CHAPTER 3

Characterizations of Cayley Digraphs of Completely Simple

Semigroups

In this chapter, we shall characterize digraphs which are Cayley digraphs of com-
pletely simple semigroups. We also describe the structure of Cayley digraphs of Rees
matrix semigroup with a one-element connection set. Moreover, we introduce the condi-

tions for which they are isomorphic and connected.

3.1 Characterizations of Cayley Digraphs of Completely Simple semi-

groups

In this section, we shall describe Cayley digraphs of completely simple semigroups.

By definition of a completely simple semigroup, we have the following lemma.

Lemma 3.1.1. Let G be a group, S = M(G,I, A, P) a completely simple semigroup,
A C S, and let (g1,i1,\1), (92,72, A2) € S. Then ((g1,71,\1), (92,72, A2)) is an arc in
Cay(S, A) if and only if there exists a = (g,l, \2) € A such that go = gipx,19 and iy = is.

Proof. (:>) Let (gl,il,)\l),(gz,ig,Az) € S and let ((gl,il,)\l), (gg,ig,)\g))
be an arc in Cay(S,A). Then there exists a = (g,l,u) € A such that (go,iz, \2) =

(91,71, M1)(9, L, 1) = (91PA195 1, 1) Hence ga = g1pa19, i1 = iz, and thus Ay = p.
(<) Let (g1,%1, A1), (92,12, A2) € S, and suppose that there exists a = (g,1,\2) € A

such that g2 = gipag and i1 = 2. Then (go,42,X2) = (g1Prug, %2, X2) = (g1PA119, 71,
AQ) T (glvila Al)(gala >\2) Hence ((glaih)‘l)? (927/5.27)‘2)) is an arc in Cay(S7 A) U

In view of Lemma 3.2 in [15], we know that a completely simple semigroup S =
M(G, I, A, P) is right group if and only if |I| = 1. In [1] Cayley digraphs which represent

right groups are characterized. Then we obtain the following proposition.
Proposition 3.1.2. Let G be a group, S = M(G,{i}, A, P). Takea = (g,i,8) € S. Then
(1) the Cayley digraph Cay(S,{a}) contains a strong group subdigraph Cay(G,{pgig});

(2) ((g1,1, A1), (92,1, A2)) is an arc in Cay(S,{a}) if and only if g2 = gipr,ig and Xy = B.
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Proof. (1) Let (V, E) be an strong group subdigraph of Cay(S,{a}) where V =
G x {i} x {#}. We will show that (V,E) = Cay(G,{psi}g). Define f : V.— G by
fx,i,8) = x for all z € G. It is clear that f is a well defined bijection. We will show
that f and f~! are digraph homomorphisms.

Let (z,1,08), (y,4,8) € V and ((,1, ), (y,4,5)) is an arc in (V, E). It is also an arc
in Cay(S,{a}). Then (y,i,5) = (x,4,5)(g,%,3) and hence y = zpg;g. Since z,y € G,
(x,y) is an arc in Cay(G, {pgig}). This shows that f is a digraph homomorphism.

Let (x,y) is an arc in Cay(G,{psig}). We have that y = xpg;g. Consider now
(y,4,B8) = (zppig,i, ) = (x,4,58)(g,i,0) it follows that ((x,i,5), (y,i,5)) is an arc in
Cay(S,{a}). Since (z,1, ), (y,i,08) € V, ((x,1,5), (y,4,5)) is an arc in (V, E'). This shows
that f~! is also a digraph homomorphism.

(2) If ((g1,, A1), (g2,7,A2)) is an arc in Cay(S,{a}), then (g2,%,\2) = (91,1, A1)
(9,1, 8) = (91pri9,1%,5). It is easy to see that g2 = gi1pr,sg and Aoy = 5. Conversely,
consider (g2,7, A\2) = (91px,:9,%, 5) = (91,7, A\1)(g,1, 8) and also ((g1,%, A1), (92,7, A2)) is an
arc in Cay(S, {a}). O

In the next theorem, we characterize a Cayley digraph of a completely simple semi-

group.

Theorem 3.1.3. A digraph (V, E) is a Cayley digraph of a completely simple semigroup
if and only if the following conditions hold:

(1) (V, E) is the disjoint union of n isomorphic subdigraphs (Vi, E1), (Va, E2), ..., (Va, Ep)

for some n € N;

(2) (Vi, E;) has n subdigraphs (Vii, Ei1), Via, Ei2), ..., (Vin, Ein) such that (V;, E;) =
" (Vij, Eij) with Vi = Vi for every j € {1,2,..,n};

(3) (Vij, Eij) contains m disjoint strong subdigraphs (V;} El) (V2 E2) L (VI EM)

7/]7 Z]’ 1] ? 1]
(el B m (0%
such that Vi; = UL sz

4) there exist a group G and a family of digraph isomorphisms a such
g Yy g a=1

that f : (V§, Efy) — Cay(G,af;A) for some afy € G, AY; C G with Agj = Ay,

ag; = ag; for all k,t € {1,2,...,n};

(5) for each u € V&, v € VP

B
ij o (u,0) € Eif and only if fi;(v) = f3(u)aga for some
ac Al
ij
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Proof. (=) Let (V,E) be a Cayley digraph of a completely simple semigroup.
Then there exists a completely simple semigroup S = M(G, I, A, P) where G is a group,
I={1,2,..,n}, A ={1,2,....,m}, and P is a A x I matrix over a group G, such that
(V,E) = Cay(S, A) for some A C S. Hence we will prove that (1), (2), (3), (4) and (5) are
true for Cay(S, A).

(1) For each i € I, set V; = G x {i} x A, and E; = E(Cay(S, A)) N (V; x V).
Hence (V;, E;) is a strong subdigraph of Cay(S, A) and Cay(S,A) = U, (V;, E;). We
show that (V1, E1), (Va, E2), ..., (Va, Ey,) are isomorphic. Let p,q € I, p # g, define a map
¢ from (V, E,) to (Vy, Ey) by ¢((g,p,7)) = (g9,q,7). Since |V,| = |V,|, ¢ is a well defined
bijection. To prove that ¢ and ¢~! are digraph homomorphisms. For (g,p,r), (¢',p,7")
€ Vp, take ((9,p,7), (,p: ")) € By. Since Ey € B(Cay(S, 4)), ((9,5,7), (¢',p,1")) is an
arc in Cay(S, A). By Lemma 3.1.1, there exists (a,l,r"”) € A such that ¢’ = gpqja, v’ =1",
and thus (¢',q,7") = (gpra,q,7") = (g,q,7) (a,l,7"). Then ((g,4,7), (¢, q,7")) is an arc in
Cay(S, A). It follows that ((g,¢,7), (¢',q,7")) € E;. This shows that ¢ is a digraph homo-
morphism. Similarly, ¢~! is a digraph homomorphism. Hence ¢ is a digraph isomorphism.
Now we prove that Cay(S, A) is the disjoint union of (Vi, Ey), (Va, E2),...,(Vy, Eyn).
By definition of V;, S = UV;. Since E; C E(Cay(S,A)),UE; C E(Cay(S,A)). Let
((g,j,r), (g,k,f)) € E(Cay(S,A). By Lemma 3.1.1, j = k, and thus ((g,j,r), (g,k,f)) €
E).. Then ((g,j,r), (g',k,f)) € UE;. Hence E(C’ay(S,A)) C UE;, and so E(C’ay(S, A)) =
UE;. Therefore Cay(S, A) = U(V;, E;).

(2) Let Si; = M(G,{i}, A, P;) where i,j € {1,2,..,n},

P1j
D2j

pmj

and P; is the j column of P, and let A;; = {(g,%,8)|(g,4,8) € A}. Take (V;;, E;j) =
Cay(Sij, Aij). Hence Vi; = M(G,{i},A, Pj) = V;. To prove that (Vj, E;) = @?:1(‘/1-]-,
Eij). Let ((g,i,), (¢',4,8)) € E;. Therefore ((g,4, ), (¢',4,3)) is an arc in Cay(S, A).
By Lemma 3.1.1, there exists (¢”,1,7) € A such that v = 8 and ¢ = gpng”. Since
(¢".1,8) € A, (¢9",4,8) € Ay Thus ((9,i,0), (¢,4,8)) is an arc in Cay(Sy, Au)
as (g,4,a)(g",4,8) = (9patg”,i,B8) = (¢',i,8). Therefore ((g,4,0) ,(¢',i,8)) € Eu C
Uiy Eij, and so E; C U By Let ((9,4,0), (¢',4,8)) € Ul_ B Therefore
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((g,4,),(¢,i,8)) € Ey for some [ € {1,2,..,n}. It follows that ((g,1,a),(q,
i,0)) is an arc in Cay(Sy, A;). Then there exists (¢”,i,v) € A; such that v =
and ¢ = gpug” by Lemma 3.1.1. Hence (¢”,1,5) € A because (¢”,i,8) € Ajy. Then
(¢,4,8) = (gparg” i, B) = (9,3, a)(g", 1, B), ((g,3,0),(¢,3,8)) is an arc in Cay(S,A).
Therefore ((g,i,), (¢',i,8)) € E;, and thus Ui Eij © E;. Hence E; = Uj_ Ej;.
This show that (Vi,E;) = &7 (Vij, Eij).

(3) Set Vi§ = M(G, {i}, {a}, P7), B = E(Cay(Sij, Aij)) N (Vi§ x V) where Pf* =
[Paj]. Therefore V;§ C Vi;, and thus (V;$, Ef}) is a strong subdigraph of (Vj;, Eij;). Let

mrn=Li
a, 8 € Aand a # 3. To prove that (V;$, £7;) and (Vﬁ EZ) are disjoint. Since VgﬁVg =0,

ij>
by the definition of E; and EZ-B]., E7 N EZ = ). Therefore (V;¢, Ef}) and (Vg,Eg) are

disjoint subdigraphs of (Vi;, Eyj). Hence Ugl V¢ = UgLy M(G,{i},{a},[pas]) =
M(G, {i}, A, By) = Vi

(4) Let AF; = {gl(9.4,a) € Aj;}. To prove that (V,Ef) = Cay(G,af;Af)

ij? g
where af = po;. Let f7: (VZ?‘,Ef‘J) — C’ay(G,pajA?j) be the projection of V%
on to its first coordinate, i.e. f7 = pi1. We first show that f;7 and fi‘}_l are digraph

homomorphisms. For (g,4,a), (¢',i,a) € Vg, take ((9,i,),(¢',i,a)) € Ef;. By the
definition of Ef, ((g,i,),(¢',i,0)) is an arc in Cay(Si;, Aij). Then there exists
(9",i,7) € Ajj such that g’ = gpa;g” and a = v by Lemma 3.1.1. Thus there is g"” € A
It follows that (f(g,1, ), f{3(¢',i,@)) = (g,9') is an arc in Cay(G, pa;jAS;). Hence f{ is a
digraph homomorphism. For g,¢" € G, let (g,¢') be an arc in Cay(G, pa;Af;). Therefore
9" = gpajg” for some g” € Af. By the definition of A}, there is (¢”,i,a) € A;; and
so (¢',1, ) = (9pa;g" i, ) = (9,1, )(g",i,«). Therefore ((g,i, ), (¢, i, @)) is an arc in
Cay(S;j, Aij). This shows that ff;_l is a digraph homomorphism. Let k,t € {1,2,...,n}.
We show that A7, = Afl. Take g € Af;. Then (g,k,a) € Ay; and (g,j,) € A. By the
definition of A¢j, (g,t, ) € Aj, and thus g € A%. This shows that Agj C A%. Similarly
Aj C AR Thus AR, = AP for all kit € {1,2,...,n}. Since ag; = Paj and afj = paj,
ag; = ag; for all k,t € (=2 ... Ink

(5) For each u = (g,1,«) € Vi, and v = (¢',i,B) € VZ? We prove that ((g,1, ),
(¢',i,B)) € E if and only if ffj(v) = f5;(u)afia for some a € Afj

Let ((g,i,),(¢',i,83)) € E. Then ((g,i,),(¢’,%,3)) is an arc in Cay(S, A). Hence
there exists (a,j,§) € A such that (¢,4,3) = (9,7,a)(a,5,&) = (9paja,i,§). Therefore
¢ = gpaja and B = &. Then we have that (a, 7, ) = (a, j,§) € A. By the definition of A4;;,
there exists (a,,3) € A;j, and hence a € Afj Therefore ffj(v) =g = gpaja = %(u)a%a
where a7 = paj.

Conversely, let ffj(v) = fi(u)af;a for some a € Afj Therefore ¢’ = fg(v) =
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G(wafia = gafa and there exists (a,i,8) € Aj;;. By the definition of A;j, there is
(a,j,B) € A. Since af; = paj, (9,4, 8) = (9af;a,4,8) = (gpaja,i,8) = (9,4, a)(a, J,B),
and thus ((g,1, ), (¢',4,8)) is an arc in Cay(S, A).

(<) Choose k € {1,2,...,n}, by (1), (2), and (3), we get V = U, Ut V4 is
the disjoint union. Let S = M(G, I, A, P) where I ={1,2,....,n}, A ={1,2,...,m},

1 1 1
L R
2 2 2
a a a
k1 k2 k
P = ",
m m m
| %K1 Ok2 Tk

and let A = UpL U7 (AS, x{k}x{a}). Weshow that (V, E) = Cay(S, A). Define amap f
from (V, E) to Cay(S, A) by f(v) = (f%(v),4,) for any v € V.33 € {1,2,...,n}, and a €
{1,2,...,m}. Let u,v € V and u = v. Then u =v € Vzg for some i € {1,2,...,n} and p €
{1,2,...,m}. Hence fﬁ;(u) = fﬁ;(v) and (fﬁ;(u),i,,é’) = (fzi(v),i,ﬁ). Therefore f is well
defined. Let u,v € V and f(u) = f(v). Thenu € Vlg and v € V3 for some l,t € {1,2,...,n}
and 8,0 € {1,2,...,m}, and so (fi(u),1,8) = f(u) = f(v) = (f,(v),t,8). Hence fi(u) =
f3.(v), I =t, and B = 4. Then u,v € Vl}f and fﬁg(u) = fﬁ;(v). Since fli is an isomorphism,
u = v. This shows that f is an injection. By (4), |G x {i} x {a}| = |G| = |V,%| for all
i€ {1,2,..,n}and a € {1,2,...,m}. Thus |S = M(G,I,A,P)| = |U; Ul (G x {i} x
{a})| = | U, UZ_ Vi¢| = |V|. Hence f is a surjection. Now we must prove that f and
f~1 are digraph homomorphisms. Let u,v € V and (u,v) € E. By (1), u,v € V; for some
te{l,2,...,n}. Thenu € Vti and v € Vt‘; for some 3,4 € {1,2,...,m}. From (5), fgk(v) =
fi(u)afka for some a € A%. By (4), A% = A% and afk = afk. Hence a € A%, and thus
(a,k,8) € (A% x {k} x{d}) C A. Since afk is the entry in the 3 row and k" column of P,
afk = agk = pgk. Therefore f(v) = (£, (v),t,6) = (fi(u)afka,t, J) = (fi(u)afka,t, J) =
(F(wpskart, 6) = (FE(u),t, B)(a, k,8) = F(u)(a,k,6). Then we get that (f(u), £(v)) is
an arc in Cay(G x L, X Ry,, A). This shows that f is a digraph homomorphism. Let
9,9 € G, j,t € {1,2,...,n}, 8,0 € {1,2,...,m}, and let ((g,7,0),(¢,t,8)) be an arc in
Cay(S,A). Then there exists (a,k,§) € A such that ¢ = gpgra, t = j, and 6 = £. By
(4) and g,¢’ € G, there exists u € Vji and v € Vﬁg such that ffk(u) =g and ffk(v) =d.
Therefore f]‘-sk(v) = ffk(u)pgka. By the definition of P and (4), pgr = afk = afk. Hence
ML), £ o)) = (P (), B), = (f20),,6)) = (w,0) € E by (5).
Thus f~! is a digraph homomorphism. O
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011 111 211 021 ? 221
012 112 212 022 122 22
Figure 3.1: Cayley digraph Cay(M(Zs,{1,2},{1,2}, P),{(0,1,1)}).

011 111 211 021 121 221
012 112 212 022 122 222
Figure 3.2: Cayley digraph Cay(M(Zs, {1,2},{1,2}, P),{(1,2,1)}).

0[1 111 211 021
012 112 212

022 122 222

2

Figure 3.3: Cayley digraph Cay(M(Zs,{1,2},{1,2}, P),{(0,2,2)}).

Example 3.1.4. Consider the completely simple semigroup S = M(Zs,I,A, P),Z3 =
{0,1,2} with I = {1,2}, A = {1,2},

0 0 0 0
P=| |,andthusPi=| |, Ph=| |,
1 0 1

and let a; = (0,1,1), as = (1,2,1), a3 = (0,2,2). Then we give the Cayley digraphs

o

Cay(S, A) for all the three different one-element connection sets A, as indicated in Figures
3.1-3.3.

So we have
Cay(S,{a1}) = Cay(M(Zs, {1}, A, P1),{(0,1,1)}) U Cay(M(Zs, {2}, A, P1),{(0,2,1)}),
Cay(S,{az}) = Cay(M(Zs, {1}, A, P»),{(1,1,1)}) U Cay(M(Zs, {2}, A, P»),{(1,2,1)}),
Cay(S,{as}) = Cay(M(Zs, {1}, A, P),{(0,1,2)}) U Cay(M(Zs, {2}, A, P»),{(0,2,2)}).
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Therefore Cay(S, {a1,a2,a3}) =
[Cay(M(Zs, {1}, A, P1),{(0,1,1)}) ® Cay(M(Zs, {1}, A, P»),{(1,1,1),(0,1,2)})]
U [Cay(M(Zs, {2}, A, 1), (0,2, 1)}) © Cay(M(Zs, {2}, A, By), {(1,2,1), (0,2,2)})].
We see that Cay(S, {a1,a2,a3}) = (V1, E1) U (Va, Es) where
(Vi, E1) = [Cay(M(Zs, {1}, A, P1),{(0, 1, )})
@Cay(M(Zs, {1}, A, P2) {(1,1,1),(0,1,2)})] and
(Va, Bn) = [Cay(M(Zs, {2}, A, P1),{(0,2, )}
®Cay(M(Zs, {2}, A, P2) ,{(1,2,1),(0,2,2)})].

Let  (Vi, En) = Cay(M (Z3,{1} A, ), {(0,1,1)}),
(Vi2, E2) = Cay(M(Zs, {1}, A, P»), {(1,1,1), (0, 1, 2)}),
(Va1, Ea1) = Cay(M(Zs, {2}, A, P1),{(0,2,1)}), and
(Vi Eip) = oay<M<Z3,{2} AP {(1,2,1),(0,2,2)}).
Then we get that (V;, E;) = @;5_, (Vij, E;j) for every i € {1,2}.

3.2 The Structure of Cayley Digraphs of Completely Simple Semigroups

with one-element Connection Sets

In the following results, we describe the structure of Cayley digraphs of a completely
simple semigroup with a one-element connection set. By the proof of Theorem 3.1.3(1-2)

we have the following lemma.

Lemma 3.2.1. Let S = M(G, I, A, P) be a completely simple semigroup, I = {1,2...,n},

A={1,2....,m}, a = (9,5,8) € S, P, the i column of P. Then Cay(S,{a}) is the

disjoint union of n isomorphic strong subdigraphs Cay(S1,{(g,1,8)}), Cay(S2,{(g,2,5)}),
., Cay(Sn,{(g,n,B)}) where S; = M(G,{i}, A, P;).

Lemma 3.2.2. Let S = M(G, I, A, P) be a completely simple semigroup, [ = {1,2...,n},

M), = (gk<p5jg>x{i}><{ﬁ}) U (Ua¢5(9k<pﬂjg> g_lp;jlx{i}x{oz})), wherek € {1,2,...,t}
and v € I. Then M;1, Mo, ..., My are disjoint.

Proof. Since {g1(pg;g) 92(psj9),---,9:(ps;jg)} is the set of all distinct left cosets of
(pgjg) in G, we get that M;i, Mo, ..., My are disjoint. O

Lemma 3.2.3. Let S = M(G, I, A, P) be a completely simple semigroup, [ = {1,2...,n},
A={1,2....m}, a=(9,7,8) € S, (Mx, Ei.) a strong subdigraph of Cay(S,{a}). Then
(Milcla Eikl) = (Mikga ikg) for all k‘l, k?g S {1, 2, .. ,t}.
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Proof. We define f: (M, Eir,) = (Mig,, Eik,) by

(gkl (pﬁjg)r7i’ﬁ) = (9k2 (pgjg)r,i,ﬁ)
(98, (085 9) 9 Py 1) = (9ra(P3i9) 9 'Daj i) for o B.

Since, for all k € {1,2,...,t}, gx(ps;g) = {9k(ps;9), 9x(P5;9)% -+ 9r(psig) P59}, f

is a well defined bijection.
We must prove that f and f~! are homomorphisms. For x,y € My, , let (z,y) €
Ei,. Then (z,y) is an arc in Cay(S,{a}), so y = xza. By Proposition 3.1.2(2), ps(y) = B.

Therefore y € (gk, (pg;9) % {i} x {B}), and so y = (gx, (p3;9)%. i, B) for some d € {1,2,...,
I(psjg)|}. We consider the following two cases.

(casel) If z = (gk, (ps;j9)",i, B) for some h € {1,2,..., [(ps;g)|}, then
(9k:(3j9)% 3. 8) = (9k, (ps;9)".4,5)(9,4,5)
= (9r(p3i9)"8j9. 1. B).
Thus (pgjg)* = (ps;9)"ps;9, s0
fly) = flor(psj9)% i, B)
(ng (pﬁjg)da 7;’ B)
(9, (3;9)" 39,1, B)
(gkz(pﬂjg)h’%ﬁ) (g’J’ /8)

= flgr(psj9)".i,8)a = f(z)a.

Therefore (f(x), f(y)) is an arc in (Mg, , Eik, )-
(case2) If 2 = (gkl(pﬁjg)h,g’lpa_jl,i,a) for some o # 3, and B’ € {1,2,..., {pgj9)l},
then
(98 (P8 90)" 0. 8) = (90 (p3;9)" 9~ "o 1, @) (9,5, B)
= (91 (i 9)" 9P Paj9y i )

- (gkl(pﬁjg)hlaiaﬁ)~

’

Hence (pgjg)? = (psj9)" , and so
f(y) - f(gk1 (pgjg)d,i,ﬁ)
= (9% (P3i9)"9 'Pa; Pajg: . B)
= (9r(p559)" 9 'paj 1> ) (9,4, B)

= fl9r (pﬁjg)h,g_lp;},i, a)a = f(z)a.
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Therefore (f(z), f(y)) is an arc in (Mg, , Eig,).

1

This means that f is a digraph homomorphism. Similarly, f~" is a digraph homo-

morphism. Hence (Mg, Eik,) = (Mg, Eik,)- O

Lemma 3.2.4. Let S = M(G, I, A, P) be a completely simple semigroup, [ = {1,2...,n},
A={1,2...,m}, a=(g,7,8) € S. Then Cay(Si,{(g,i,5)}) = Upy(Mss, Er).

Proof. We first show that S; = L'J',;:lMik. Since M, C S; for all k € {1,2,...,t},
Us_ My, C S;. We will show that S; € Uj_ Myy. Let = (¢',i,\) € S;, we get g’ € G =
Ut _ 9k (ps;g), and thus g = 9w(psjg)’ for some v € Nand w € {1,2,...,t}. We need to

consider the following two cases.

(casel) If A\ = 8, then x = (gw(pﬁjg)”,i,ﬁ) € (gw<p/3jg)><{i}><{6}) C M;,, C U',;:lMik.

(case2) If X # B, then za = (9uw(ps;9)",5,A)(9,4,8) = (9uw(Psj9)" Prjg,i, ). Since
9w(Ppj9)’prjg € G = U 19k(D5j9), 9uw(Ppi9)'Prig € gulppjg) for some u €
{1,2,...,t}, we get that g,(psjg)’prjg = gu(pgjg)“/ for some ¥ € N, and thus
9u(P39)" = 9u(ps;9)” 97 Py} Therefore = = (gu(p3;9)",3:\) = (9u(psjo)”
97y i A) € (9ulpsigdg 'y < {i} x {\}) € M € Ujmy Miy,.

Hence S; C U,_, Mjj,. Then we conclude that S; = Uj_, M.

Since (Mj1, Eqn), (M2, Ei2), ..., (My, Ey) are strong subdigraphs of Cay(S;, {(g,
i,8)}), E(Uper (Mir, Eii))) € E(Cay(Si,{(g,4,8)})). Let & = (u1,4, A1),y = (uz, i, A2) €
S; and (z,y) be an arc in Cay(S;, {(g, 4, 8)}). Therefore up = u1py, jg and Ay = 3 by Propo-
sition 3.1.2(2). Since S; = UZ:1Mik, x € M, and y € My, for some by, by € {1,2,...,t}.
Hence y € (gs,(psjg) % {i} x {8}), and thus y = (g, (pgjg)dl,i, B3) for some d € {1,2,...,
I(pgjg)|}. Then us = gy, (pgjg)dl. We consider the following two cases.

(casel) If Ay # B3, then z € (gs, <p5jg>g_1p)_\11j x {i} x {\1}). Hence z = (gs, (pgj9)°g "
p;\llj,i,)\l) for some ¢ € {1,2,...,[(pg;j9)|}, and thus u; = gbl(pgjg)cgflp)_\llj.
Since ug = u1px,;9,

/

d -1, -1
96, (P39)" = 96 (P3;9)°9” Py, ;PN59

9, (P57 9)°-

Then by = by, and thus =,y € M;p,. Hence (z,y) € Ey,. We get that (x,y) is

an arc in Ul_, (Mg, Ei,).
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(case2) If A\; = 3, then z € (gb1 (pgig) x {i} x {5}) Hence = = (gb1 (p3;ig)° ,i,ﬂ) for
some ¢ € {1,2,...,(pg;jg)|}, and so ui = gy, (psj9)¢ - Since uy = u1py,;9,

/ /

9. (P3;9)" = 96, (P3j9)° PrLjY

/

= 96, (P3j9)° PBjg

g6, (psig)°

Therefore by = by and thus x,y € My, . Hence (z,y) € Ey,. We get that (z,y)

. . -t
is an arc in Up_; (Mg, Eir).

Hence E(Uizl(Mik,Ei )) = E(Cay(S:,{(g.1,8)})). We conclude that Cay(S;,
{(9:1.8)}) = Ve (Mik, Eit). 0

Lemma 3.2.5. Let S = M(G, I, A, P) be a completely simple semigroup, I = {1,2,...,n},
A={1,2...,m}, a = (g9,5,8) € S. Then (M, Es1;) = C’ay((pgjg> X Rm,{(pgjg,rg)})
where Ry, = {ri,r2,...,rm} is a right zero semigroup.

Proof. We define f : (M, Fi) — C’ay((plgjg> X Rm,{(pgjg,rﬁ)}) by

(9% (Ps39)*:7, B) = (91 (pp;9)*, 76)
(9x(859)%9 "o ir ) = (9k(Pj9)" " 7a) fora #B.
Clearly, f is well defined. We will show that f is a bijection. Let z,y € M;, so
r = (gk(plgjg)tl,i,ﬁ) or x = (gk(pgjg)tllg_lp;;,i, a) for some a # 3 and tl,tll €
(1,2, | pgi9) |}, and y = (9u(ps9)2.5,8) or y = (gx(ps;9)29~p )0, 7) for some
v # B and ta,ty € {1,2, ., [(pgg)l}. Let f(z) = f(y). Then pa(f(z)) = p2(f(y)). By the

definition of f, we get p3(z) = p3(y). We consider the following two cases.

(casel) For z = (gr(ppj9)™.i,8) and y = (gr(ps;j9)?,4,8). Since f(z) = f(y),
(9% (psj9)"™ 1) = (9k(Psj9)™?,75). We get that gr(pg;9)" = gr(ps;9)". Hence
i =)

(case2) For x = (gk(pgjg)tllg_lp;jl,i,a) and y = (gk(pgjg)t/?g_lp;jl,i, ’y) for some
a,y # B. Since f(z) = f(y), (9(ps;9)1 " ra) = (9r(ppj9)'2L,7,). Hence
gk(pgjg)tlfl = gk(pgjg)tlfl and ro = r,. Therefore & = v and gk(pgjg)tll =
gk(pgjg)té. This means that z = y.

Then f is an injection . Let z € (pgjg) X R, so z = (gk(pﬁjg)q,rﬁ) for some ¢ €
{12, [{pgj9)|} or z = (91(psj9)? . 7a) for some o # § and ¢ € {1,2, ..., [(pg;g)|}. We

need to consider the following two cases.
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(casel) If z = (gk(pg;g)?,75), there exists = (gr(pgjg)?,4, ) € My such that f(z) =
f(9r(psjg)?, B) (9r(psj9)?,5) = 2
(case2) If z = (gk(pgjg) Ta), there exists = = (gr(pg;g)? Hg*lpa_jl, i,&) € My such

that f(z) = f(gx(pg;9)? g~ o ina) = (91(pgj9)7 7o) = 2.

This means that f is a surjection.
We will show that f and f~! are digraph homomorphisms. For z,y € M;, let
(z,y) € Eijt. Then (z,y) is an arc in Cay(S,{a}), and thus y = xa. By Proposition

3.1.2(2), p3(y) = . Hence y € (g (pg;g) x {i} x {B}), and so y = (gx(psj9)°, i, B) for some
ce{1,2,...,[(ps;j9)|}. We need only consider two cases.

(casel) If z € (gr(pgjg) x {i} x {B}), then = = (gx(ps;9)%. i, 8) for some d € {1,2,...,
|(ps;9)1}. Since y = za, (gx(ps;9) i B) = (91 (P;9)% 4, 8) (9.4, 8) = (91(ps;9)*
P19, i, B). Thus g(ps;9)° = 9r(ps;9)'Ps;g, and so
fy) = flon(ps;9)%,i, B)
)

gr(ps;9)",
d
(psj9)“PBig:75)
)4,

(
= (gk
(9%(ps;9)",78) (P89:78)

= f(z)(ppjg,7p)-

Therefore (f(z), f(y)) is an arc in Cay({ps;jg) X Rm,{(pgjg.78)})-
(case2) If x € (Unxp (gk<p5jg>g_1p;j1 x {i} x {a})), then = = (g (ps;9)* g—lp;jl, i, )
for some o # § and d € {1,2,...,|(pg;g)|}. Since y = za,
(95395 8) = (9r(P;9)" 9 'pof i ) (9,4, B)
= (9r(ppi9)? 9™ 'Paj Pajg, i, B)

!

Thus gx(psj9)° = gx(psjg)? , and so

fly) =

= f(@)(pgjg:rp)-
Therefore (f(a:), fy)) is an arc in Cay((p/gjg> X Ry, {(pgjg,rﬁ)}).
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This means that f is a digraph homomorphism.

For ,y € My, let (f(z),f(y)) be an arc in Cay((ps;g) x Bm, {(ps;9,75)}),
then f(y) = f(x)(pg;jg,rs). By the definition of right group, p2(f(y)) = 73, and so
p3(y) = B. Hence y € (gr(psjg) x {i} x {B}), and thus y = (gr(pj9)°, i, 5) for some
ce{1,2,...,/(pg;jg)|}- We consider the following two cases.

(casel) If z € (gr(pgjg) x {i} x {B}), then z = (gr(ps;9)%. i, 8) for some d € {1,2,...,
[(pgig)|}. Since f(y) = f(z)(ps;9,75),
(9:(ps9) s m8) = (9k(ppi9)%s75) (Psi9:75)

= (9(ps;9)"psig:78)-
Thus gx(ps;9)° = 9k (psj9)?ps;g. Hence

Y= (gk pﬁjg 5 75)
i (gk pﬂ]g pﬁjgalaﬂ)
(gk pﬂjg ) aﬁ)(gmyvﬁ)

= d%a,
Therefore (z,y) is an arc in (M, Ejx).

(case2) If & € (Uaxp (gk<p5jg>g*1p;j1 x {i} x {a})), then = = (gr(ps;9)* g*lp;jl, i, )
for some o # 3 and d e {1,2,...,[{pgjg)|}- Since f(y) = f(x)(ps;jg,78),

!

(9x(p859)78) = (9k(Pa;9)* " 7a) (Ppig,7p)

/

= (gk(psj9)® .75).

Thus gx(ps;9)° = gr(Ps;) 9) . Hence

g paj Pajg, i, B)

s "o isa) (9,4, )

and so (z,y) is an arc in (M;k, Ei).

This means that f~! is a digraph homomorphism. Hence (M, Ej) = Cay((p@jg> X
R, {(psjg,75)})- O
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Example 3.2.6. Consider the completely simple semigroup S = M(ZayxZa, I, A, P),Zax
Zo ={00,01,10,11} with I = {1,2}, A = {1, 2},

I
(an]]
=
(en]]
(]
(@]}
=i
(an]]

P = , and thus P; = , Py =

(@]
=l
=
—l
(@]
=l
=
=l

Then we give the Cayley digraph Cay (M(Zg X L,

1111 1112 1121 1122

Figure 3.4: Cayley digraph Cay(M(Z2 x Zs, {1,2},{1,2}, P),{(10,1,2)}).

In Figure 3.4, we see that C’ay(S, {(10,1, 2)}) = U?:lCay Si,{(g,i,8)}) where Sy =
M(Zy x L, {1}, A, P1), So = M(Z2 x L2, {2}, A, P2), (9,1, 8) = {(10,1,2)} and (g,2, 8) =
{(10,2,2)}. Then it is the union of right group digraphs.

We have (p2110) = {11,00},Z2 X Z2/{p2110) = {g1(p2110), g2(p2110)} where g1 =

My, = {(11,1,2),(00,1,2),(01,1,1),(10,1,1)},
My, = {(10,1,2),(01,1,2),(00,1,1),(11,1,1)},
My = {(11,2,2), (00, 2,2), (01,2,1),(10,2,1)},
My = {(01,2,2),(10,2,2),(00,2,1),(11,2,1)}

We see that (M1, E11) = (Mg, E12) = (Ma1, Ea1) & (Mg, Exz) =2 Cay((p2110) x
Ro, {(p110,r2)}) and Cay(S, {a}) = Ui1Upr (Mit, Eir) where Ry = {r1,r2} is a right

Zero semigroup.
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By Lemma 3.2.1-3.2.5, we get that a Cayley digraph of a completely simple semi-
group M(G, I, A, P) with a one-element connection set {(g,7,3)}, is the disjoint union
of |I]t copies of Cay((psjg) x Ra|, {(ps;jg,75)}) where ¢ = |G/(pg;g)|. Then |I|t is the
number of connected components of Cay(S, {a}). In Example 3.2.6, we have |I| =2,t =2
and Cay(S,{10,1,2}) has 4 connected components.

Next, we introduce the conditions for Cayley digraphs of a completely simple semi-
group with a one-element connection set to be isomorphic and connected. The following
theorem gives the conditions for two Cayley digraphs of completely simple semigroups

Cay(S,{a}) and Cay(S,{b}) being isomorphic.

Theorem 3.2.7. Let S = M(G,I,A, P) be a completely simple semigroup, I ={1,2...,
"I’L}, A= {172 : 7m};a —~ (97]76)7(7 - (g/7ia)‘) € S. Then CCLy(S, {a}) = Cay(S7 {b}) Zf
and only if |(ps;9)| = |(prig ).

Proof. (=) Suppose that Cay(S,{a}) = Cay(S,{b}). By Lemma 3.2.5, we get that
Cay((psjg) x Riap. {(psj9:78)}) = Cay({prig’) x Rjap. {(prig ,v2)}). Therefore |(pg;g) x
Ripll = [{paig ) x Rjaj|- Hence [(pg;g)| = [(prig ).

(<) Assume that [(pg;g)| = |(prig')| = I. By Lemma 3.2.1-3.2.5, we only need
to show that Cay((pgjg) X Rm,{(ps;9,78)}) = Cay((prig) X Rm,{(prig’,72)}) where

Ry, = {ri,72,...,mn} is a right zero semigroup. We define

£ Cay((ps;g) X R, {(p89.78)}) — Cay((paig’) X R, {(prig 72)})

((pm'gl)rvm) if uw=p;
by f((ps9)"s7u) = ((pm'g/)rﬂ“ﬂ) if p=M\
((pAiQ/ )",ro)  otherwise.

Clearly, f is well defined. Since |(ps;9)| = |(paig)|, f is a bijection. To show
that f and f~! are homomorphisms. Let z,y € (pgjg) x Ry, and let (z,y) be an arc
in Cay((pgjg) ¥ Rm, {(psjg,75)})- Hence x = ((ps;9)", 7k, ),y = ((£;9)"™,7k,) for some
ti, bty € {1,2, ..., [(pgg)|}, and so ((pg;9)2,7ky) = ((P359)", 7k ) (P89 78) = ((P3;9)" Y,
r3). Hence ty = t1 + 1 (mod 1) and ky = 3. We will show that (f(z), f(y)) is an arc in
Cay((ng» X R, {(prig r,\)}). Consider three cases:
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(casel) If k; = 3, then

(case2) If k; = A, then

(cased) If k; = a where o # 3, \, then

f()

f((psi9)",75)
((paig )2, 72)

((pxig )"*prig s 1)
((paig )" 72) (Pig 572

F(@)(Prig s 72)-

( p)\zg )
((p2ig ) prig s 7))
((pxig )™, 75) (Paig s 7)

f((psj9)" 1>7">\>(P>\z‘9 ,TX)
f(JT)(pAig,, T)).

((prig)'2,73)

((pxig) "' Prig s 72)
((Prig)'™,7a) (P2ig s 72)
f((psi9) 177”04)(17)\2'9 )

F(@)(paig s 2)-

This means that f is a digraph homomorphism. Similarly, f~! is a digraph homo-

morphism. Hence

Cay((pg;jg) X R, {(0p;9:75)})

By Lemma 3.2.5, we get that Cay(S, {a}) =

Example 3.2.8. Consider Cay(M(Zy x Zs, I, A, P),{(10,1,

Cay(M(Zy x Z, I, A, P),{(01,2

,2)
We see that |(p2110)| = ](pg 01)| = 2 and Cay(M(Zy x Zs, I, A, P),{(
C(Z:U(M(ZQ X ZQ, I7A7 P)v{( )

= Cay((prig ) X Rons {(prig ,72)})-

Cay(S, {b}).

}) (see Figure 3.5).

b
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Figure 3.5: Cayley digraph Cay(M(Z2 x Zo, {1,2},{1,2}, P),{(01,2,2)}).

Note that a rectangular group S = G x L,, x R, is a special case of a completely
simple semigroup M(G, I, A, P), where |I| = m, |A|] = n and P is an identity matrix.
The following corollary gives the conditions for two Cayley digraphs of rectangular groups

with a one-element connection set Cay(S, {a}) and Cay(S,{b}) to be isomorphic.

Corollary 3.2.9. Let S = G x L,, X R, be a rectangular group, a = (g1,l1,71), b =
(92,1l2,7m2) € S. Then Cay(S,{a}) = Cay(S,{b}) if and only if |{g1)| = [{g2)].

Now we give the conditions for a Cayley digraph of a completely simple semigroup

with a one-element connection set to be connected.

Theorem 3.2.10. Let S = M(G, I, A, P) be a completely simple semigroup, a = (g, 7, ) €
S. Then Cay(S,{a}) is connected if and only if G = (pgjg) and |I| = 1, in particular this

means that S is a right group.

Proof. (=) Let Cay(S,{a}) be connected. By Lemma 3.2.1, we get |I| = 1 and
G = (pg;9)-

(<) Assume that G = (pgjg) and |I| = 1. We will prove that Cay(S,{a}) is con-
nected. Let (g1,%, A1), (92,4, A2) € S. Hence g1, 92 € (pgjg). Therefore g1 = (pg;g)" and
g2 = (pjg)? for some r,q € {1,2,...,[(psj9)|}. Then r» < g or r > ¢q. We consider four

cases.
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(casel)

(case2)

(case3)

(cased)

For \y = Ay = . If r < g, then ¢ = r + ¢ for some t € NU{0}. Then we get
(gl7i7)\1) - ((pﬁjg)r727ﬂ)7 ((pﬁjg)r+17i76)7 ERE ((pﬁjg)r+t77’76) - (927i7)\2) is
a path from (g1,4, A1) to (92,4, A2) in Cay(S, {a}). Similarly, if » > ¢, there is
a path from (g2,7, A2) to (91,7, A1) in Cay(S,{a}).

For A\ = 3, A\ # B. Then (g2,,X2)(9,7,8) = (92pxr,j9,1, ), and thus
((gz,i,)\g),(ggp)\”'g,i,ﬁ)) is an arc in Cay(S,{a}). Since G = (pgjg) and
92Px259 € G, 92Px59 = (Pjg)" for some w € {1,2, ..., [(pg;g)[}. By case 1, there
is a path from (g1,%, A1) to (92p»,;9,%, ) or from (gapx,;9,%, B) to (g1,%, A1).

Therefore we have a semipath between (g1,4, A1) and (g2,1, \2).

For A1 # 8,2 = 8. Then (91,4, M)(9, 4, 8) = (91px1j9,7, 8), and so ((g1,7, A1),
(glpAljg,i,B)) is an arc in Cay(S,{a}). Since G = (pg;g) and gipy,jg € G,
91979 = (pgjg)’ for some v € {1,2,...,|(pg;g)|}. By case 1, there is a path
from (92,7, A2) to (g1pa,j9,1, 8) or from (gipx,;g,1,B) to (go,i, A2). Therefore

we have a semipath between (g1,7,\1) and (g2, 17, A2).

For A1 # 8,22 # B. Then (g1,7,M1)(9,7,8) = (91pxr,59,1,8) and (g2,1, A2)
(9,3:8) = (92px259,%.83).  Thus ((g1,%,M\1), (91pr,59:1,8)) and ((g2.i, X2),
(920225957, B)) are arcs in Cay(S, {a}). Since gipx,j9, 92pr,j9 € G = (pjg),
91Px39 = (Pj9)" and gapy,9 = (pg;j9)° for some w,z € {1,2,...,|pg;gl}. By
case 1, there is a path from (g1py,;9,%, 8) to (920,59, i, ) or from (gopy,;9,1, B)
to (g1px, 59,1, ). Therefore we have a semipath between (g1,%, A1) and (g2, i, A2).

By the above four cases we conclude that Cay(S, {a}) is connected. O

Example 3.2.11. Consider the completely simple semigroup S = M(G, I, A, P), where

1
G = {00,12,21} is a subgroup of Z3 x Zz, I = {1}, A = {1,2} and

Let a = (21,1,2). We see that (pg,jg) = (21-21) = (12) = {12,2

(aw]]
(e]]

1

[\]]
=

1,00} =G, |I| =1,

and Cayley digraph Cay(S,{a}) is connected (see Figure 3.6).
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Figure 3.6: Cayley digraph Cay(M({00,12,21},{1},{1,2}, P),{(21
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1,2)}).





