
CHAPTER 2

Preliminaries

Let [−∞,∞] denote the set of extended real numbers.

For any a, b ∈ [−∞,∞] in which a ≤ b, denote (a, b] := {x ∈ [−∞,∞] |a < x ≤ b} ,

[a, b] := {x ∈ [−∞,∞] |a ≤ x ≤ b} , and I := [0, 1] .

If
⇀
a ∈ [−∞,∞]n , then it means that

⇀
a = (a1, a2, . . . , an) where ai ∈ [−∞,∞] for

all i.

For any real number k, denote
⇀
k := (k, k, . . . , k) .

We will write
⇀
a ≤

⇀
b whenever ai ≤ bi for all i and

⇀
a <

⇀
b whenever ai < bi for all

i.

For
⇀
a ≤

⇀
b , denote

(
⇀
a ,

⇀
b

]
:=

n∏
i=1

(ai, bi] and an n-box

[
⇀
a ,

⇀
b

]
:=

n∏
i=1

[ai, bi] .

2.1 Distribution Functions

Definition 2.1. A subset A of [−∞,∞] is said to be discrete if

inf
y∈A\{x}

|x− y| > 0

for all x ∈ A.

Note that any discrete subset of [−∞,∞] is countable.

Definition 2.2. Let f : [a, b] → [−∞,∞] . Then f is said to be nondecreasing if

f (x) ≤ f (y)

whenever a ≤ x ≤ y ≤ b.

Definition 2.3. Let f : [a, b] → I. Then f is said to be continuous from the right if for

every x ∈ [a, b] and every ϵ > 0, there exists δ > 0 such that

|f (x)− f (y)| < ϵ

whenever a ≤ x ≤ y < x+ δ ≤ b.

Definition 2.4. Let f : [−∞,∞] → I. Then f is called a distribution function if it satisfies

the following properties
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1. lim
x→−∞

f (x) = 0 and lim
x→∞

f (x) = 1,

2. f is nondecreasing, and

3. f is continuous from the right.

If a function f : I → I is nondecreasing, continuous from the right, f (0) = 0, and

f (1) = 1, then the function f can be extended to a distribution function by additionally

defining f (x) = 0 when x < 0 and f (x) = 1 when x > 1.

Example 2.5. For each a ∈ (−∞,∞) , a function δa : [−∞,∞] → {0, 1} defined by

δa (x) =

0 if x ∈ [−∞, a) ,

1 if x ∈ [a,∞]

is a distribution function.

Proof. Let a ∈ (−∞,∞) .

1. It is obvious that δa (−∞) = 0 and lim
x→∞

δa (x) = 1.

2. Next, we show that f is nondecreasing. Let x ≤ y. If x = y, there is nothing to

prove. Assume that x < y. There are three cases to consider.

Case 1. a ≤ x < y

In this case, δa (x) = 1 = δa (y) .

Case 2. x < a ≤ y

In this case, 0 = ϵa (x) < δa (y) = 1.

Case 3. x < y < a

In this case, δa (x) = 0 = δa (y) .

Therefore, δa (x) ≤ δa (y) whenever x ≤ y.

3. Last, we show that δa is continuous from the right.

Let x ∈ [−∞,∞] and ϵ > 0. There are two cases to consider.

Case 1. x ≥ a

Choose δ = ϵ > 0.

For any y ∈ [x, x+ δ) , |δa (y)− δa (x)| = |1− 1| = 0 < ϵ.
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Case 2. x < a

Choose δ = a−x
2 > 0.

For any y ∈ [x, x+ δ) , |δa (y)− δa (x)| = |0− 0| = 0 < ϵ.

Thus, δa is continuous from the right.

By 1., 2., and 3., δa is a distribution function.

Definition 2.6. For any H : Θ× R → R, define the difference △b
aH : Θ → R by setting

△b
aH (θ) = H (θ, b)−H (θ, a)

for all θ ∈ Θ and a, b ∈ R in which a ≤ b.

Definition 2.7. Let Ai ⊆ [−∞,∞] for all i = 1, 2, . . . , n. For any H :
n∏

i=1
Ai → I, define

VH by setting

VH

(
n∏

i=1

(ai, bi]

)
:= △b1

a1 · · · △
bn
an H

for all ai, bi ∈ Ai in which ai ≤ bi.

Example 2.8. Let H : [−∞,∞]2 → I. We have △b2
a2H (t) = H (t, b2)−H (t, a2) and

VH ((a1, b1]× (a2, b2]) = △b1
a1 △

b2
a2 H

= △b1
a1

(
△b2

a2H
)

= △b2
a2H (b1)−△b2

a2H (a1)

= (H (b1, b2)−H (b1, a2))− (H (a1, b2)−H (a1, a2))

= H (b1, b2)−H (b1, a2)−H (a1, b2) +H (a1, a2)

for all a1, a2, b1, b2 ∈ [−∞,∞] in which a1 ≤ b1 and a2 ≤ b2.

Proposition 2.9. Let Ai ⊆ [−∞,∞] for all i = 1, 2, . . . , n. For any H :
n∏

i=1
Ai → I and

all ai, bi ∈ Ai in which ai ≤ bi,

VH

(
n∏

i=1

(ai, bi]

)
:=

∑
⇀
v ∈

n∏
i=1

{ai,bi}

(−1)
N
(
⇀
v
)
H
(
⇀
v
)
,

where N
(
⇀
v
)
is the number of i such that vi = ai.
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Definition 2.10. Let Ai ⊆ [−∞,∞] for all i = 1, 2, . . . , n. A function H :
n∏

i=1
Ai → I is

said to be n-increasing if

VH

(
n∏

i=1

(ai, bi]

)
≥ 0,

for all ai, bi ∈ Ai in which ai ≤ bi.

Definition 2.11. Let Ai ⊆ [−∞,∞] for all i = 1, 2, . . . , n. A function H :
n∏

i=1
Ai → I is

said to be continuous from the right in each argument if, for each k = 1, 2, . . . , n and each

ϵ > 0, there exists δ > 0 such that

|H (x1, x2, . . . , xk, . . . , xn)−H (x1, x2, . . . , yk, . . . , xn)| < ϵ

for all (x1, x2, . . . , xn) ∈
n∏

i=1
Ai and all yk ∈ Ak ∩ (xk, xk + δ] .

Definition 2.12. Let H : [−∞,∞]n → I. Then H is called a joint distribution function

if it satisfies the following properties

1. lim
xi→−∞,∃i

H
(
⇀
x
)
= 0,

2. lim
xi→∞,∀i

H
(
⇀
x
)
= 1,

3. H is n-increasing, and

4. H is continuous from the right in each argument.

Let H be a joint distribution function. For each i = 1, 2, ..., n, the function Fi :

[−∞,∞] → I defined by Fi (xi) = H
(
⇀
x
)
, where all the coordinates of

⇀
x are equal to ∞

except possibly xi, is called a marginal distribution function of H.

Remark 2.13. Every marginal distribution function is a distribution function.

Example 2.14. A function δ0 : [−∞,∞]2 → I defined by

δ0 (x, y) =

1 if x ≥ 0, y ≥ 0,

0 otherwise

is a joint distribution function.

Proof. Let x, y ∈ [−∞,∞] . It is obvious that

1. δ0 (x,−∞) = 0 and δ0 (−∞, y) = 0, and

2. lim
x→∞

lim
y→∞

δ0 (x, y) = lim
y→∞

lim
x→∞

δ0 (x, y) = 1.
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Next, we show that δ0 is 2 -increasing. Let a, b, c, d ∈ [−∞,∞] be such that a ≤ b

and c ≤ d. To show that Vδ0 ((a, b]× (c, d]) ≥ 0, there are nine cases to consider.

Case 1. b ≥ a ≥ 0 and d ≥ c ≥ 0

In this case,

Vδ0 ((a, b]× (c, d]) = δ0 (b, d) + δ0 (a, c)− δ0 (b, c)− δ0 (a, d)

= 1 + 1− 1− 1

= 0.

Case 2. b ≥ a ≥ 0 and d ≥ 0 ≥ c

In this case,

Vδ0 ((a, b]× (c, d]) = δ0 (b, d) + δ0 (a, c)− δ0 (b, c)− δ0 (a, d)

= 1 + 0− 0− 1

= 0.

Case 3. b ≥ a ≥ 0 and 0 ≥ d ≥ c

In this case,

Vδ0 ((a, b]× (c, d]) = δ0 (b, d) + δ0 (a, c)− δ0 (b, c)− δ0 (a, d)

= 0 + 0− 0− 0

= 0.

Case 4. b ≥ 0 ≥ a and d ≥ c ≥ 0

In this case,

Vδ0 ((a, b]× (c, d]) = δ0 (b, d) + δ0 (a, c)− δ0 (b, c)− δ0 (a, d)

= 1 + 0− 0− 1

= 0.

Case 5. b ≥ 0 ≥ a and d ≥ 0 ≥ c

In this case,

Vδ0 ((a, b]× (c, d]) = δ0 (b, d) + δ0 (a, c)− δ0 (b, c)− δ0 (a, d)

= 1 + 0− 0− 0

= 1 > 0.
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Case 6. b ≥ 0 ≥ a and 0 ≥ d ≥ c

In this case,

Vδ0 ((a, b]× (c, d]) = δ0 (b, d) + δ0 (a, c)− δ0 (b, c)− δ0 (a, d)

= 0 + 0− 0− 0

= 0.

Case 7. 0 ≥ b ≥ a and d ≥ 0 ≥ c

In this case,

Vδ0 ((a, b]× (c, d]) = δ0 (b, d) + δ0 (a, c)− δ0 (b, c)− δ0 (a, d)

= 0 + 0− 0− 0

= 0.

Case 8. 0 ≥ b ≥ a and d ≥ c ≥ 0

In this case,

Vδ0 ((a, b]× (c, d]) = δ0 (b, d) + δ0 (a, c)− δ0 (b, c)− δ0 (a, d)

= 0 + 0− 0− 0

= 0.

Case 9. 0 ≥ b ≥ a and 0 ≥ d ≥ c

In this case,

Vδ0 ((a, b]× (c, d]) = δ0 (b, d) + δ0 (a, c)− δ0 (b, c)− δ0 (a, d)

= 0 + 0− 0− 0

= 0.

Thus, Vδ0 ((a, b]× (c, d]) ≥ 0, ∀ (a, b]× (c, d] ⊂ [−∞,∞]2 .

Finally, we show that δ0 is continuous from the right in each argument.

Let x, y ∈ [−∞,∞] and ϵ > 0. There are four cases to consider.

Case 1. x ≥ 0, y ≥ 0

Choose δ = ϵ > 0.

For any x+ ∈ [x, x+ δ) , |δ0 (x, y)− δ0 (x
+, y)| = |1− 1| = 0 < ϵ.

Case 2. x < 0, y ≥ 0

Choose δ1 = −x
2 > 0 and δ2 = ϵ > 0.

For any x+ ∈ [x, x+ δ1) , |δ0 (x, y)− δ0 (x
+, y)| = |0− 0| = 0 < ϵ

and for any y+ ∈ [y, y + δ2) , |δ0 (x, y+)− δ0 (x, y)| = |0− 0| = 0 < ϵ.
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Case 3. x ≥ 0, y < 0

Choose δ1 = ϵ > 0 and δ2 = −y
2 > 0.

For any x+ ∈ [x, x+ δ1) , |δ0 (x, y)− δ0 (x
+, y)| = |0− 0| = 0 < ϵ

and for any y+ ∈ [y, y + δ2) , |δ0 (x, y+)− δ0 (x, y)| = |0− 0| = 0 < ϵ.

Case 4. x < 0, y < 0

Choose δ1 = −x
2 > 0 and δ2 = −y

2 > 0.

For any x+ ∈ [x, x+ δ1) , |δ0 (x, y)− δ0 (x
+, y)| = |0− 0| = 0 < ϵ

and for any y+ ∈ [y, y + δ2) , |δ0 (x, y+)− δ0 (x, y)| = |0− 0| = 0 < ϵ.

Thus, δ0 is continuous from the right in each argument.

Therefore, δ0 is a joint distribution.

If F : [−∞,∞] → I is defined by

F (x) =

1 if x ≥ 0,

0 if x < 0

and G : [−∞,∞] → I is defined by

G (y) =

1 if y ≥ 0,

0 if y < 0

then F and G are marginal distribution functions of δ0.

Theorem 2.15. Let H : In → I be a function satisfying the following properties

1. H
(
⇀
x
)
= 0 whenever at least one coordinate of

⇀
x is equal to 0,

2. H
(⇀
1
)
= 1,

3. H is n-increasing, and

4. H is continuous from the right in each argument.

Define Ĥ : [−∞,∞]n → I by

Ĥ
(
⇀
x
)
= H ((x1 ∨ 0) ∧ 1, (x2 ∨ 0) ∧ 1, . . . , (xn ∨ 0) ∧ 1)

for each
⇀
x = (x1, x2, . . . , xn) ∈ [−∞,∞]n . Then Ĥ is a joint distribution function and

coincides with H on In.
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Proof. Let
⇀
x = (x1, x2, . . . , xn) ∈ [−∞,∞]n and δ : [−∞,∞] → I be defined by δ (x) =

(x ∨ 0) ∧ 1. We have

Ĥ
(
⇀
x
)

= H ((x1 ∨ 0) ∧ 1, (x2 ∨ 0) ∧ 1, . . . , (xn ∨ 0) ∧ 1)

= H (x1, x2, . . . , xn)

= H
(
⇀
x
)

for any
⇀
x ∈ In. Thus, Ĥ coincides with H on In.

Next, we show that Ĥ is a joint distribution function.

1. If there is at least one coordinate of
⇀
x which is equal to −∞, says xk = −∞, then

Ĥ
(
⇀
x
)

= H (δ (x1) , δ (x2) , . . . , δ (xk) , . . . , δ (xn))

= H (δ (x1) , δ (x2) , . . . , δ (−∞) , . . . , δ (xn))

= H (δ (x1) , δ (x2) , . . . , 0, . . . , δ (xn))

= 0.

2. Let xi → ∞ for all i = 1, 2, . . . , n. We have xi > 1 for all i. It follows that

lim
xi→∞,∀i

Ĥ (x1, x2, . . . , xn) = lim
xi→∞,∀i

H (δ (x1) , δ (x2) , . . . , δ (xn))

= lim
xi→∞,∀i

H (1, 1, . . . , 1)

= H (1, 1, . . . , 1)

= 1.

3. Let

(
⇀
a ,

⇀
b

]
⊂ [−∞,∞]n . Since

⇀
0 ≤

⇀

δ (a) ≤
⇀

δ (b) ≤
⇀
1 , it follows that

VĤ

((
⇀
a ,

⇀
b

])
=

∑
(u1,u2,...,un)∈

n∏
i=1

{ai,bi}

(−1)N(u1,u2,...,un) Ĥ (u1, u2, . . . , un)

=
∑

(u1,u2,...,un)∈
n∏

i=1
{ai,bi}

(−1)N(u1,u2,...,un)H (δ (u1) , δ (u2) , . . . , δ (un))

=
∑

(v1,v2,...,vn)∈
n∏

i=1
{δ(ai),δ(bi)}

(−1)N(v1,v2,...,vn)H (v1, v2, . . . , vn)

= VH

((
⇀

δ (a),
⇀

δ (b)

])
≥ 0.

4. Next, we show that Ĥ is continuous from the right in each argument. Let i ∈

{1, 2, . . . , n} and ϵ > 0. There are three cases to consider.
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Case 1. xi < 0

By choosing γ = −xi > 0, we have∣∣∣Ĥ (x1, x2, . . . , xi, . . . , xn)− Ĥ (x1, x2, . . . , yi, . . . , xn)
∣∣∣

= |H (δ (x1) , δ (x2) , . . . , δ (xi) , . . . , δ (xn))

−H (δ (x1) , δ (x2) , . . . , δ (yi) , . . . , δ (xn))|

= |H (δ (x1) , δ (x2) , . . . , 0, . . . , δ (xn))

−H (δ (x1) , δ (x2) , . . . 0, . . . , δ (xn))|

=0

<ϵ

for all yi ∈ [xi, xi + γ) = [xi, xi + (−xi)) = [xi, 0) .

Case 2. 0 ≤ xi ≤ 1

Since Ĥ = H on I and H is continuous from the right in each argument,

there is nothing to prove in this case.

Case 3. xi > 1

By choosing γ = ϵ > 0, we have∣∣∣Ĥ (x1, x2, . . . , xi, . . . , xn)− Ĥ (x1, x2, . . . , yi, . . . , xn)
∣∣∣

= |H (δ (x1) , δ (x2) , . . . , δ (xi) , . . . , δ (xn))

−H (δ (x1) , δ (x2) , . . . , δ (yi) , . . . , δ (xn))|

= |H (δ (x1) , δ (x2) , . . . , 1, . . . , δ (xn))

−H (δ (x1) , δ (x2) , . . . 1, . . . , δ (xn))|

=0

<ϵ

for all yi ∈ [xi, xi + γ) = [xi, xi + ϵ) .

By 1. - 4., we conclude that Ĥ is a joint distribution function and coincides with

H on In.

A function on In with the properties 1. - 4. in Theorem 2.15 can be considered as a

joint distribution function because it can be extended to a joint distribution function by

Theorem 2.15.
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2.2 Probability Measures

Definition 2.16. Let Ω be a nonempty set and 2Ω denote the power set of Ω. A class

Σ ⊆ 2Ω is called a σ-algebra on Ω if it satisfies the following properties

1. ∅ ∈ Σ,

2. if E ∈ Σ, then EC = Ω \ E ∈ Σ, and

3. if E1, E2, E3, . . . ∈ Σ, then
∞∪
k=1

Ek ∈ Σ.

The ordered pair (Ω,Σ) is called a measurable space and the elements of Σ are called

measurable sets.

Let Ω be a nonempty set. For any Λ ⊆ 2Ω, denote the intersection of all σ-algebras

containing Λ by σ (Λ) . Note that σ (Λ) is the smallest σ-algebra containing Λ.

Definition 2.17. Let Ω ⊆ [−∞,∞]n where n ∈ N and O be the set of all open subsets of

Ω. Then σ (O) is called the Borel σ-algebra on Ω which specifically be denoted by B (Ω) .

The elements of B (Ω) are called Borel sets.

Theorem 2.18. Let Ω ⊆ [−∞,∞]n where n ∈ N and

Λ =

{(
n∏

i=1

(ai, bi]

)
∩ Ω | −∞ ≤ ai ≤ bi ≤ ∞ for all i = 1, 2, . . . , n

}
.

Then B (Ω) = σ (Λ) .

Definition 2.19. Let Ω be a nonempty set and Σ be a σ-algebra on Ω. A function

µ : Σ → I is called a probability measure if it satisfies the following properties

1. µ (∅) = 0 and µ (Ω) = 1, and

2. for any countable collection {Ei}i∈I of elements in Σ such that Ej ∩ Ek = ∅ when

j, k ∈ I and j ̸= k, µ

(
∪

i∈I
Ei

)
=
∑
i∈I

µ (Ei) .

Definition 2.20. Let B (I) be the Borel σ-algebra on I,

Γ :=

{
D ⊆ I | D =

n
∪

k=1
(ak, bk] for some n ∈ N such that (ai, bi] ∩ (aj , bj ] = ∅ whenever i ̸= j

}
∪{∅} ,

and τ : Γ → I be defined by τ (∅) = 0 and

τ

(
n
∪

k=1
(ak, bk]

)
:=

n∑
k=1

bk − ak
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where
n
∪

k=1
(ak, bk] ̸= ∅. A function λ : B (I) → I defined by

λ (A) := inf

{ ∞∑
n=1

τ (Dn) |A ⊆
∞∑
n=1

Dn, (Dn)
∞
n=1 ⊂ Γ

}

is called the Lebesgue measure on I.

Remark 2.21. λ is a probability measure on I.

Theorem 2.22. Let Ω be a nonempty set and Λ ⊆ 2Ω be nonempty and closed under

finite intersections. If P1 and P2 are probability measures on σ (Λ) such that P1 = P2 on

Λ, then P1 = P2 on σ (Λ) .

Theorem 2.23. Let Ai ⊆ [−∞,∞] for all i = 1, 2, . . . , n. Let H :
n∏

i=1
Ai → I and

S :=

{(
⇀
a ,

⇀
b

]
⊂

n∏
i=1

Ai | −∞ < ai ≤ bi < ∞ for all i = 1, 2, . . . , n

}
.

Then VH : S → I defined as in Definition 2.7 can be extended to a probability measure on

B

(
n∏

i=1
Ai

)
.

If H is continuous, then the measure VH satisfies

VH

([
⇀
a ,

⇀
b

])
= VH

((
⇀
a ,

⇀
b

])
,

and hence we may define

VH

(
n∏

i=1

[ai, bi]

)
:=

∑
⇀
v ∈

n∏
i=1

{ai,bi}

(−1)
N
(
⇀
v
)
H
(
⇀
v
)

directly where N
(
⇀
v
)
is the number of i such that vi = ai.

Definition 2.24. Let (Ω,A,P) be a probability space. A random variable is a Borel

measurable function from Ω to R. A random vector is a Borel measurable function from

Ω to Rn.

Definition 2.25. For any random variable X defined on a probability space (Ω,A,P),

its distribution function is a function FX defined by

FX (x) = P (X ≤ x)

for all x ∈ R.
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Definition 2.26. A random variable X defined on a probability space (Ω,A,P) is said

to be discrete if there exists a discrete subset A of R such that

P (X ∈ A) = 1,

that is, the support of the distribution function of X is discrete.

Definition 2.27. For any random vector (X1, . . . , Xn) defined on a probability space

(Ω,A,P), its (joint) distribution function is a function H defined by

H (x1, x2, . . . , xn) = P (X1 ≤ x1, . . . , Xn ≤ xn)

for all xi ∈ R where i = 1, 2, . . . , n.

Definition 2.28. A random vector (X1, X2, . . . , Xn) is said to be discrete if Xi is discrete

for all i = 1, 2, . . . , n.

2.3 Subcopulas and Copulas

Definition 2.29. Let Ai be subsets of I containing 0 and 1 for all i = 1, 2, . . . , n. Then

S :
n∏

i=1
Ai → I is called an n-subcopula (or, subcopula, for brevity) if it satisfies the following

properties

1. S is grounded, i.e., S
(
⇀
u
)
= 0 if

⇀
u has at least one coordinate which is equal to 0,

2. S has uniform marginals, i.e., S
(
⇀
u
)
= uk if all the coordinates of

⇀
u are equal to 1

except possibly uk, and

3. S is n-increasing.

A subcopula whose domain is In is called an n-copula (or, copula, for brevity).

Theorem 2.30. Every subcopula is uniformly continuous on its domain.

Definition 2.31. Let S be an n-subcopola. Then an n-copula C is called an extension

of S if

C
(
⇀
x
)
= S

(
⇀
x
)

(2.1)

for all
⇀
x in the domain of S.

Theorem 2.32. [1, Appendix 1] An extension of any n-subcopula always exists, that is,

given any n-subcopula S, there is an n-copula C satisfying Equation (2.1).
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What follows are a few simple but important examples of copulas. Let Mn,Πn and

Wn be given by

Mn
(
⇀
u
)

= min (u1, u2, . . . , un) ,

Πn
(
⇀
u
)

= u1u2 · · ·un,

Wn
(
⇀
u
)

= max (u1 + u2 + · · ·+ un − n+ 1, 0)

(2.2)

for all
⇀
u ∈ (u1, u2, . . . , un) ∈ In. The function Mn and Πn are n-copulas for all n ≥ 2.

The function Wn is a copula when n = 2 and fails to be an n-copula for any n > 2.

Example 2.33. The function Mn defined by Equation (2.2) is a copula.

Proof. Let
⇀
u ∈ In.

1. If
⇀
u has at least one coordinate which is equal to 0, then Mn

(
⇀
u
)
= 0.

2. If all the coordinates of
⇀
u are equal to 1 except possibly uk, then Mn

(
⇀
u
)
= uk

since 0 ≤ uk < 1.

3. Next, we show that Mn is n-increasing by proving that

VMn

([
⇀
a ,

⇀
b

])
= max (min (b1, b2, . . . , bn)−max (a1, a2, . . . , an) , 0)

for all n-box B :=

[
⇀
a ,

⇀
b

]
⊆ In.

Let

[
⇀
a ,

⇀
b

]
be an n-box. Rearrange a1, a2, . . . , an in ascending order and rename

them with r′is so that r1 ≤ r2 ≤ · · · ≤ rn = max (a1, a2, . . . , an) . Let si := bj

whenever ri = aj . We have ri ≤ si for all i = 1, 2, . . . , n and min (b1, b2, . . . , bn) =

s1 ≤ s2 ≤ · · · ≤ sn. Note that,

VMn

([
⇀
a ,

⇀
b

])
=

∑
⇀
v ∈

n∏
i=1

{ai,bi}

(−1)
N
(
⇀
v
)
Mn

(
⇀
v
)

=
∑

∀i,vi∈{ai,bi}

(−1)
N
(
⇀
v
)
min (v1, v2, . . . , vn)

=
∑

∀i,ui∈{ri,si}

(−1)
N
(
⇀
u
)
min (u1, u2, . . . , un)

=
∑

⇀
u∈

n∏
i=1

{ri,si}

(−1)
N
(
⇀
u
)
Mn

(
⇀
u
)

= VMn

([
⇀
r ,

⇀
s
])

.
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For each k = 1, 2, . . . , n, let Vk be the set of all elements of
n∏

i=1
{ri, si} such that the

first appearance of ri’s is at the kth coordinate.

Note that
n∏

i=1
{ri, si} =

(∪n−1
k=1 Vk

)
∪ {(s1, s2, . . . , rn) , (s1, s2, . . . , sn)} .

Let
⇀
v ∈ Vk, and, for each j = k+1, k+2, . . . , n, let

⇀
vrj and

⇀
vsj be the elements of Vk

such that all coordinates of
⇀
vrj and

⇀
vsj are the same except for the j th coordinate

which the j th coordinate of
⇀
vrj is rj and that of

⇀
vsj is sj .

Since rk ≤ rj ≤ sj for all j > k and min (s1, s2, . . . , sn) ≤ sj for all j, it follows

that if there exists i < k such that min (s1, s2, . . . , sn) ≤ si ≤ rk, then Mn
(
⇀
v
)
=

min (s1, s2, . . . , sn) . Hence,

Mn
(
⇀
v
)
=

min (s1, s2, . . . , sn) if min (s1, s2, . . . , sn) ≤ rk

rk otherwise.

Then,

Mn
(

⇀
vrj

)
= Mn

(
⇀
vsj

)
for all j = k+1, k+2, . . . , n. Since

⇀
vrj and

⇀
vsj are different at exactly one coordinate,

it follows that (−1)
N
(

⇀
vrj

)
+ (−1)

N
(

⇀
vsj

)
= 0. Hence,

(−1)
N
(

⇀
vrj

)
Mn

(
⇀
vrj

)
+ (−1)

N
(

⇀
vsj

)
Mn

(
⇀
vsj

)
= 0.

Thus,
∑

⇀
v ∈Vk

(−1)
N
(
⇀
v
)
Mn

(
⇀
v
)
= 0 for each k.

Since
n∏

i=1
{ri, si} =

(∪n−1
k=1 Vk

)
∪ {(s1, s2, . . . , rn) , (s1, s2, . . . , sn)} , it follows that

VMn

([
⇀
r ,

⇀
s
])

=
∑

⇀
v ∈

n∏
i=1

{ri,si}

(−1)
N
(
⇀
v
)
Mn

(
⇀
v
)

=
∑

⇀
v ∈(

∪n−1
k=1 Vk)∪{(s1,s2,...,rn),(s1,s2,...,sn)}

(−1)
N
(
⇀
v
)
Mn

(
⇀
v
)

=
∑

⇀
v ∈
∪n−1

k=1 Vk

(−1)
N
(
⇀
v
)
Mn

(
⇀
v
)

+(−1)N((s1,s2,...,rn))Mn ((s1, s2, . . . , rn))

+ (−1)N((s1,s2,...,sn))Mn ((s1, s2, . . . , sn))

= 0 + (−1)(1)Mn ((s1, s2, . . . , rn)) + (−1)(0)Mn ((s1, s2, . . . , sn))

= Mn ((s1, s2, . . . , sn))−Mn ((s1, s2, . . . , rn))

= min (s1, s2, . . . , sn)−min (s1, s2, . . . , rn) .
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Thus, we have VMn

([
⇀
r ,

⇀
s
])

depends on rn. There are two cases to consider.

Case 1. min (s1, s2, . . . , sn) < rn

Then min (s1, s2, . . . , sn) = min (s1, s2, . . . , rn) .

Thus,

VMn

([
⇀
r ,

⇀
s
])

= min (s1, s2, . . . , sn)−min (s1, s2, . . . , rn)

= 0

= max (min (s1, s2, . . . , sn)− rn, 0)

= max (min (b1, b2, . . . , bn)−max (a1, a2, . . . , an) , 0) .

Case 2. min (s1, s2, . . . , sn) ≥ rn

Since si ≥ min (s1, s2, . . . , sn) ≥ rn for all i, it follows that

min (s1, s2, . . . , rn) = rn

= max (r1, r2, . . . , rn)

= max (a1, a2, . . . , an) .

Thus,

VMn

([
⇀
r ,

⇀
s
])

= min (s1, s2, . . . , sn)−min (s1, s2, . . . , rn)

= min (s1, s2, . . . , sn)− rn

= min (b1, b2, . . . , bn)−max (a1, a2, . . . , an)

= max (min (b1, b2, . . . , bn)−max (a1, a2, . . . , an) , 0) .

Therefore,

VMn

([
⇀
a ,

⇀
b

])
= VMn

([
⇀
r ,

⇀
s
])

= max (min (b1, b2, . . . , bn)−max (a1, a2, . . . , an) , 0)

≥ 0.

By 1.-3., we conclude that Mn is a copula.

Example 2.34. The function Πn : In → I defined by Equation (2.2) is an n-copula.

Proof. Let
⇀
u = (u1, u2, . . . , un) ∈ In.

1. If
⇀
u has at least one coordinate which is equal to 0, then Πn

(
⇀
u
)
= 0.
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2. If all the coordinates of
⇀
u are equal to 1 except possibly uk, then Πn

(
⇀
u
)
= uk.

3. Next, we show that Πn is n-increasing. Let

[
⇀
a ,

⇀
b

]
be an n-box. Since bi − ai ≥ 0

for all i and

(b1 − a1) (b2 − a2) · · · (bn − an) =
∑

∀i=1,2,...,n;vi∈{bi,−ai}

v1v2 · · · vn

=
∑

∀i=1,2,...,n;vi∈{bi,−ai}

Πn (v1, v2, · · · , vn)

=
∑

⇀
v ∈

n
Π
i=1

{bi,−ai}

Πn
(
⇀
v
)

=
∑

⇀
v ∈

n
Π
i=1

{bi,ai}

(−1)
N
(
⇀
v
)
Πn
(
⇀
v
)

= VΠn

([
⇀
a ,

⇀
b

])
,

it follows that VΠn

([
⇀
a ,

⇀
b

])
= (b1 − a1) (b2 − a2) · · · (bn − an) ≥ 0. Hence, Πn is

n-increasing.

By 1.-3., Πn is a copula.

Example 2.35. The function Wn : In → I defined by Equation (2.2) is a copula when

n = 2 but it fails to be an n-copula for any n > 2.

Proof. Let u, v ∈ I, then

1.

W 2 (u, 0) = max (u+ 0− 1, 0)

= max (u− 1, 0)

= 0

and

W 2 (0, v) = max (0 + v − 1, 0)

= max (v − 1, 0)

= 0,
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2.

W 2 (u, 1) = max (u+ 1− 1, 0)

= max (u, 0)

= 0

and

W 2 (1, v) = max (1 + v − 1, 0)

= max (v, 0)

= v.

3. Next, we show that W 2 is 2 -increasing. Let m,n, s, t ∈ I be such that m ≤ n and

s ≤ t. There are nine cases to consider.

Case 1. m+ s− 1 < m+ t− 1 < 0 and n+ s− 1 < n+ t− 1 < 0

Thus,

VW 2 ([m,n]× [s, t]) = W 2 (n, t) +W 2 (m, s)−W 2 (n, s)−W 2 (m, t)

= max (n+ t− 1, 0) + max (m+ s− 1, 0)

−max (n+ s− 1, 0)−max (m+ t− 1, 0)

= 0 + 0− 0− 0

= 0.

Case 2. m+ s− 1 < m+ t− 1 < 0 and n+ s− 1 < 0 ≤ n+ t− 1

Thus,

VW 2 ([m,n]× [s, t]) = W 2 (n, t) +W 2 (m, s)−W 2 (n, s)−W 2 (m, t)

= max (n+ t− 1, 0) + max (m+ s− 1, 0)

−max (n+ s− 1, 0)−max (m+ t− 1, 0)

= n+ t− 1 ≥ 0.

Case 3. m+ s− 1 < m+ t− 1 < 0 and 0 ≤ n+ s− 1 < n+ t− 1

Thus,

VW 2 ([m,n]× [s, t]) = W 2 (n, t) +W 2 (m, s)−W 2 (n, s)−W 2 (m, t)

= max (n+ t− 1, 0) + max (m+ s− 1, 0)

−max (n+ s− 1, 0)−max (m+ t− 1, 0)

= (n+ t− 1) + 0− (n+ s− 1)− 0

= t− s ≥ 0.
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Case 4. m+ s− 1 < 0 ≤ m+ t− 1 and n+ s− 1 < n+ t− 1 < 0

Since m < n, it follows that 0 ≤ m + t − 1 < n + t − 1 < 0 which is a

contradiction. Thus, this case is impossible.

Case 5. m+ s− 1 < 0 ≤ m+ t− 1 and 0 ≤ n+ s− 1 ≤ n+ t− 1

Thus,

VW 2 ([m,n]× [s, t]) = W 2 (n, t) +W 2 (m, s)−W 2 (n, s)−W 2 (m, t)

= max (n+ t− 1, 0) + max (m+ s− 1, 0)

−max (n+ s− 1, 0)−max (m+ t− 1, 0)

= (n+ t− 1)− (n+ s− 1)− 0− (m+ t− 1)

= 1− s−m > 0.

Case 6. m+ s− 1 < 0 ≤ m+ t− 1 and n+ s− 1 < 0 ≤ n+ t− 1

Thus,

VW 2 ([m,n]× [s, t]) = W 2 (n, t) +W 2 (m, s)−W 2 (n, s)−W 2 (m, t)

= max (n+ t− 1, 0) + max (m+ s− 1, 0)

−max (n+ s− 1, 0)−max (m+ t− 1, 0)

= (n+ t− 1)− (m+ t− 1)

= n−m > 0.

Case 7. 0 ≤ m+ s− 1 < m+ t− 1 and n+ s− 1 < n+ t− 1 < 0

Since m < n, it follows that 0 ≤ m + s − 1 < n + s − 1 < 0 which is a

contradiction. Thus, this case is impossible.

Case 8. 0 ≤ m+ s− 1 < m+ t− 1 and n+ s− 1 < 0 ≤ n+ t− 1

Since m < n, it follows that 0 ≤ m + s − 1 < n + s − 1 < 0 which is a

contradiction. Thus, this case is impossible.

Case 9. 0 ≤ m+ s− 1 < m+ t− 1 and 0 ≤ n+ s− 1 < n+ t− 1

Thus,

VW 2 ([m,n]× [s, t]) = W 2 (n, t) +W 2 (m, s)−W 2 (n, s)−W 2 (m, t)

= max (n+ t− 1, 0) + max (m+ s− 1, 0)

−max (n+ s− 1, 0)−max (m+ t− 1, 0)

= (n+ t− 1) + (m+ s− 1)

− (n+ s− 1)− (m+ t− 1)

= 0.
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By all of the nine cases, VW 2 ([m,n]× [s, t]) ≥ 0, ∀ [m,n] , [s, t] ⊆ I.

Therefore, W 2 is a copula.

Next, we show that

VWn

([⇀
1

2
,
⇀
1

])
= 1− n

2

for any n > 2 and hence, Wn fails to be an n-copula.

Since
⇀
v = (v1, v2, . . . , vn) ∈

n∏
i=1

{
1
2 , 1
}
, we have

Wn
(
⇀
v
)

= max (v1 + v2 + · · ·+ vn − n+ 1, 0)

= max

(
N
(
⇀
v
)(1

2

)
+
(
n−N

(
⇀
v
))

(1)− n+ 1, 0

)

= max

N
(
⇀
v
)

2
+ n−N

(
⇀
v
)
− n+ 1, 0


= max

1−
N
(
⇀
v
)

2
, 0

 .

There are three cases to consider since Wn
(
⇀
v
)
depends on N

(
⇀
v
)
.

Case 1. N
(
⇀
v
)
≥ 2

By dividing both sides of the inequality by 2, we have
N
(
⇀
v
)

2 ≥ 1, and then

1−
N
(
⇀
v
)

2 ≤ 0

Thus, (−1)
N
(
⇀
v
)
Wn

(
⇀
v
)
= (−1)

N
(
⇀
v
)
(0) = 0.

Case 2. N
(
⇀
v
)
= 1

Since N
(
⇀
v
)
= 1, it follows that all the coordinates of

⇀
v are equal to 1 except

possiply vk which is equal to 1
2 .

Thus, Wn
(
⇀
v
)
= max

(
1−

N
(
⇀
v
)

2 , 0

)
= max

(
1− 1

2 , 0
)
= 1

2 .

Then, (−1)
N
(
⇀
v
)
Wn

(
⇀
v
)
= (−1)1

(
1
2

)
= −1

2 .

Case 3. N
(
⇀
v
)
= 0

Since N
(
⇀
v
)
= 0, it follows that

⇀
v =

⇀
1 .

Thus, we have Wn
(⇀
1
)
= max

(
1− 0

2 , 0
)
= 1.

Then, (−1)
N
(
⇀
v
)
Wn

(⇀
1
)
= (−1)0 (1) = 1.
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Since VWn

([⇀
1
2 ,

⇀
1

])
=

∑
⇀
v ∈

n∏
i=1

{ai,bi}

(−1)
N
(
⇀
v
)
Wn

(
⇀
v
)
and n > 2, it follows that

VWn

([⇀
1

2
,
⇀
1

])
= 0 +

(
−1

2

)
(n) + 1

= 1− n

2

< 0.

Therefore, Wn is not n-increasing for n > 2. Hence, it fails to be an n-copula for n > 2.

Theorem 2.36. [10, Theorem 2.10.12] If S is an n-subcopula, then

Wn
(
⇀
u
)
≤ S

(
⇀
u
)
≤ Mn

(
⇀
u
)

(2.3)

for every
⇀
u in the domain of S.

The functions Wn and Mn are known as the Fréchet-Hoeffding bounds.

By Theorem 2.36, we have

Wn
(
⇀
u
)
≤ C

(
⇀
u
)
≤ Mn

(
⇀
u
)

(2.4)

for any copula C and all
⇀
u ∈ In since any copula is a subcopula.

Theorem 2.37. (Sklar’s Theorem) Let H be a joint distribution function with marginal

distribution functions F1, F2, ..., Fn. Then there exists an n-copula C such that

H (x1, x2, ..., xn) = C (F1 (x1) , F2 (x2) , ..., Fn (xn)) (2.5)

for all
⇀
x = (x1, x2, . . . , xn) ∈ [−∞,∞]n . Moreover, C is uniquely determined on Ran (F1)×

Ran (F2)× ...×Ran (Fn) , where Ran (Fi) denote the range of Fi, for all i ∈ {1, 2, ..., n} .

Conversely, if C is an n-copula and F1, F2, ..., Fn are distribution functions, then the func-

tion H defined by equation (2.5) is a joint distribution functions with marginal distribution

functions F1, F2, ..., Fn.

2.4 Subcopula Extensions

In 2002, Carley [3] found the maximum and minimum extensions of a given finite

bivariate subcopula as Theorem 2.38 and Theorem 2.39 below.
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Theorem 2.38. [3, Theorem 1] Let S be a bivariate subcopula whose domain is {a0, a1, . . . , am}×

{b0, b1, . . . , bn} , where 0 = a0 < a1 < · · · < am = 1 and 0 = b0 < b1 < · · · < bn = 1 and

the blocks of I2 associated with S be the rectangles of the form Bij = [ai−1, ai]× [bj−1, bj ] ,

1 ≤ i ≤ m, 1 ≤ j ≤ n. Then, MS : I2 → I defined by

MS (x, y) =
∑
i,j

max (min (x− αij , y − βij , VS (Bij)) , 0) ,

where

α11 = 0, β11 = 0,

αi,j+1 = αij + VS (Bij) , βi+1,j = βij + VS (Bij) ,

αi+1,1 = αim + VS (Bim) , β1,j+1 = βnj + VS (Bnj)

is the maximum extension of S.

Theorem 2.39. [3, Theorem 2] Let S be a bivariate subcopula whose domain is {a0, a1, . . . , am}×

{b0, b1, . . . , bn} , where 0 = a0 < a1 < · · · < am = 1 and 0 = b0 < b1 < · · · < bn = 1 and

the blocks of I2 associated with S be the rectangles of the form Bij = [ai−1, ai]× [bj−1, bj ] ,

1 ≤ i ≤ m, 1 ≤ j ≤ n. Then, WS : I2 → I defined by

WS (x, y) =
∑
i,j

max [min (x− γij , VS (Bij)) + min (y − δij , VS (Bij))− VS (Bij) , 0] ,

where

γ1m = 0, δn1 = 0,

γi,m−j = γi,m−j+1 + VS (Bi,m−j+1) , δn−i,j = δn−i+1,j + VS (Bn−i+1,j) ,

γi,m = γ1,i−1 + VS (B1,i−1) , δn,j = δ1,j−1 + VS (B1,j−1)

is the minimum extension of S.

Example 2.40. Let S :
{
0, 12 , 1

}
×
{
0, 34 , 1

}
→ I be defined by S (a, b) = ab. All corre-

sponding constants related to MS and WS are given in the figure 2.1. Thus, we have

MS (x, y) = max

(
min

(
x, y,

3

8

)
, 0

)
+max

(
min

(
x− 1

2
, y − 3

8
,
3

8

)
, 0

)
+max

(
min

(
x− 3

8
, y − 3

4
,
1

8

)
, 0

)
+max

(
min

(
x− 7

8
, y − 7

8
,
1

8

)
, 0

)
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Figure 2.1: The corresponding constants related to MS and WS

is the maximum extension of S and

WS (x, y) = max

[
min

(
x− 1

8
,
3

8

)
+min

(
y − 3

8
,
3

8

)
− 3

8
, 0

]
+max

[
min

(
x− 5

8
,
3

8

)
+min

(
y,

3

8

)
− 3

8
, 0

]
+max

[
min

(
x,

1

8

)
+min

(
y − 7

8
,
1

8

)
− 1

8
, 0

]
+max

[
min

(
x− 1

2
,
1

8

)
+min

(
y − 3

4
,
1

8

)
− 1

8
, 0

]
is the minimum extension of S.

In 2007, Klement, Kolesrov, Mesiar, and Sempi [6] defined horizontal b-section of
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the copula C by fixing the second coordinate of a bivariate copula C with a constant

b ∈ (0, 1) . The precise definition of horizontal b-section is given as follows.

Definition 2.41. Let b ∈ (0, 1) be a fixed number. The horizontal b-section of a bivariate

copula C is the function hC,b : I → I given by

hC,b (x) = C (x, b)

for all x ∈ I.

Remark 2.42. All horizontal b-sections of copulas are nondecreasing and 1-Lipschitz

functions.

Let W 2 and M2 be the Fréchet-Hoeffding lower and upper bounds of bivariate

copulas as previously defined by Equation (2.2). Thus,

hW 2,b ≤ hC,b ≤ hM2,b (2.6)

for any bivariate copula C. Klement et al. [6] considered nondecreasing and 1-Lipschitz

functions h such that

max (x+ b− 1, 0) ≤ h (x) ≤ min (x, b) (2.7)

for a fixed b in (0, 1) and all x ∈ I and provided a copula, the greatest copula, and the

smallest copula such that their horizontal b-sections coincide with h.

More precisely, let Hb be the set of all nondecreasing, 1-Lipschitz functions h sat-

isfying the same bounds as in Inequality (2.6) for a fixed b ∈ (0, 1) . Then a copula, the

greatest copula, and the smallest copula such that their horizontal b-sections coincide

with h are given in Theorem 2.43, Theorem 2.44, and Theorem 2.45, respectively.

Theorem 2.43. [6, Proposition 2.1] Let b ∈ (0, 1) and h ∈ Hb. Then the function C̃h :

I2 → I defined by

C̃h (x, y) =


yh(x)

b if y ≤ b,

(1−y)h(x)+(y−b)x
1−b otherwise

is a copula such that h
C̃h,b

= h.
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Theorem 2.44. [6, Theorem 3.1] Let b ∈ (0, 1) and h ∈ Hb. Then the function Ch : I2 →

I defined by

Ch (x, y) =



y if y ≤ h (x) ,

h (x) if h (x) < y ≤ b,

y − b+ h (x) if b < y ≤ x+ b− h (x) ,

x otherwise

is the greatest copula such that hCh,b
= h.

Theorem 2.45. [6, Theorem 3.2] Let b ∈ (0, 1) and h ∈ Hb. Then the function Ch : I2 →

I defined by

Ch (x, y) =



y if y ≤ b− h (x) ,

y − b+ h (x) if b− h (x) < y ≤ b,

h (x) if b < y ≤ 1− x+ h (x) ,

x+ y − 1 otherwise

is the smallest copula such that hCh,b
= h.

This can be considered as a subcopula extension problem. Let S : I× {0, b, 1} → I

be defined by

S (x, y) =


0 if y = 0,

h (x) if y = b,

x if y = 1.

It is not hard to show that S is a bivariate subcopula and the copulas given in Theorem

2.43, Theorem 2.44, and Theorem 2.45 are actually the extensions of S.

In 2007, Baets and Meyer [7] provided a method to construct a new bivariate copula

from a given copula by redefining the old given copula in a given rectangle. The following

theorem tells that the new defined function is a copula if and only if it is 2 -increasing in

the given rectangle and coincides with the old one at the boundaries.

Theorem 2.46. [7, Proposition 7] Consider a copula C, a rectangle [u, u′]× [v, v′] ⊆ I2,

and a [u, u′]× [v, v′] → I mapping D. Let Q : I2 → I be defined by

Q (x, y) =

D (x, y) if (x, y) ∈ [u, u′]× [v, v′] ,

C (x, y) otherwise.

Thus, Q is a copula if and only if C and D coincide on the boundaries of [u, u′] × [v, v′]

and D is 2-increasing on [u, u′]× [v, v′].
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This can be considered as a subcopula extension problem. Let S : ({0, 1} ∪ [u, u′])×

({0, 1} ∪ [v, v′]) → I be defined by

S (x, y) =



0 if x = 0 or y = 0,

y if x = 1,

x if y = 1,

D (x, y) if (x, y) ∈ [u, u′]× [v, v′] .

Then S is a bivariate subcopula such that S|[u,u′]×[v,v′] = D and one of its extensions is Q.

In addition, Baets and Meyer provided a copula construction method by considering

a given copula as a background copula and a collection of copulas as foreground copulas.

The method is given in the Theorem 2.47 below.

Theorem 2.47. [7, Theorem 2] Consider two collections ((ui, u
′
i))i∈I and

((
vj , v

′
j

))
j∈J

of nonempty pairwise disjoint open subintervals of (0, 1) . Consider a copula Cb, called

background copula, a collection
(
Cf
i,j

)
i∈I ,j∈J

of copulas, called foreground copulas, and

a collection
(
λ
(
ui, u

′
i, vj , v

′
j

))
i∈I ,j∈J

of positive multipliers. For any i ∈ I and j ∈ J ,

define the [ui, u
′
i]×

[
vj , v

′
j

]
→ R mapping Db

i,j by

Db
i,j (x, y) = Cb (x, y)− λ

(
ui, u

′
i, vj , v

′
j

)
Cb

(
x− ui
u′i − ui

,
y − vj
v′j − vj

)

and Q : I2 → I by

Q (x, y) =


λ
(
ui, u

′
i, vj , v

′
j

)
Cf
i,j

(
x−ui
u′
i−ui

,
y−vj
v′j−vj

)
+Db

i,j (x, y) if (x, y) ∈ [ui, u
′
i]×

[
vj , v

′
j

]
,

Cb (x, y) otherwise.

If for all i ∈ I and j ∈ J it holds that Db
i,j is 2-increasing on [ui, u

′
i]×

[
vj , v

′
j

]
, then Q

is a copula.

This can be considered as a subcopula extension problem.

Let S :

(
{0, 1} ∪

(
∪

i∈I
[ui, u

′
i]

))
×
(
{0, 1} ∪

(
∪

j∈J

[
vj , v

′
j

]))
→ I be defined by S = Q

on its domain. Then S is a subcopula such that

S (x, y) = λ
(
ui, u

′
i, vj , v

′
j

)
Cf
i,j

(
x− ui
u′i − ui

,
y − vj
v′j − vj

)
+Db

i,j (x, y)

for all (x, y) ∈ [ui, u
′
i]×

[
vj , v

′
j

]
and one of its extensions is Q.
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In 2008, Siburg and Stoimenov [9] provided a new way of constructing n-copulas by

scaling and gluing finitely many n-copulas. Firstly, they illustrated the gluing construction

in its most basic form, gluing two copulas.

Theorem 2.48. [9, Theorem 2.1] For any two n-copulas C1, C2, any index i ∈ {1, 2, . . . , n} ,

and any number θ ∈ (0, 1) . Partition the unit cube as:

In = (I× · · · × [0, θ]× · · · × I) ∪ (I× · · · × [θ, 1]× · · · × I) ,

and then define C1 ⊗xi=θ C2 : In → I by setting

(C1 ⊗xi=θ C2) (x1, . . . , xi, . . . , xn) = θC1

(
x1, . . . ,

xi
θ , . . . , xn

)
(2.8)

if 0 ≤ xi ≤ θ, and

(C1 ⊗xi=θ C2) (x1, . . . , xi, . . . , xn)

= (1− θ)C2

(
x1, . . . ,

xi − θ

1− θ
, . . . , xn

)
+ θC1 (x1, . . . , 1, . . . , xn)

(2.9)

if θ ≤ xi ≤ 1. Thus, C1 ⊗xi=θ C2 is an n-copula.

In Theorem 2.49 below, Siburg and Stoimenov provided the gluing method for the

general case of finitely many copulas. This can also be realized by sequentially gluing two

copulas as described in the previous theorem.

Theorem 2.49. [9, Theorem 2.2] Fix any i ∈ {1, 2, . . . , n} and number θk such that

0 = θ0 < θ1 < · · · < θN = 1, and let C1, . . . , CN be n-copulas. Partition the unit cube as:

In =

n∪
k=1

I× · · · × [θk−1, θk]× · · · × I

and then define by ⊗
xi=θk

Ck : In → I by

(
⊗

xi=θk
Ck

)
(x1, . . . , xi, . . . xn) = (θk − θk−1)Ck

(
x1, . . . ,

xi − θk−1

θk − θk−1
, . . . xn

)
+θk−1Ck−1 (x1, . . . , 1, . . . , xn) ,

if xi ∈ [θk−1, θk] with 1 ≤ k ≤ N. Thus, the function ⊗
xi=θk

Ck is an n-copula.

This can be considered as a subcopula extension problem. Let C1, . . . , CN be n-

copulas. For a fixed i ∈ {1, 2, . . . , n} and number θk such that 0 = θ0 < θ1 < · · · < θN = 1,

let S : I× · · · × {θ0, θ1, . . . , θN−1, θN} × . . .× I → I be defined by

S (x1, . . . , xi, . . . xn) = (θk − θk−1)Ck

(
x1, . . . ,

xi − θk−1

θk − θk−1
, . . . xn

)
+θk−1Ck−1 (x1, . . . , 1, . . . , xn) ,
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if xi = θk with 1 ≤ k ≤ N, and

S (x1, . . . , xi, . . . , xn) = 0,

if xi = θ0 = 0. Then S is an n-subcopula and one of its extensions is ⊗
xi=θk

Ck.

In 2009, Durante, Saminger-Platz, and Sarkoci [4] provided a method to construct

a new copula from a given copula (which is considered as the background copoula) and

a given collection of copulas. For each copula in the given collection, it associates with a

rectangle in the unit square such that each pair of the rectangles is either disjoint or has

common points just on their boundaries.

For each rectangle in the associated collection of rectangles, the desired new copula

is given by redefining the background copula as in the Theorem 2.50 below.

Theorem 2.50. [4, Theorem 2.2] Let {Ci}i∈I be a collection of copulas and

let
{
Ri =

[
ai1, a

i
2

]
×
[
bi1, b

i
2

]}
i∈I

be a collection of rectangles Ri in I2 with boundaries ∂Ri

such that Ri ∩Rj ⊆ ∂Ri ∩ ∂Rj , for every i ̸= j, i.e., Ri and Rj have common points just

on their boundaries. Let C be a copula and put λi := VC (Ri) . Let C̃ : I2 → I be defined

by

C̃ (x, y) =


λiCi

(
VC([ai1,x]×[bi1,bi2])

λi
,
VC([ai1,ai2]×[bi1,y])

λi

)
+C

(
x, bi1

)
+ C

(
ai1, y

)
− C

(
ai1, b

i
1

)
if (x, y) ∈ Ri with λi ̸= 0,

C (x, y) otherwise

for every (x, y) ∈ I2. Then C̃ is a copula.

This also can be considered as a subcopula extension problem by letting

S :

(
{0, 1} ∪

(
∪

i∈I

[
ai1, a

i
2

]))
×
(
{0, 1} ∪

(
∪

i∈I

[
bi1, b

i
2

]))
→ I be defined by S = C̃ on

its domain. This function S is a subcopula such that

S (x, y) = λiCi

(
VC

((
ai1, x

]
×
(
bi1, b

i
2

])
λi

,
VC

((
ai1, a

i
2

]
×
(
bi1, y

])
λi

)
+C

(
x, bi1

)
+ C

(
ai1, y

)
− C

(
ai1, b

i
1

)
for all (x, y) ∈ Ri with λi ̸= 0 and one of its extensions is C̃.

In 2012, Amo, Carrillo, and Fernndez-Snchez [2] characterized all bivariate copulas

associated with non-continuous random variables. More precisely, let H : [−∞,∞]2 → I

be a joint distribution function with marginal distribution functions F and G and S :

Ran (F )×Ran (G) → I be the unique subcopula satisfying

S (F (x) , G (y)) = H (x, y) (2.10)
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for all x, y ∈ [−∞,∞] .

Since F is nondecreasing and continuous from the right, it follows that the connected

components of Ran (F ) are either an interval or a singleton.

Let S1 be the family constituted by the closures of connected components ofRan (F ) ,

P1 be the class of elements in S1 which are singletons, and D1 := S1 \ P1.

The complement in I of the union of all elements of S1 is a union of disjoint open

intervals. Let O1 be the family of all the closure of these disjoint open intervals.

With Γ as an index set, write T := {Tt := [at, bt] |Tt ∈ D1 ∪O1}t∈Γ .

Similarly, there exists the corresponding sets S2, P2, D2, O2 and

J := {Jj := [cj , dj ] |Jj ∈ D2 ∪O2}j∈Λ with an index set Λ for the distribution function G.

For any Tt ∈ O1, we select a family of distribution functions Ftj : I → I satisfying

x =
1

bt − at

∑
j

βtjFtj (x) (2.11)

for all x ∈ I, where βtj := VS ([at, bt]× [cj , dj ]) .

For each Jj ∈ O2, we select a family of distribution function Gtj : I → I satisfying

x =
1

dj − cj

∑
t

βtjGtj (x) (2.12)

for all x ∈ I, where βtj := VS ([at, bt]× [cj , dj ]) .

In the case of Tt ∈ D1 and βtj ̸= 0, Ftj is defined by

Ftj (x) :=
1

βtj
VS ([at, (bt − at)x+ at]× [cj , dj ]) . (2.13)

In the case of Jj ∈ D2 and βtj ̸= 0, Gtj is defined by

Gtj (y) :=
1

βtj
VS ([at, bt]× [cj , (dj − cj) y + cj ]) . (2.14)

With the above notations, the characterization of all bivariate copulas associated with

non-continuous random variables can be presented as follows.

Theorem 2.51. [2, Theorem 4] Let H : [−∞,∞]2 → I be a joint distribution function

with given marginal distribution functions F and G. Then, C is a copula satisfying the

equation

C (F (x) , G (y)) = H (x, y) (2.15)

if and only if C can be expressed in the form

C (x, y) = S (x, y)when (x, y) ∈ Ran (F )×Ran (G)
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and

C (x, y) =S (at, cj) + βtjCtj

(
Ftj

(
x− at
bt − at

)
, Gtj

(
y − cj
dj − cj

))
+
∑
t′∈St

βt′jGt′j

(
y − cj
dj − cj

)
+
∑
j′∈Zj

βtj′Ftj′

(
x− at
bt − at

) (2.16)

when (x, y) /∈ Ran (G)×Ran (G) and (x, y) ∈ Tt× Jj , where Ctj are copulas, Ftj and Gtj

are distribution functions satisfying Equations (2.11)-(2.14) with St := {t′|at′ < at} and

Zj :=
{
j′|cj′ < cj

}
.

In fact, all copulas satisfying Equation (2.15) are extensions of the unique subcopula

S satisfying Equation (2.10).

Furthermore, in [2], Amo et al. also described the upper and lower bounds of the

set of all copulas extending the unique subcopula S, that is, the function

US (x, y) := sup {C (x, y) | C is a copula extending S} ,

and the function

LS (x, y) := inf {C (x, y) | C is a copula extending S} .

For any index t ∈ Γ, the interval Tt is divided into indexed subintervals (in Λ) in

such a way that the interval T j
t :=

[
ajt , b

j
t

]
⊂ Tt is an interval of length VS (Tt × Jj) , and

its lower extreme is given by at+
∑

cj′<cj
VS

(
Tt × Jj′

)
, i.e., ajt = at+

∑
cj′<cj

VS

(
Tt × Jj′

)
and bjt = ajt+VS (Tt × Jj) . In the same manner, the interval Jj is also divided into indexed

subintervals J t
j , i.e., for any index j ∈ Λ and any t ∈ Γ,

J t
j :=

[
ctj , d

t
j

]
=

cj + ∑
at′<at

VS (Tt′ × Jj) , c
t
j + VS (Tt × Jj)

 .

Then, Ftj is defined by

Ftj (x) =


0 if 0 ≤ x ≤ ajt−at

bt−at
,

bt−at
bjt−ajt

x+
at−ajt
bjt−ajt

if
ajt−at
bt−at

≤ x ≤ bjt−at
bt−at

,

1 if
bjt−at
bt−at

≤ x ≤ 1,

(2.17)

and Gtj is defined by

Gtj (x) =


0 if 0 ≤ x ≤ ctj−cj

dj−cj
,

dj−cj
dtj−ctj

x+
cj−ctj
dtj−ctj

if
ctj−cj
dj−cj

≤ x ≤ dtj−cj
dj−cj

,

1 if
dtj−cj
dj−cj

≤ x ≤ 1.

(2.18)
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The copulas US and LS are given as in Theorem 2.52 and Theorem 2.53 below.

Theorem 2.52. [2, Theorem 11] If we choose the function Ftj and Gtj defined by Equation

(2.17) and Equation (2.18) respectively, and Ctj = M2, then C defined by Equation (2.16)

is the copula US.

Theorem 2.53. [2, Theorem 12] If we choose the function Ftj and Gtj defined by Equation

(2.17) and Equation (2.18) respectively, and Ctj = W 2, then C defined by Equation (2.16)

is the copula LS.

Theorem 2.52 and 2.53 above include the result due to Carley in [3] as a particular

case, that is, when the sets Ran (F ) and Ran(G) are finite.

In 2013, Baets, Meyer, Fernndez-Snchez, and beda-Flores [8] proved the existence of

a 3 -copula with a given value of a 3 -quasi-copula at a single point and that of a 3 -copula

with given values of a 3 -quasi-copula at two points.

In the general definition of an n-quasi-copula (n ≥ 2) the notion of increasing tracks

was used.

Definition 2.54. [8] An increasing n-track B in In is any set of the form

B = {(F1 (t) , F2 (t) , . . . , Fn (t)) |t ∈ I} , where Fi is a continuous distribution function

such that Fi (0) = 0 and Fi (1) = 1 for i = 1, 2, . . . , n.

The definition of an n-dimensional quasi-copula can be stated as follows.

Definition 2.55. [8] For any natural number n ≥ 2, an n-dimensional quasi-copula

(briefly, an n-quasi-copula) is a function Q : In → I such that for every inreasing n-track

B in In there exists an n-copula CB that coincides with Q on B, i.e., Q
(
⇀
u
)
= CB

(
⇀
u
)

whenever
⇀
u ∈ B.

An alternative characterization of n-quasi-copulas is given in Theorem 2.56 below.

Theorem 2.56. A function Q : In → I, n ≥ 2, is an n-quasi-copula if and only if it is

grounded, has uniform marginals and satisfies the following two conditions:

1. Q is increasing in each variable ui, i = 1, . . . , n : if u1, . . . , un, vi are in I and ui < vi,

then Q (u1, . . . , ui, . . . , un) ≤ Q (u1, . . . , vi, . . . , un) ;

2. Q is 1-Lipschitz continuous: for every
⇀
u = (u1, u2, . . . , un) and

⇀
v = (v1, v2, . . . , vn)

in In, it holds that
∣∣∣Q(⇀u)−Q

(
⇀
v
)∣∣∣ ≤ n∑

i=1
|ui − vi| .
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The next theorem states that there exists a copula which coincides with a given

n-quasi-copula at any given point.

Theorem 2.57. [8, Theorem 2] For any (u1, u2, u3) ∈ I3 and any 3-quasi-copula Q, there

exists a 3-copula C-which depends on (u1, u2, u3)-such that C (u1, u2, u3) = Q (u1, u2, u3) .

This is also true for the case of two points.

Theorem 2.58. [8, Theorem 3] For any (u1, u2, u3) , (v1, v2, v3) ∈ I3 and any 3-quasi-

copula Q, there exists a 3-copula C-which depends on (u1, u2, u3) and (v1, v2, v3)-such that

C (u1, u2, u3) = Q (u1, u2, u3) and C (v1, v2, v3) = Q (v1, v2, v3) .

In the case of two points, consider S :
3∏

i=1
{0, ui, vi, 1} → I defined by

S (x, y, z) =


Q (u1, u2, u3) if (x, y, z) = (u1, u2, u3) ,

Q (v1, v2, v3) if (x, y, z) = (v1, v2, v3) ,

C (x, y, z) otherwise.

Then S is a subcopula and C extends S.

In the case of one given point, it can also be considered in a similar way.

In 2013, Gonzlez-Barrios and Hernndez-Cedillo [5] generalized Theorem 2.46 above

to higher dimensions as follows.

Theorem 2.59. [5, Theorem 1.2] Let C : In → I be an n-copula, let R :=
n∏

i=1
[ui, vi] ⊂ In

be a non-trivial n-box. Let D : R → I be a function. Define Q : In → I by

Q
(
⇀
x
)
=

D
(
⇀
x
)

if
⇀
x ∈ R,

C
(
⇀
x
)

if
⇀
x ∈ In \R.

Then, Q is an n-copula if and only if D = C on δ (R) , the boundaries of R, and D is

n-increasing.

This can be considered as a subcopula extension problem. Let S :
n∏

i=1
[0, ui]∪[vi, 1] →

I be defined by S = C on its domain. Then S is a subcopula such that S|R = D and one

of its extensions is the copula Q.

Gonzlez-Barrios and Hernndez-Cedillo also provided a multivariate patchwork con-

struction of n-copulas in n-boxes. In Theorem 2.60 below, they started by taking a

3 -copula and a 3 -box R with (1, 1, 1) as one of its vertices.
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Theorem 2.60. [5, Theorem 3.1] Let C and C1 be two 3-copulas and let R = [u1, 1] ×

[u2, 1] × [u3, 1] where 0 < ui < 1 for i ∈ {1, 2, 3} and define
⇀
0 = (0, 0, 0) . Assume that

λ = VC (R) > 0, and for every x1 ∈ [u1, 1] , for every x2 ∈ [u2, 1] and for every x3 ∈ [u3, 1] ,

define

Rx1 = [u1, x1]× [u2, 1]× [u3, 1] ,

Rx2 = [u1, 1]× [u2, x2]× [u3, 1] ,

Rx3 = [u1, 1]× [u2, 1]× [u3, x3] .

Let C̃ : I3 → I be defined by

C̃
(
⇀
x
)

=


λC1

(
VC(Rx1)

λ ,
VC(Rx2)

λ ,
VC(Rx2)

λ

)
+ VC

([⇀
0 ,

⇀
x
]
\
[
⇀
u,

⇀
x
])

if
⇀
x ∈ R,

C
(
⇀
x
)

otherwise

for all
⇀
x = (x1, x2, x3) ∈ I3, where ⇀

u = (u1, u2, u3) . Then C̃ is a 3-copula.

Theorem 2.60 is generalized to larger dimentions as follows.

Theorem 2.61. [5, Theorem 3.4] For every n ≥ 3, let C and C1 be two n-copulas and

let R :=
[
⇀
u,

⇀
1
]
where

⇀
u = (u1, u2, . . . , un) ∈ [0, 1)n . Assume that λ := VC (R) > 0, and

for every i ∈ {1, . . . , n} and for every xi ∈ (ui, 1] define Rxi := [u1, 1] × . . . × [ui−1, 1] ×

[ui, xi]× [ui+1, 1]× . . .× [un, 1] . Let

(
C ⊎

⇀
u

C1

)
: In → I be defined by

(
C ⊎

⇀
u

C1

)(
⇀
x
)
=


λC1

(
VC(Rx1)

λ , . . . , VC(Rxn )
λ

)
+ VC

([⇀
0 ,

⇀
x
]
\
[
⇀
u,

⇀
x
])

if
⇀
x ∈ R,

C
(
⇀
x
)

otherwise

for all
⇀
x = (x1, x2, . . . , xn) ∈ In. Then

(
C ⊎

⇀
u

C1

)
is an n-copula.

What follows is an example for Theorem 2.61 where n = 3, C = M3, C1 = Π3, and

R =
[
1
2 , 1
]
×
[
1
2 , 1
]
×
[
1
2 , 1
]
.

Example 2.62. Let R =
[
1
2 , 1
]
×
[
1
2 , 1
]
×
[
1
2 , 1
]
. Then,

(
M3 ⊎

( 1
2
, 1
2
, 1
2)

Π3

)
defined by

(
M3 ⊎

( 1
2
, 1
2
, 1
2)

Π3

)
(x1, x2, x3) =


4x1x2x3 − 2 (x1x2 + x1x3 + x2x3)

+ x1 + x2 + x3 if
⇀
x ∈ R,

min (x1, x2, x3) otherwise

is a 3 -copula.
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Let S :
n∏

i=1
({0} ∪ [ui, 1]) → I be defined by S =

(
C ⊎

⇀
u

C1

)
on its domain. Then, S

is a subcopula such that

S
(
⇀
x
)

= λC1

(
VC (Rx1)

λ
, . . . ,

VC (Rxn)

λ

)
+ VC

([⇀
0 ,

⇀
x
]
\
[
⇀
u,

⇀
x
])

for all
⇀
x ∈ R and one of its extensions is the copula

(
C ⊎

⇀
u

C1

)
.
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