores [8] proved the existence of
a 3-copula with a given value of a 3-quasi-copula at a single point and that of a 3-copula
with given values of a $-quasi-copula at two points.

In the general definition of an n-quasi-copula (n > 2) the notion of increasing tracks

was used.

Definition 2.54. [8] An increasing n-track B in I" is any set of the form
B = {(Fi(t),F>(t),...,F,(t))|t € I}, where F; is a continuous distribution function
such that F; (0) =0 and F; (1) =1fori:=1,2,...,n.

The definition of an n-dimensional quasi-copula can be stated as follows.

Definition 2.55. [8] For any natural number n > 2, an n-dimensional quasi-copula
(briefly, an n-quasi-copula) is a function @ : I" — I such that for every inreasing n-track
B in I" there exists an n-copula Cpg that coincides with Q on B, i.e., ) (ﬁ) =Cp (6)

whenever u € B.
An alternative characterization of n-quasi-copulas is given in Theorem 2.56 below.

Theorem 2.56. A function Q : 1" — 1, n > 2, is an n-quasi-copula if and only if it is

grounded, has uniform marginals and satisfies the following two conditions:

1. Q is increasing in each variable u;, i = 1,...,n: if uy, ..., Un,v; are in 1 and u; < v,

then Q (ugy ... Uiy vy ty) < Q (Uly vy Uiy Up);

2. Q is 1-Lipschitz continuous: for every u = (uy,ug,...,u,) and v = (v1,v2,...,0,)

in T, it holds that ‘Q (2) —Q (?) <3 i — il
i=1
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The next theorem states that there exists a copula which coincides with a given

n-quasi-copula at any given point.

Theorem 2.57. [8, Theorem 2] For any (u1,uz,u3) € I® and any 3-quasi-copula Q, there

exists a 3-copula C-which depends on (u1,ug,us)-such that C (uy,uz, us) = Q (u1,uz,us) .
This is also true for the case of two points.

Theorem 2.58. [8, Theorem 3] For any (u1,us,us), (vi,ve,v3) € I? and any 3-quasi-
copula Q, there exists a 3-copula C-which depends on (uq,ug,us) and (v1,ve, v3)-such that
C (Ul, uz, u3) - Q (u17 uz, U3) and C (U17 V2, U3) T, Q (Uh V2, U3) 0
3
In the case of two points, consider S : [] {0, u;, v;, 1} — I defined by
i=1
Q(U]_,Uz,Ug) if (‘T,yv'z) — (Ul,UQ,Ug),
S(:E’y’ Z) - Q(Ula’UQa’U?)) if (x7y> Z) - (U17U27U3)7

C(z,y,z) otherwise.

Then S is a subcopula and C' extends S.
In the case of one given point, it can also be considered in a similar way.
In 2013, Gonzlez-Barrios and Hernndez-Cedillo [5] generalized Theorem 2.46 above

to higher dimensions as follows.

n

Theorem 2.59. [5, Theorem 1.2] Let C : I" — 1 be an n-copula, let R := [] [w;,v;] C I"
i=1
be a non-trivial n-box. Let D : R — I be a function. Define @Q : 1" — T by

= D(z) ifz eR,
o(5)-{°6) 7~
C(m) if v €™\ R.
Then, Q is an n-copula if and only if D = C on 6 (R), the boundaries of R, and D is

N-1NCreasing.

This can be considered as a subcopula extension problem. Let S : ﬁ [0, u;)U[vs, 1] —
I be defined by S = C on its domain. Then S is a subcopula such thaézsl" r = D and one
of its extensions is the copula Q.

Gonzlez-Barrios and Hernndez-Cedillo also provided a multivariate patchwork con-
struction of n-copulas in n-boxes. In Theorem 2.60 below, they started by taking a

3-copula and a 3-box R with (1,1, 1) as one of its vertices.
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Theorem 2.60. [5, Theorem 3.1] Let C' and Cy be two 3-copulas and let R = [ug,1] X
[ug, 1] x [us, 1] where 0 < u; < 1 for i € {1,2,3} and define 6 = (0,0,0). Assume that
A =Ve (R) > 0, and for every x1 € [u1, 1], for every xo € [ug, 1] and for every xs € [us, 1],
define

Rzl = [ul,:z:l] X [UQ, 1] X [Ug, 1],
R$2 - [ul? 1] X [UQ,.I'Q] X [Ug, 1]7
Rx3 = [ul, 1] X [UQ, 1] X [Ud,l‘s] .

Let C : T3 — T be defined by

o) - oy (Yol Yelfe) Yelied) 4 v, ([0,7])1\ [0.7]) i en

C <§) otherwise
for all T = (71,22, 23) € I3, where U= (u1,ug,us). Then C is a 3-copula.

Theorem 2.60 is generalized to larger dimentions as follows.

Theorem 2.61. [5, Theorem 3.4] For every n > 3, let C' and Cy be two n-copulas and
let R := [E, 1] where u = (ui,ug,...,up) € [0,1)". Assume that X\ := Ve (R) > 0, and
for every i € {1,...,n} and for every x; € (u;, 1] define Ry, = [u1,1] X ... X [u;—1,1] x

[wi, ;] X [wip1, 1] X oo X [up, 1]. Let (C@ C1> :I™ — T be defined by

m(%@Q”J@@§+%qaﬂ\p;Diﬁea

C (E\) otherwise

for all T = (x1,x9,...,2y) € I". Then (C' W Cl> 18 an n-copula.

u
What follows is an example for Theorem 2.61 where n = 3, C' = M3, C; = II?, and

R=[h1] x [5.1] x [3.1].

_ 1 1 1 3 3
Example 2.62. Let R = [5,1] X [5,1] X [5,1] . Then, <M &J% 1I > defined by

11
2120
M3
< (3

is a 3-copula.

drixowy — 2 (:L‘ll'g + x173 + :Ugl’g)

vl (E

N
~—

H3> (z1,72,23) = + 21+ 29+ 23 if?eR,

)

min (x1, x2, x3) otherwise
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Let S: J] ({0} U [u;, 1]) — T be defined by S = (C’ W Cl) on its domain. Then, S
=1 u

1=
is a subcopula such that

5(2) = ao () Tl Ly ([0.3]0 [0.3])

for all € R and one of its extensions is the copula <C S Cl> .
u
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