CHAPTER 3

H,, control problem for linear time-varying system

In this chapter, we investigates the H., control problem for certain dynamical sys-
tems with time-varying delay. We consider the H, control problem for a class of linear
uncertain time-varying systems with time-varying delay via the solution of certain Riccati

differential equation.
3.1 H,, control problem for linear time-varying system with time-varying
delay

In this section, all matrices are time-varying matrices except the identity matrix
1. Also, for the sake of brevity, we will omit the variable ¢ of matrix functions and from
variables x, u, w and z whenever it does not cause any confusion. For the sake of technical

simplification, without loss of generality, as in [28, 41, 45], we assume that
DTIC D] =[01],tcR". (3.1)

For a given v > 0, let us set

Ay=A-BB" +LBB], B, = /BBT — 1B.B]

Byh = B(t = h(t))B(t — h(t))" = 2 Bi(t — h(t)) Big_pyr, t € RT.

The following assumptions will be used in the proof of the main theorem:
A1. There exists 7 > 0 such that B, >0, ¢t RT.
A2. There exist a,y > 0 such that

6—2ah(1 | A 5)[3%}1 + %I] | % C,ircl >0, 1te RT.

3.1.1 Problem formulation

Consider the following uncertain linear time-varying system:

#(t) = A()z(t) + AL (O)z(t — h(t)) + Bt)u(t) + By(Hw(t), t € R,
2(t) = C(H)a(t) + CL(t)x(t — h(t)) + DE)u(t), wo(t) = ¢(t),t € [=h,0], (3.2)
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where x € R" is the state; xg = ¢ € C is an initial state; u € R™ is the control; w € RP
is the uncertain input, z € R? is the observation output; A(t), A1 (t), C(t), Ci(t), D(t) are
given matrix functions continuous and bounded on R*,;0 < h(t) < h, h(t) <d < 1. In
the sequel, we say that the control u(t) is admissible if u(t) € L2([0,¢), R™) for every
t > 0, and the uncertainty w(-) is admissible if w(-) € L2([0, +00), RP).

Theorem 3.1.1. Assume that A1. and A2. hold. Then, the Hy control problem (3.2)
has a solution provided that the RDE

P+ AP+ PA, - PB,BIP

2ah

AT(P+ 1) [Byp + 21 (P+DA +Q =0, te RY (3.3)

has a solution P € BM™(0,00), where Q@ € BM™(0,00) is a matriz function satisfying
Q>A+AT+CTC+ M, teRT (3.4)

such that

2> AUV >0 (3.5)

where V.= AT(P + I)CT[C — DBT(P + I)] and U = e~22"(1 - §) [B,; + 31I] — CT Cy.

Moreover, the feedback stabilising control is
u=-BY'[P+1Iz, te R".
The proof of the theorem is based on the following lemma:

Lemma 3.1.2. The Hy, control problem for the system (3.2) has a solution if there
exist a,y,\ > 0, matriz functions X,R € BMU™(0,00), and matriz function S €
BM™(—=h,00) such that S > 0 and for t € R™, the following conditions hold:

()X + ATX + XA— X |BBT - %BlBlT] X+ cTo

—2ah

+ &~ ATXS(t - h(t) ' XA + 5 < -R, (3.6)
(1)U := e 2*"(1 — 6)S(t — h(t)) — C{ Cy > 0, (3.7)
(i) — AVU VT > 0;whereV = AT XCT[C — DBTX], (3.8)
(iv)R > AI. (3.9)
The feedback control is defined as
u=—-BTXz, te RT. (3.10)
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Proof : Using the feedback control (3.10), we consider the following Lyapunov

function for the closed-loop system
#(t) = Az (t) + A (Dt — h(t) + BOR(z()), 2(t) = ¢(t), t € [-h,0]  (3.11)
where w(t) = 0, h(z(t)) = —BT Xx(t) :
Vit z0) = Vi(t, ) + Va(t, z0),
where t € RT, Vi(t,z¢) = (Xz,z) and Va(t, ;) ft h € (s — t)a T(s)Sx(s)ds. Since

X € BMU™(0,00), we easily see that

_e—Qah
AoQON? < V(b a) < (Fo(X) + 22 2.

By taking the derivative of V' (¢, -) along the solution x of the closed-loop system, we have
Vilt,z) = (Xz,2) + 2(X i, x)

= (Xz,2) + 2(X (Az + Ayz(t — h(t)) + Bu), z)

— (Xxz,x) 4+ 2(X (Az + Ayz(t — h(t)) — BBT Xz), )

= (X +ATX + XA —2XBBTX)z,z) + 2(X A1x(t — h(t)), ).

It follows that
Vilt,zr) = (X + ATX + XA - 2XBBT X))z, z) + 2(AT Xz, 2(t — h(t))). (3.12)
Similarly, we obtain
Va(t, zt) = —2aVa(t, ;) + (Sz, )
— e 2 MO = (1) (S(t = h(t)a(t — h(D), (t - h(1)))
< (Sm,x) — e 20M(1 — §)(S(t — h(t))ax(t — h(t)), z(t — h(t))). (3.13)
Combining (3.12) and (3.13), we get
V(t,z) <(X + ATX + XA - 2XBBT X))z, z) + 2(AT Xz, z(t — h(t)))
(Sz,z) — e 20R(1 — §)(S(t — h(t))z(t — h(t), (t — h(t))). (3.14)

From (2.6) and by Proposition 2.3.23, we have

V(t, ) <(X + ATX + XA —-2XBBTX 4 S)z,z)

2ah

(AT XS(t — h(t) ' X Az, x)

2ah

S

<X + ATX + XA~ 2XBBTX + €22 ATXS(t — h(t)) "' X Ay + s) x>

- <%XBlBlTXx,x> —(XBBTXuz,z) — (CCTz,z) — (Rz, z). (3.15)
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Since (CCTz,x) > 0(XBBT Xx,z) > 0, <%XBlBlTXa:,x> >0, t > 0, it follows from
(3.1.2)(iv) and (3.15) that

V(t,r) — (Re,z) < =Allz].
By a similar argument as in the proof in [[12], Chapter 5, Proof of Theorem 2.1], the
system without uncertainties is uniformly asymptotically stable. Therefore, the closed-
loop system is uniformly asymptotically stable, i.e., the system is stabilisable. To complete

the proof of the theorem, it remains to show the y— suboptimal condition (2.3). For this,

we consider the relation

t g ’(USZS: tZS oy QUSQ .S.ZL' S — t.sx S
/O[HZ(S)H Vw(s)lI*ld /HI()H Mw(s)|”+V (s, z5)ld /DV(w)d,

where (3.1.2)(i) and from positive definiteness of 6 ATXS(t —h(t) T X ALV (L, x(t)) is

estimated as
V(t,z) < (X +ATX + XA —2XBBTX + S)z,z) + 2(AT Xz, 2(t — h(t)))
— e 290 (1 — §)(Sz(t — h(t)), x(t — h(t))) + 2(X Byw, z)
< <{—lXBlBlTX ~xBBTX — CTC - R] @, a;> +2(AT Xz, 2t — h(t)))
— e 21 — §)(Sx(t — h(t),z(t — h(t))) + 2(X Byw, x)
< —Az|* = 1XB1B{ X - XBB" X — C"C + 2(A{ X, z(t — h(t)))
—e20h(1 — §)(Sa(t — h(t)), z(t — h(t))) + 2(X Byw, z). (3.16)
Since V(t, ;) > 0, we have

/Ot V(s, xg)ds = V(t,zy) — V(0,20)

> _V(Oa 33‘0)
0

> — ((X(O)a:o,a:0> +/ e2a(3t)xT(s)Sx(s)ds>
0—h(0)

> — (s (X ()20l + 522X ()]0}

> = (Amax (X(0)) + 2252231(9) ) ool 3

2ah

By denoting = (Awax(X(0)) + 257X 1 (S) ) [woll3, we get

/ [l2()II = vllw(s)]*]ds = / [l2()I* = yllw ()| + V (s, z5)]ds + 5. (3.17)
0 0

Taking the estimation of V (s, z,) from (3.16) and putting
lz))? =([CTC + XBBT X|z, z) + 2(CT[C — DBT X1, z(t — h(t)))
(CT Cra(t — h(t)),x(t — h(1))),
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in the inequality (5.25), we obtain

/Ot[HZ(S)II2 —w(s)|*]ds < /(:[—AHI(S)II2 + 2(AT X, (s — h(s)))
— e 21 = 8)(S(s — h(s))x(s — h(s)), x(s — h(s)))
+ 2(CT[C — DB Xz, z(s — h(s)))
+(CT Cra(s — h(s)),x(s — h(s))) — 1(XB1B] X, 1))
+2(X Biw, x) — y{w, w)]ds + f. (3.18)

Using Proposition 2.3.23 gives

22X Byw,z) — 2 (XB,Bf Xz, z). (3.19)

1
7
From (3.18) and (3.19), we obtain
t
/0 ()P = ~lw(s)[|*)ds
S/O [=X|z(s)||* + 2(AT X CL[C — DBT X])z, (s — h(s)))
—([e72"(1 = 6)S(s — h(s)) — CTC1lz(s — h(s)), z(s — h(s)))]ds + B. (3.20)

Let V = ATXCT|C — DBTX] and U = e~22"(1 — §)S(t — h(t)) — CTCy. By (3.1.2)(ii)
and Proposition 2.3.23, we get

t t
/ [l2()1* = Yllw(s)*)ds < / [FAllz(s)|? + (VU VT2, 2))]ds + 8
0 0
t
< / A= XVUWVT)|z(s)||>ds + B. (3.21)
0
By (3.1.2)(iii) and (3.21), we obtain

/0 [lz()I* = yllw(s)[*]ds < 5. (3.22)

By letting t — 400 in (3.22), we finally obtain

/OOOHI/Z(S)II2 = llw(s)[*)ds < 8,

[T iR < ([T ot 2).

Setting ¢y = g, then from the last inequality, we have

Jo I=(@)]*dt ,
collzoll® + Jo~ llw(®)[*dt ~

and hence
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for all xp and non-zero w(t) € L2([0,00),W). This completes the proof of the lemma.
Proof of Theorem 3.1.1:. By assumptions, there exists A\ > 0, P,Q € BM ™ (0, c0) such
that

2> AUV >0,

where V = AT(P+1)CT[C — DBY(P+1I)] and U = e~ 2*"(1 - 8) [B,, + 51] — CTC1,Q

satisfies
Q>A+AT+CTC+ M, te R (3.23)
(a matrix @ might be obtained by using Proposition 2.3.16), and P satisfies the RDE

P+ AP+ PA, - PB,BIP

e?ah

+ CUAT(P+ 1) [Byp+ 21 (P+1)A +Q =0. (3.24)
The RDE (3.24) can be reformulated as

P+ AT(P+1)+ (P+DA— (P +]1) [BBT > %BlBlT} (P+1)

2ah -1
+ AT (P+I) [Byn+ 31 (P+DAI+Q— (AT +A) + [BBT —1BBf| =0
Therefore, by taking (3.23) into account, we have

P+ AY(P+1)+(P+1)A— (P+1) [BBT . %BlBﬂ (P+1)+CTC

62ah

+ E0AT(P 4+ 1) [Byn + 21 (P+ DA + Q + [BBT ” %BlBlT} FA<0. (3.25)

By letting
X=P+1I, s=BB"—1BB{ + 3l and R=3I.

Then one might easily check that X > 0, R(t) > %I > 0,and S = BBT—%BlB%F—i-%I >0
by assumption Al. From (3.25), it follows that X, R and S satisfy the RDI

eZozh
1-9

X+ATX + XA-X|BBT - %BlBlT] X +CTC+ 22 ATXS(t — h(t)) L X A,

+ S S _R7
and the proof of the theorem is completed by using (3.1.2).

Remark 3.1.3. Note that the problem of solving Riccati differential equation is in general
still complicated, however, some various efficient approaches to solve this problem can be

found, for instance, in [1, 25].
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The following simple procedure can be applied to solve the H,, control problem for
the system (3.2):
Step 1. Given «, 7,9, A\, h > 0 check assumptions Al and A2.
Step 2. Check the condition (3.1).
Step 3. Find a matrix ) satisfying (3.4) and find a solution P of RDE (3.3).
Step 4. Check the condition (3.5).
Step 5. The feedback stabilising control is given by

u(t) = =BT (#)[P + Iz(t), t€RT.

Remark 3.1.4. For the system without time delay, namely, when A1 = C1 = 0 and
h(t) =0, (3.2) becames

() = A()x(t) + B()u(t) + Bi(t)w(t),t € RT
z(t) = C(t)z(t) + D(t)u(t), x(0)= zo. (3.26)

In this case, (3.26) and assumption A2 trivially hold, and we obtain the following result
as a corollary of (3.1.1).

Proposition 3.1.5. Assume that A1 holds and [A,, B,] is GNC in finite time and let
A be a given positive real number. Then, the Hso control control problem for the system

(8.2) has a solution and a feedback stabilising control is given by
u=—-BT[P+Iz, teRT,
where P € BM™(0,00) is a solution of RDE

P+ATP+PA, - PB,BIP+Q+0, teR", (3.27)

Q>A+AT L CTC+ M, teR". (3.28)

Proof : A matrix function @ satisfying (3.28) might be obtained by using Proposi-
tion 2.3.16 The existence of a solution P of the RDE (3.27) is guaranteed by Proposition
2.3.15. Proposition follows from Lemma 3.1.2 by observing that conditions (ii) and (iii)

trivially hold and the RDI in Lemma 3.1.2 (i) becomes
X+ATX + XA— X [BBT— 1B BY| X +CTC+5< R,

in which one might take R = AI. The rest of the proof follows in the same manner as in

Theorem 3.1.1.
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Remark 3.1.6. It is worth mentioning that for the system without time delay (3.26), the
existence of solution of the Hy problem is guaranteed by the GNC infinite time of the

system [A, By] and one might use the rank condition in Proposition 2.3.14 to check the

GNC condition of [Ay, B,].

3.2 Numerical examples

In this section, we now provide an example to show the effectiveness of the result

in Theorem

Example 3.2.1. Let

et 1 —t e
AL N 1 L0 V2e
A= ? —2t 7A1: ) 1 7B: 7Bl_ V2 )
e
. | 0 0 0
et et 1 1 i
el et 0 1 i 10
¢ = 271: 73 ,C1 = 3 , D= V2 , P = )
5 T g 0 7 0 3
2 2
4 -2t e_t 2 _1
Q _ e 4(466 t+6t + 2 7h(t) — eit’ h _ 1
_1 e 2t + 55
2 2 64

e 2t 0
(i) BBT —1BiB{ =
0 0
et 0 |
(i) B, = \/BBT ~1p,B] = B, =
0 0 0
3e”2t 3
(ii5) Ay=A—-BBT +1B,BT = | T !
Y Y _1 _672t | l
2 4

(7v) By using Proposition 2.5, it is straightforward to show that@ > 0 and
Q>A+ AT +CTC + L

(v) DD =1 and CTD =
0

(vi) the following RDE holds for t € R :

eZah

P+ ATP+ PA, — PB.BTP + € AT(P+ 1) [B,j, + 31 (P+1)A1 +Q = 0.
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(vii) U = e 2"(1-0) [Byn + %I} ~C{Ci = ! s |7 0,
0 1
_bet et
vi=Al(P+DcliC-DBT(P+ D= | 5 | >0,
T Bl2 512
and
__ 64e’
Ul — 3et+16ec "
64
0 3

viii) By computation, we obtain A(VU'VT) < 0.0035 which gives? = +
271

=0.25 > \(VU VT,

From (i) to (viii), one might conclude from Theorem 3.1.1 that the Ho, control problem

has a solution and a feedback stabilising control is given by

uw=—BT[P+ Iz
= —[2v2e7" Oz
=S —2\/567{1‘1.
For simulation, we choose h(t) = 0.5+ sin(t), ¢(t) = [-5cos(t), 3 cos(t)], Vt € [0, 10]. Fig-
ure 3.1 shows the trajectories of solutions x;(¢) and x2(t) of the system without feedback

control (u(t) = 0) and Figure 3.2 shows the trajectories of solutions x1(t), and xa(t) of

the system with feedback control wu(t)

Example 3.2.2. Consider system (3.26), where

| 1
A — = ,B(t) = Bl (t) — 3
= e 0
a2t 1 i
a -1 1 @ |
C(t) = 2 A D(t) = | V2
e 2t 1
-1 5l 7

The assumption (3.1) hold, namely,

D'D=1, Cc'D=
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Figure 3.1: The trajectories of x;(t), and wza(t) of the system (3.2)and feedback control
deactivated.
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Figure 3.2: The trajectories of x1(t), and z2(t) of the system (3.2)and feedback control
activated.
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Taking v = %, we have

1
10
(i) BB -3pBf = | *
0 0
1
10
(ii) By = \/BBT -3BBl = | ?
0 0
672t
e | 1
(iii) Ay=A-BBY —3B,B] = 2 . o X
B 2 4

(tv) It is clear that both matrix function A, B,are analytic. Moreover,

My = B,, M;=-A,,

and

1
~1

rank[M;(t), Ma(t)] = rank 4
0 0

and it is easy to verify the controllability condition (2.16): there exist tg > 0 so that
rank[B, (tg — A, (to] = 2. Thus, by Proposition 2.14, the system [A,, B,] is GNC in some
finite time. Taking A = % and

It is easy to verify by Proposition 2.3.17 that ) > 0 and

2t

9 3e—2t 1 e~
1 + 2 2 + 2 >0
e—2t =

1 —2t
—§+ D) 1+6

Q—(A+ AT +CTC+\I) =

By Proposition 3.1.5 the H,, control problem has a solution. Finally, it is straightforward
to show that the RDE

P+ AP+ PA, - PB,BIP+Q =0,
has a solution

P = > 0.
0

N[ =

Therefore, the H, control problem has a solution and a feedback stabilising control is

given by

U=-BTt)[P(t)+ Iz = —[2 O]z,
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where x(t) = [z1(t) x2(t)]. For simulation, we choose ¢(t) = [—5cos(t),3cos(t)], Vt €
[0,10]. Figure 3.3 shows the trajectories of solutions 1 (t) and z2(t) of the system without
feedback control (u(t) = 0) and Figure 3.4 shows the trajectories of solutions x;(¢), and

x9(t) of the system with feedback control u(t)

--=-=- x1)
0.04 X2(t)

-0.02

-0.04

-0.06

~0.08 L L I I L L I I I

Figure 3.3: The trajectories of z1(t), and x2(t) of the system (3.26)and feedback control
deactivated.

= - == x1t)
x2(t)

-0.06

Figure 3.4: The trajectories of x1(t), and z2(t) of the system (3.26)and feedback control
activated.
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