CHAPTER 4

Isomorphism Conditions for Cayley Digraphs of

Rectangular Groups

In this chapter, we give some equivalent conditions for Cayley digraphs of a rect-
angular group to be isomorphic to each other. In order to contribute to these objectives,
the isomorphism conditions for Cayley digraphs of a right group and for Cayley digraphs

of a rectangular band have been presented in this chapter.

4.1 Isomorphism Conditions for Cayley Digraphs of Rectangular Bands

We consider an isomorphism of Cayley digraphs of a given rectangular band in
this section. First, we will introduce the conditions for Cayley digraphs of a right zero
semigroup to be isomorphic to each other. By the definition of a right zero semigroup, we

get the following lemma.

Lemma 4.1.1. Let A C R,,, and let v be a vertex in Cay(R,, A). Then
(1) 7(1}) = |Ry| if and only if v € A;
(2) 7(1}) =0 if and only if v & A.

proof. (1) Let j(v) = |Ry,|. Then there is an arc from each vertex in R, to v. It
follows that there exists w € A such that v = uw for v € R,,. Since uw = w, v = w € A.
Conversely, we assume that v € A. Let u € R,. Since uv = v, there is an arc from u to
v. It follows that there is an arc from every vertices in R,, to v. Hence 7(1}) = |R,|.

(2) Let 7(1}) =0 and u € R,,. We assume that v € A. Since uv = v, (u,v) is an
arc in Cay(R,, A), and thus 7(1}) # 0. There is a contradiction, so v ¢ A. Conversely,
we assume that 7(1}) # 0. There is w € A such that v = uw for some u € R,. Since

uw = w, v =w € A. There is a contradiction, therefore 7(1)) =0. O

By Lemma 4.1.1, we have the following theorem which introduces the isomorphism

condition for the Cayley digraphs of a given right zero semigroup.
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Theorem 4.1.2. Let A,B C R,,. Then Cay(R,,A) = Cay(Ry, B) if and only if |A| =
|BI.

proof. (=) Let Cay(R,,A) = Cay(R,,B). Then the number of vertices with
indegree |R,| of Cay(R,,A) and Cay(R,,B) are equal. By Lemma 4.1.1(1), we get
Al = |B].

(<) Let |A| = |B| = 1. We assume that A = {a1,a2,...,a;} and B = {b1,bo,...,
bi}. Suppose that R,\A = {a},d),...,a}} and R,\B = {b},b,,...,b;}. We define a
mapping f : R, = R, by

fa) = b; ifa:aiforzie{l,&...,l};
b, ifa=adforie{1,2,...,t}.

Clearly, f is well defined and bijective. We will show that f and f~! are digraph
homomorphisms. Assume that (z,y) is an arc in Cay(R,,A). By Lemma 4.1.1(1), we
have y € A, and thus f(y) € B. By Lemma 4.1.1(1) again, there exists an arc from every
vertices to f(y) in Cay(R,, B). Then (f(z), f(y)) is an arc in Cay(R,,, B). Therefore f is
a digraph homomorphism. Similarly, we can show that f~! is a digraph homomorphism.

Hence Cay(R,, A) = Cay(R,, B). O

The following lemma shows that the Cayley digraph of a rectangular band is the

union of Cayley digraphs of right zero semigroups.

Lemma 4.1.3. Let S = L, X R, be a rectangular band and A C S. Then Cay(S, A) is
the disjoint union of m isomorphic strong subdigraphs Cay({l;} X Ry, {li} x p2(A)) for
ie{l,2,...,m}.

proof. Let p,q € {1,2,...,m}. Since ({l,} x Ry,) N ({ly} X Ry) = 0 for all p # ¢, we
get that Cay({lp} X Rn,{l,} x p2(A)) and Cay({lq} x Rn,{lg} x p2(A)) are disjoint. To
show that Cay({lp} X Ry, {lp} x p2(A)) = Cay({ly} x Ry, {lq} x p2(A)) and Cay(S, A) =
Uit Cay({l;} x Ry, {l;} x p2(A)). We define a mapping f : {l,} x R, — {l;} x R, by
f((lp, 7)) = (lg,7) for every (l,,r) € {lp} X R,,. Clearly, f is well defined and is a bijection.
We will show that f and f~! are digraph homomorphisms.

For (1y,7r1), (Ip,m2) € {lp} X Ry, let ((Ip, 1), (Ip,72)) be an arc in Cay({lp} x Ry, {lp} %
p2(A)). There exists (Ip, ) € {l,} xp2(A) such that (I,,,72) = (Ip,71)(lp,7) = (Ip, 7). There-
fore r = r9, we get that ro € pa(A). Hence (lg,72) € {l4} x p2(A) and thus (Ig,r1)(lg,72) =
(lg,72). This means that ((I4,71), (Ig,72)) is an arc in Cay({l;} X Ry, {lg} xp2(A)). We have
shown that f is a digraph homomorphism. Similarly, we can show that f~! is a digraph

homomorphism. Hence Cay({lp} x Ry, {l,} x p2(A)) = Cay({ly} x Ry, {ly} x p2(A)).
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We will show that Cay(S,A) = U Cay({l;} x Rn,{li} x pa(A)). Let D =
U Cay({l;} x Ry, {l;} x pa(A)). Since Ly, x R, = U" ({l;} x Ry,), then S = U~ ({I;} x
R,) = V(D). We will show that E(Cay(S,A)) = E(D). For (l;,r),(l;,7") € S, let
((Liyr), (15,7")) be an arc in Cay(S, A). There exists (I, r”) € A such that (I;,7) =
(L, ) (g, ") = (liyr"), we get l; = I and ' = 7. Since (Iy,r") € A, (I;,7") € {l;} %
p2(A). Consider (I;,7") = (1;,r") = (I;,7)(1;,7"), we have that ((I;,7),(;,7")) = ((l;,r),
(1;,7")) is an arc in Cay({l;} x Ry, {l;} x p2(A)). Hence ((I;,r),(l;,7")) is an arc in D.
Therefore E(Cay(S,A)) C E(D). Conversely, let ((I;,7),(l;,r")) € E(D). This means
that it is an arc in Cay({l;} x Ry, {l;} x p2(A)) for some j € {1,2,...,m}. There
exists (1j,7") € {l;} x p2(A) such that (I;,r") = (I;,r)(l;,r") = (I;,r") and we get that
" =17". Also since (I;,7") € {l;} x p2(A), we have (I,r") € A for some | € L,,. Consider
(U, ") = (lj,r") = (5,7)(1,r"), it follows that ((l;,7),(l;,7")) is an arc in Cay(S, A).
Hence E(D) C E(Cay(S, A)). Therefore Cay(S, A) = D. O

Theorem 4.1.4. Let S = L, X R,, be a rectangular band and A, B C S. Then Cay(S, A) =
Cay(S, B) if and only if [p2(A)| = [p2(B)|.

proof. (=) Let Cay(S,A) = Cay(S, B). By Lemma 4.1.3, we get U;";Cay({l;} x
Ry, {li} xp2(A)) 2 UL, Cay({l;} X Ry, {l;} x p2(B)). Then Cay({l;} x Ry, {l;} x p2(A)) =
Cay({li} X Rn,{l;} x p2(B)) and thus Cay(R,, p2(A)) = Cay(R,,p2(B)). By Theorem
4.1.2, we get [p2(A)| = |p2(B)|.

(<) Let |p2(A)| = |p2(B)|. By Theorem 4.1.2, we get Cay(Ry,p2(A4)) = Cay(R,,
p2(B)). Then Uy Cay({li} x Ry, {li} x p2(A)) = UL Cay({li} x R, {li} x p2(B)). By

Lemma 4.1.3, we get Cay(S, A) = Cay(S, B). O
liry liro lirs liry
lary laro lirg lory
I3y l3ra l3r3 l3ry

T

Figure 4.1: Cayley digraph Cay(Ls x R4, {(l1,72), (I3,74)}).
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liry lirg lir3 liry

127'1 ZQTQ l27‘3 127‘4

l3ry l372 l3r3 l3ry

Figure 4.2: Cayley digraph Cay(L3 X R4, {(lg, 7“1), (l3, 7'1), (13, 7'3), (ll, 7’3)}).

Example 4.1.5. Let S = L3 x R4 be a rectangular band, and let A = {(l1,r2), (I3,74)},
B = {(l2,71), (l3,71), (I3,73), (l1,73)} be subsets of S. It is easily seen that Cay(S, A) =
Cay(S, B) (see Figures. 4.1 and 4.2) , and [p2(A)| = |p2(B)| = 2.

4.2 Isomorphism Conditions for Cayley Digraphs of Right Groups

In this section, we present the conditions for Cayley digraphs of a given right group
to be isomorphic to each other. By the definition of a right group, we get the following

lemma.

Lemma 4.2.1. Let S = G x R, be a right group, A a nonempty subset of S, g,9" € G,

and r,7" € R,,. Then the following statements are equivalent:

(1) ((g,7),(g",7")) is an arc in Cay(S, A);
(2) there exists (a,r") € A such that ¢' = ga;
(38) ((g,7"),(g',7")) is an arc in Cay(S, A).

Proof. (1)—(2) Let ((g,7),(¢’,7")) be an arc in Cay(S, A). There exists (a,7”) € A
such that (¢',7") = (g,7)(a,r") = (ga,r”). Hence ¢’ = ga and v’ = r” therefore (a,r’) € A.

(2)—(3) Assume that there exists (a,r’) € A such that ¢ = ga. Since (¢',7") =
(9a,) = (g.7)(a,"), we get ((g.r)(¢'.+”)) is an are in Cay(S, A).

(3)—(1) Let ((g,7")(¢’,7")) be an arc in Cay(S, A). There exists (a,r”) € A such
that (¢,7") = (g9,7")(a,7") = (ga,r”). Hence ¢’ = ga and r' = r”. Since (¢',r') =
(ga, ") = (g,7)(a,r"), we get that ((g,7),(¢',7")) is an arc in Cay(S, A). O

The next result gives some description for Cayley digraphs of right groups.
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Lemma 4.2.2. Let S = G x Ry, be a right group, A a nonempty subset of S, G/(p1(A)) =
{91(p1(A4)), 92(p1(A)), - .., guw(p1(A))}, and (gi(p1(A)) x p2(A), E;) a strong subdigraph of
Cay(S,A) fori=1,2,...,w. Then (gj(pi(A)) x p2(A), E;) and (gr(p1(A)) x p2(A), Ey)
are disjoint strong subdigraphs of Cay(S, A) for all j # k.

proof. Let u = (g;9,7) € gj(p1(A)) x p2(A) and v € gr(p1(A)) x p2(A). Since
9j(p1(A)) and gi(p1(A)) are distinct left cosets of (p1(A)) in G, v € gj(p1(A)) X p2(A).
Assume that (u,v) is an arc from g;(p1(A4)) x p2(A) to gr(pi(A)) x p2(A). There exists
a = (h,\) € A such that v =ua = (g;g9,7)(h,\) = (g;9h, \) € g;(p1(A)) x p2(A). There is
a contradiction because v ¢ g;(p1(A)) x p2(A). This means that there is no arc between

(9j(P1(A)) x p2(A) , E;) and (gx({p1(A)) x p2(A) , E). U

Theorem 4.2.3. Let S = GX R, be a right group, A a nonempty subset of S, G/(p1(A)) =
{91(p1(A4)), 92(p1(A)), - - -, guw(p1(A))}, and (gi{p1(A)) x p2(A), E;) a strong subdigraph of
Cay(S, ). Then Cay($,4) = Uy (gi(pr(A)xpa(A), E) U Uy (g:(pa(A)) x B, EY),
where E{ = {((s,1), (,0)) | ¢ & pa(A), ((5,v), (u,v)) € Fi}.

proof. Let D = U;_(gi(p1(A)) x pa(A), E;) UUi; (gi(p1(A)) x Ry, E). Tt is clear
that S = U2 (gi(p1(A)) x p2(A) UUiZ;(9:(p1(A4)) x R,) = V(D). We will prove that
E(Cay(S,A)) = E(D). Let ((g,7),(¢’,7")) be an arc in Cay(S,A). By Lemma 4.2.1,
there exists (a,7’) € A and ¢’ = ga. Hence ¢’ € gi, (p1(A)) and g € gi,(p1(A)) for some
ki,ko € {1,2,...,w}. We have the following cases.

(casel) If r € pa(A), then (g,7),(d,7") € UiZi(gi{p1(A)) x p2(A)). Since U;~,
(9i(p1(A)) X p2(A), Ey) is a strong subdigraph of Cay(S, A), ((g,7), (¢',7)) is
an arc in Uy (g;(p1(A)) x pa(A), E;). Therefore ((g,7), (¢',7')) is an arc in
D.

(case2) If r & pa(A), then ((g,7'), (¢',7")) is also an arc in Cay(S, A) by Lemma 4.2.1
and ((g,7),(¢’,r")) is an arc in Cay(S, A). This implies that ((g,7’), (¢',7")) €
E;. Then ((g,7),(¢’,r')) € E.. Hence ((g,7), (¢’,7")) is an arc in D.

Therefore E(Cay(S, A)) C E(D). To show that F(D) C E(Cay(S, A)). Let ((g,7), (¢',7"))

be an arc in D. We consider two cases.

(casel) If ((g,7),(g’,r")) is an arc in U;_;(gi(p1(A)) x pa(A), E;), then it is an arc
in Cay(S,A) because U;”(g;(p1(A)) x p2(A), E;) is a strong subdigraph of
Cay(S,A).
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(case2) If ((g,7),(¢',r")) is an arc in U;Z,(gi(p1(A)) X Ry, EY), then it is an arc in E},
for some k. We get that ((g,7’),(¢’,7")) € Ex and this implies that ((g,7’),
(¢',7")) is an arc in Cay(S, A). By Lemma 4.2.1, we have ((g,7), (¢’,7")) is also
an arc in Cay(S, A).

Then E(D) C E(Cay(S, A)). Hence we prove that Cay(S, A) = D. O

By the definition of E; in Theorem 4.2.3 we have the next corollary.

Corollary 4.2.4. Let S = G x R, be a right group, A a nonempty subset of S, and
(9i(p1(A)) x pa(A), E;) a strong subdigraph of Cay(S,A). For all v’ € R, \ p2(A), if
((u,7), (v,7)) is an arc in Ujer(g;(p1(A)) x p2(A), Ej), then ((u,r'), (v,r)) € E} where
E; ={((s,1), (u,v)) | t & p2(A), ((s,v), (u,v)) € Ej}.

Theorem 4.2.5. Let S = G X R, be a right group, A a nonempty subset of S, G/(p1(A)) =

{91(p1(A)), g2(p1(A)), - .-, guw(p1(A))}, and (gi(p1(A)) x pa(A), E;) a strong subdigraph of
Cay(S,A). Then (gi(p1(A)) x p2(A), E;) = Cay((A), A) fori=1,2,...,w.

proof. We define f : (g;(p1(A)) x p2(A), E;) — Cay((A), A) by (gia,r) — (a,r) for
all a € (p1(A)) and 7 € pa(A). Clearly, f is a bijection. We will prove that f and f~! are
digraph homomorphisms.

For (gia,r),(gid',7") € gi(p1(A)) x p2(A), let ((gia,7),(g:a’,7")) be an arc in
(9:(p1(A)) x p2(A), E;). Since (gi(p1(A)) x p2(A), E;) is a strong subdigraph of Cay(S, A),
we get that ((gi;a,r’),(g:a’,r")) is an arc in Cay(S, A). There exists (a”,r') € A such
that ¢g;a’ = g;aad” so o/ = aad”. Since f(g;d',r") = (d/,7") = (ad”,r") = (a,r)(d", ") =
f(gia,r)(a”,7"), we have (f(gia,r), f(gia’,7")) is an arc in Cay({A), A). Therefore f is a
digraph homomorphism.

Let (f(gia,r), f(gid',r")) be an arc in Cay((A), A). Then there exists (a”,7") € A
such that f(g;d’,7") = f(gia,r)(a”,r"). Therefore (a’,7') = (a,r)(a”,7") = (ad”,r"),
a' = ad”; and ' = r". Hence (g;a’,r") = (g;ad” ") = (gia,r) (a’,7"), s0 ((gia, ), (gid’, "))
is an arc in Cay(S,A). Since (gia,r), (gid’, ') € gi(p1(A)) x p2(A) and (gi(p1(4)) x
p2(A), E;) is a strong subdigraph of Cay(S, A), we thus get ((gia,r), (g;a’,r")) is an arc
in (g;(p1(A)) x p2(A), E;). Therefore f~! is a digraph homomorphism. This means that
(6:(r(A)) % pa(A), i) = Cay((4), 4). 0

The two following lemmas will be used in the proof of Lemma 4.2.8.
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Lemma 4.2.6. Let S = G x Ry, be a right group, A a nonempty subset of S, G/(p1(A)) =
{91(p1(A)), 92(p1(A)), ..., guw(p1(A))}, and (gi(p1(A)) x p2(A), E;) a strong subdigraph of
Cay(S,A). Then for allv € V(Cay(S, A)), 7(1}) # 0 if and only if v € UL, (gi(p1(A))) x
pQ(A).

proof. (=) Let v = (hy,r1) € S and 7(1}) # 0. Then there exists u = (hg,r2) € S
such that (u,v) is an arc in Cay(S, A). Hence there exists a = (¢’,7’) € A such that v = ua.
Therefore (hy,r1) = (ha,7r2)(¢',r") = (hag’, "), which implies that r1 = 7’ € py(A). Since
h € G =U (9i(p1(A))), we have v = (h1,71) € UL (g:(p1(A))) x p2(A).

(<) Let v = (h1,7) € Ui (gi(p1(A))) x pa(A). We get that k1 € G and r € py(A).

We consider the two cases.

(casel) If v € A, there exists (e,r) € S, where e is the identity of G. Since (e, r)(h1,r) =
(ehi,r) = (hi1,r) = v, there is an arc from (e, r) to v. Therefore 7(1}) # 0.

(case2) If v ¢ A, then there exists (ho,r) € A for some hy € G. Because G is a group
and hq,he € G, this implies that h;l € G and h1h2_1 € G. Then we have
(hihyt,r) € S. Since (hihy',7)(ha,r) = (hihytha,7) = (h1,7) = v, there

exists an arc from (h1hy ', 7) to v. Therefore 7(2}) #0
(]

Lemma 4.2.7. Let S = G x Ry, be a right group, A a nonempty subset of S, G/(p1(A)) =

{01(p1(A)), g2(p1(A)), ..., 9w (p1(A))}, and (g:(p1(A)) X p2(A), E;) a strong subdigraph of
Cay(S,A). Then for any i € {1,2,...,w}, (gi(p1(A)) X p2(4A), E;) is connected.

proof. Let (giz,8), (¢:y,7) € (9:(p1(A)) x p2(4)). Then (z,8),(y,7) € (p1(A)) x
p2(A) = (A). There are ay,as, ..., a; € A such that (y,v) = (z, B)aias...a, for some
qg < ‘A! Hence (giy,v) = (giz,B)aias...aqy. This means that there is an arc from
(gix, B)aras ... aq—1 to (giy,y). Since ((gix,ﬁ), (giz, ﬂ)al), ((gia:, Bai, (gix,ﬁ)a1a2)7 ce
( (giz, B)aras . .. ag—2, (gix,ﬂ)alag...aq_l) are arcs in Cay(S, A), thereisa path (g;z, ),
(giz,B)ar, (gix,B)araz, ..., (giz,B)aras...aq—1, (9:y,7) in Cay(S,A). We conclude
that (g;(p1(A)) x p2(A), E;) is connected. O

Since a strong subdigraph (g;(p1(A)) x p2(A), E;) is connected, we have (g;(p1(A)) x
p2(A), E;) U (gi(p1(A)) X Ry, E!) is also connected for any i € {1,2,...,w}, where E’ is
defined as in Theorem 4.2.3.
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Lemma 4.2.8. Let S = G x R, be a right group, A and B be nonempty subsets of
S, G/(p1(4)) = {g91(p1(A)), 92(p1(A)), .-, gu(p1(A))}, and G/(p1(B)) = {h1(p1(B)),
ha(p1(B)), -, ha(pr(B)}. If Uily(gi(p1(A)) x p2(A), Bi) U Uily (9i(p1(A)) x Ry, E;) =
Ujz1 (hj(p1(B)) x p2(B), Ej)U Ujzi(hy(p1(B)) x R, E)), then w =z and (gi(p1(A)) x
p2(A), Ei) = (hj(p1(B)) X p2(B), Ej) for all i, j.

proof. Let U (gi(p1(A)) x p2(A), EB;) UU;iZ1(g:(p1(A)) x Rn, EY) = Ui,
(hj(p1(B)) x pa(B), Ej) J Ui (hj(p1(B)) x Ry, EY). Then there exists an isomorphism
£+ U (ipa(A)) X pa(A4)) U (gstpr (A)) X Ra) = Uiy (hytpr (B)) x pa(B)) UL,
(hj(p1(B)) x Ry). By Lemma 4.2.6, we get that [UZ(g:(p1(A))) x p2(A4)| = Ui
(hj(p1(B))) x p2(B)| and we have f(U;iZ; (g:(p1(A))) xp2(A)) = Uj_; (hj(p1(B))) x p2(B).
Since f is an isomorphism, we thus get the restriction of f to Ui_; (g:(p1(A))) x p2(A) is a
digraph isomorphism from U;Z; (gi(p1(A)) x pa(A), Ei) to Ui_1(hj(p1(B)) x p2(B), Ej).
Therefore Uiy (gi(p1(A)) xp2(A), Ei) = Ui_; (hj(p1(B)) x p2(B), Ej). In view of Theorem
4.2.5 and Lemma 4.2.7, we get that w = 2z and (g;(p1(A)) x p2(A4), E;) = (hj(p1(B)) x
p2(B), Ej). O

Lemma 4.2.9. Let S = G X R, be a right group, A and B nonempty subsets of S. If
Cay(S, A) = Cay(S, B), then ‘pg(A)‘ = |p2(B)|.

proof. Let G/(p1(A)) = {g1(p1(A)), 92(p1(A)). .., gu(p1(A))} and G/{p1(B)) =
{h1(p1(B)), ha(p1(B)),...,h.(p1(B))}. Assume that Cay(S, A) = Cay(S, B). By Theo-
rem 4.2.3 and Lemma 4.2.8, we get that ’U;U:l gi(pl(A)>><p2(A)’ = |L'J;-”:1hj<p1(B)>><p2(B)’
for all g;,h; € G. Since Ui_,g;(p1(A)) = G = U;-Uzlhj<p1(B)), we have ‘G X pg(A)‘ =
|G x pa(B)|. Therefore ’G| ‘pg | =G| x ’pz(B)’. Hence |pa2(A)| = ’pg(B)|. O

Lemma 4.2.10. Let S = G x R, be a right group, A a nonempty subset of S, G/(p1(A)) =
{01(p1(A)), g2(p1(A)), ..., 9w(P1(A))}, and (gi(p1(A)) X p2(A), E;) a strong subdigraph of
Cay(S, A). Then for everyi € {1,2,...,w}, U;_;(gi{p1(A)) xpa(A), E;) UL (gi{p1(A))x
R, E)) = UL, ((gi<p1(A)) X pa(A), E;) U (gi(p1(A)) x Rn,Eg)), where E' is defined as in
Theorem 4.2.35.

proof. Let D = U;Z;(gi(p1(A)) x p2(A), Ei) UUiZ1 (9:(p1(A)) x Rn, Ej), and H =
1 ((9i(p1(A)) x p2(A), Ei) U (gi(p1(A)) x Ry, E7)). Note that G = Ui, (g:(p1(A))), then
1 (90(p1(A)) X pa(A) UT (9 (pr(A)) X Ra) = G x R = U ((9:(p1(A)) X po(A)) U
9i(p1(A)) x Ry,)). Therefore V(D) = V(H). We will show that E(D) = E(H).
Let u,v € V(D) and (u,v) € E(D). We consider two cases.

Ui
U
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(casel) If (u,v) is an arc in U;",(gi(p1(A)) X pa(A), E;), then (u,v) is an arc in
(9x(p1(A)) x p2(A), E)) for some k € {1,2,...,w}. It follows that (u,v) is an
arc in ((gr(p1(A4)) x p2(A), Ex) U (g (p1(A)) X Ry, E})) and so it is an arc in
H.

(case2) If (u,v) is an arc in Uj_ (g;(p1(A)) X Ry, E.), then (u,v) is an arc in (g (p1(A)) x
Ry, E}) for some k € {1,2,...,w}. Thus (u,v) is an arc in ((gx(p1(A)) x
p2(A), Ex) U (9k(p1(A)) X Ry, Ey)). Tt follows that (u,v) € E(H).

We have E(D) C E(H). Let (u,v) € E(H). Therefore it is an arc in (g;(p1(A)) X
p2(A), Ej) U (gr(p1(A)) X Ry, E}) for some j, k € {1,2,...,w}. We consider two cases.

(casel) If (u,v) is an arc in (g;(p1(A)) X p2(A), E;), then it is an arc in U;_; (g;(p1(A)) X
p2(A), E;). Tt follows that (u,v) € E(D).
(case2) If (u,v) is an arc in (gx(p1(A)) X Ry, E},), it is an arc in U;_, (g; (p1(A)) X Ry, E).

It follows that (u,v) € E(D).

Therefore E(H) C E(D). Then E(H) = E(D). We conclude that D = H. O

It is know that a right group S = G x R, is a special case of a completely simple
semigroup M(G, I, A, P), where |I| = 1, |A| = n and P is an identity matrix. By Theorem

3.2.7, we have the following corollary.

Corollary 4.2.11. Let S = G X R,, be right group, and let (g, \), (h,B) € S, where g,h € G
and A, B € Ry. Then Cay(S,{(g,A)}) = Cay(S,{(h, B)}) if and only if [(g)| = [(h)|.

Theorem 4.2.12. Let S = G x R, be a right group, A and B nonempty subsets of S.
Let A, = (p1(A)) x {r}, A, = AN A, and A = {flr"r € po(A)}. By, B, and B are defined
similarly. If Cay((A), A) = Cay((B), B), then ‘fl| = ‘B‘ and |(p1(A))| = [(p1(B))|.

proof. Let Cay((A),A) = Cay((B), B). )’ T ’pg(B)! and
then ‘fl‘ — ‘E‘ Since Cay((A), A) = Cay((B), B), we get that ! ‘ = ’(B)‘ By Lemma

2.2.2,
[(p1(A)) x p2(A)| = |(p1(B)) x pa(B)|;
[(p1(A))| x |p2(A)] = |[(p1(B))| x |p2(B
[(p1(A)] = [(p1(B))].
|
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Theorem 4.2.13. Let S = G X R, be a right group, A and B nonempty subsets of S.
Let A, = (p1(A) x {r}, A, = ANA, and A = {flr‘r € po(A)Y. By, B, and B are defined
similarly. Then Cay((A), A) = Cay((B), B) if the following conditions hold:

(1) |A| = |B| and |(p1(A)| = |(pr(B))];

(2) There exists a bijection f: A — B such that }AJ = }f(flr)‘ for all A, € A;

(8) For each A, € A, there exists a bijection o, : A, — f(A,) such that |(p1(a))| =
[(p1(r(a)))] for all a € A,.

proof. By (1), |[(4)| = [(B)|. By Corollary 4.2.11 and (3), we get that Cay((A),
{a}) = Cay((B), {¢r(a)}) for all @ € A,. Then Cay((4),4,) = @, 4 Cay((4),{a}) =

Duci, Cay(< ), {er(@)}) = Cay((B), pr(4y)).
vy (2), Cay((A), A,) = Cay((B), f(A,)) for all A, € A. Then

®4,c4Cay((4), Ar) ® 4 ciCay((B), f(Ar));
Cay((A), Uz c44r) Cay((B),U; caf(Ar);
Cay((A),A) = Cay((B),B).

112

12

O

Example 4.2.14. Let S = S3 x R3 be a right group, where S3 = {(1),0,02, 7,702,

7o} is the symmetric group with (1) an identity, o = (123),02 = (132),7 = (12),70% =
(13), 7o = (23). Let A = {((1), ), (), (7,72)} and B = {(ra,r1), (1), ), (v, 7)}.
It is easily seen that Cay((A), A) = Cay((B), B) (see Figures 4.3 and 4.4).

We have A,, = {((1),71), (1,71)}, Ar, = {(1,72)}, By, = {(r0,71)}, and B,, =
{((1),72), (r0,79)}. Therefore A ={A,,,A,,}, B={B,,,B,,}, and thus |A| = | B|. Since
(p1(A)) = {(1), 7} and (1 (B)) = {(1), 7o'}, then [{p1 (4))] = [ (B)).

We thus get |A,,| = 2 = |B,,| and |A,,| = 1 = |B,,|. There exists a bijective
function f from A to B such that f(A,,) = B, and f(4,,) = B,,.

Moreover, there are bijective functions

A~ A~

or, + Apy = Bp, such  that ¢, ((1),r1) = ((1),72)
Pr (7—7 Tl) - (7—07 TQ)
©py t Apy — By, such  that @, (1,7) = (10,71

and |(p1(a))| = [(p1(pr, ()] and [(p1(0))] = [{p1(or, ()] for all @ € A,y and b € 4y,
According to Theorem 4.2.13, Cay((A4), A) = Cay((B), B).
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((1),72) (1,72)

((1),71) (7,71)

Figure 4.3: Cayley digraph Cay((A), A).

(1), r2) (r,72)

((1)7T1) (TU» 7“1)

Figure 4.4: Cayley digraph Cay((B), B).

Theorem 4.2.15. Let S = G X R, be a right group, A and B be nonempty subsets of S.
Then Cay(S, A) = Cay(S, B) if and only if Cay((A), A) = Cay((B), B).

proof. Let G/(p1(A)) = {g1(p1(4)), 92(p1(A)), ..., guw(p1(A))} and G/(p1(B)) =
{h(p1(B)), ha(p1(B)), ..., hz(p1(B))}-

(=) Let Cay(S,A) = Cay(S,B). Then there exists a digraph isomorphism f :
Cay(S, A) — Cay(S, B). By Theorem 4.2.3, we get that U;_; (g;(p1(A4)) xp2(A), E;) J U2,
(9 (01 (A)) X Ry L) = Uy (b1 (B)) % pa(B), ) Uy (hs(pr(B)) % R, ). T view
of Lemma 4.2.8, (gi(p1(A)) x p2(A), Ei) = (hj(p1(B)) x p2(B), Ej). By Theorem 4.2.5,
we get Cay((A), A) = Cay((B), B).

(<) Let Cay((A), A) = Cay((B), B). By Theorem 4.2.12, |(p1(A))| = |[(p1(B))]
and thus w = |G|/[(p1(A))| = |G|/[(p1(B))| = z. By Theorem 4.2.5, we get (g;(p1(A4)) X
p2(A), E;) = (hj{p1(B)) x p2(B),E;) for all i,j € {1,2,...,w}. It follows that U;_,
(9i(p1(A)) xp2(A), E;) = U5_; (hj(p1(B))xpa(B), Ej). There exists a digraph isomorphism
F o+ Oalg (a(A) % pa(A), i) — Uiy (hy(p(B)) % pa(B),Ey). Therefore UL, (g
(1 (A) xpa(A)] = U2y (g p1(B)) xpa(B). Since U gi(pr(A)) = G = Ui_ iy (pr(B)),
then }G sz(A)‘ = ’G pr(B)‘. Hence ’G! X }pQ(A)’ = }G‘ X ‘pg(B)‘ and thus !pg(A)’ =
[p2(B)|. Suppose that Ry, \ p2(A) = {q1,¢2, .-, qm} and Ry \ p2(B) = {d}. b, ...} }-
Let 1 € pa(A). Define T : Uy (gs(pr (A)) % po(A), B) U Oy (gi(pr(A) x Ry E) —
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Uj1 (R (p1(B)) x pa(B), Ej) UUj=1 (hy(p1(B)) x R, Ej) by

f(s,m) if r; € pa(A);

T( 7T) -
YT Gu(Fsi))ed) = gp for some g € R\ pa(A).

Clearly, T is well defined and is surjective. To show T is injective, let 1 = (u1, A1), 22 =

(ug, A2) € S and T'(z1) = T(x2). We need to consider the following two cases.

(casel) If A1, Ao € pa(A), then T'(z1) = f(x1) and T'(z2) = f(x2). Since T'(z1) = T(x2),

we have f(z1) = f(x2) and x; = z2 because f is a digraph isomorphism.

(case2) If A1, Ao & p2(A), assume that \y = ¢ and Ao = q. Thus T'(x1) = (p1(f (w1, 7)),
¢)) and T(w2) = (p1(f (w2, 7)), 4}). Since T(a1) = T(a2), we have (p1(f(us, 7)),
q;) = (11(f(u2,7)), q;). It follows that q; = q; and pi(f(u1,7)) = p1(f(u2,7)).
Hence by the definition of T, Ay = Ay. Since f is a digraph isomorphism, we

have u; = us. Therefore x1 = x9.

By the above two cases, we conclude that T' is an injection. We will prove that T
and T~! are digraph homomorphisms.

Assume that ((z,7¢),(y,7q)) is an arc in U (g:(p1(A)) x p2(A), E;)JU;,
(9i(p1(A)) x Ry, El). Thus (y,rq) = (x,rc)(a,r) for some (a,7;) € A. Hence (y,rq) =

(za,r) and thus rg = ry € p2(A) and y = xa. We have the following two cases.

(casel) 7c € pa(A). Then (T(z,7c), T(y,ra)) = (f(z,7c), f(y,rq)) is an arc in Uiy
(hj(p1(B)) x pa(B), E;) U Uiy (hj(p1(B)) x Ry, E%) since f is a digraph iso-
morphism.

(case2) 1. € Ry, \p2(A). Then r. = g for some k € {1,2,...,m}. Hence ((z,7¢), (y,74))
is an arc in Uj_;(g:(p1(A)) x Ry, E!). Then ((w,r4), (y,rq)) is an arc in
Ui (gi(p1(A)) x p2(A), E;). By Lemma 4.2.1, ((z,7),(y,rq)) is also an arc
in U (gi(p1(A)) x p2(A), E;). This follows that (f(x,7), f(y,rq)) is an arc
in Uj_;(hj(p1(B)) x p2(B), Ej). Let f(z,r) = (a',7) and f(y,ra) = (4, 7}).
Therefore ((«/,7'), (y/, 7)) is an arc in U5_, (hj(p1(B)) x p2(B), E;) and thus
((«',70), (¢, r})) is also an arc in  U5_; (hj(pi(B)) x p2(B), E;). Therefore
((«', q3,), (¢, 7)) is an arc in Uj_ 1(hj(p1(B))x Ry, E}). This means that ((2', g3 ),
W) = ((m(f(@.r).q.), (1) = (T(z,7e),T(y,ra) is an arc in Uj,
(hj(p1(B)) x Ry, EY). Hence (T(x,7¢), T(y,74)) is an arc in L‘J;:l(hﬂpl(B)) X

p2(B), Ej) UUj—1 (hi{p1(B)) X R, Ef).

Thus T is a digraph homomorphism.
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Assume that (T(z,7.),T(y,ra)) is an arc in U;_; (hj(p1(B)) x pa(B), E;) U

J

(casel)

(case2)

Ui (hj(p1(B)) X Ry, E7). We have the following two cases.

If (T'(x, 1), T(y,a)) is an arc in U;_; (hj(p1(B)) x p2(B), E;), then we get that
T(x,r.) = f(z,r.) and T(y,rq) = f(y,rq). Therefore (f(z,7.), f(y,rq)) is an
arc in L'szl(hj (p1(B)) x pa(B), Ej). Since f is a digraph isomorphism from
Uizt (9i(p1(A)) x p2(A), E;) to Uj_; (hj(p1(B)) x pa(B), Ej), we get that ((x,7),
(y,7rq)) is an arc in U;_; (gi(p1(A)) x p2(A), E;) and it is also an arc in U;—;
(9i{p1(A))x p2(A), Ei) UUiZ1(9i{p1(A)) X B, E).

Suppose that (T(z,7c), T(y,74)) is an arc in Ui_; (h;(p1(B)) x Ry, E}). Then
re = q for some k € {1,2,...,m}. Let T(y,rq) = f(y,ra) = (,70).
Then ((p1(f(z,7)),q;,), (¥, r})) is an arc in Uy (hj(p1(B)) x Ry, EY) and so
((p1(f(@,7)), ), (¥',75)) is an arc in Uj_, (h;(p1(B)) x p2(B), Ej). Hence there
exists (b,7,) € B such that (y',r)) = (p1(f(z,7)),r,)(b,7)). Let f(x,r) =
(@',r). Then f(y,ra) = («',15)(b;rg) = (2'b,ry) = (2',7)(b,ry) = f(x,7)
(b,77). This means that (f(x,7),f(y,ra)) is an arc in Uj_; (hj(pi(B)) x
pa(B), Ej). Then ((z,1), (y7a)) is an arc in U, (gi(p1(A) X pa(A), Ey).
Therefore ((x,7.), (y,74)) is an arc in U;_;(g;(p1(A)) x Ry, E!) and it is also
an arc in - UL (gi(p1(A)) x p2(A), B) U Uz (9:(p1(A)) x Rn, Ej).

Thus 77! is a digraph homomorphism. Hence U (gi(p1(A)) x pa(A), E;) | J U2,
(9i(p1(A)) x Ry, E) = Uje 1 (hy(pr(B)) x pa(B), Ej) U Uj=y (hy(p1(B)) % Ry, E). By The-

orem 4.2.3, we have Cay(S, A) = Cay(S, B). O
((1),72) (1,72) (102, 72) (o,72) (02,13) (to,72)
(02,711)3 (to,r1)
A
((1),73) (1,73) (ta?,r3) (o,73) (0%,r3) (to,r3)

Figure 4.5: Cayley digraph Cay(Ss x Rs, {((1),71), (7,71), (7,72)}).
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(

(o2, 1) (0%,7r1) ((1),71) (to,m)

Figure 4.6: Cayley digraph Cay(Ss x Rs,{(7o,r1), ((1),

Example 4.2.16. Let S = S3 X R3 be a right group as in Example 4.2.14, let A =
{((1),71),(1,71), (1,72)} and B = {(70,7r1),((1),72), (To,72)} be subsets of S. By Exam-
ple 4.2.14, we have Cay((A),A) = Cay((B), B) and it is easily seen that Cay(S, A) =
Cay(S, B) (see Figures 4.5 and 4.6).

4.3 Isomorphism Conditions for Cayley Digraphs of Rectangular Groups

In this section, we give the necessary and sufficient conditions for the Cayley di-
graphs of a given rectangular groups to be isomorphic to each other. By definition of

rectangular groups, we have the following lemma.

Lemma 4.3.1. Let S = G x Ly, X Ry, be a rectangular group, A a nonempty subset of S,
and (g1,01,71), (g2,l2,72) € S. Then ((gl,ll,rl), (gg,lg,rg)) is an arc in Cay(S, A) if and
only if there exists (a,l,r2) € A such that go = gia and 1y = la.

—e

proof. (=) Let ((g1,01,71),(g2,12,72)) is an arc in Cay(S, A). Then there is
(a,l,7) € A such that (g2,l2,72) = (91,l,71)(a,l,7) = (g1a,l1,7). We have g2 = g1a,la =
l1 and r9 = 7rq.

(<) Let (a,l,r2) € A, g2 = gia and |y = lo. Thus (¢1,01,71)(a,l,r2) = (qra,ly,

r9) = (g2,l2,72). Therefore ((gl,ll,rl), (gg,lg,rg)) is an arc in Cay(S, A). O

As a direct consequence of Lemma 4.3.1, we have the following lemma.

Lemma 4.3.2. Let S = G X Ly, X Ry, be a rectangular group, A a nonempty subset of S.
Then Cay(S, A) is the disjoint union of m isomorphic strong subdigraphs (G x{l;} x R, E;)

for some1=1,2,...,m.
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proof. Fori=1,2,...,m, let V; = G x {l;} x R, and E; = E(Cay(S, A)) N (V; x V;).
Hence (Vj, E;) is a strong subdigraph of Cay(S,A). For all i # j, V;NV; = 0, then
we have S = Ui, V;. Since E; C E(Cay(S,A)), UL E; C E(Cay(S, A)). Let ((g,1;,7),
(¢'.lg,7")) € E(Cay(S, A). By Lemma 4.3.1, [; = l;; and thus ((g,1;,7), (¢, lk, ")) € E.
Then ((g,45,7), (¢, lk, 7)) € Ui E;. Hence E(Cay(S,A)) C UL E; and so E(Cay(s,
A)) = UL E;. Therefore Cay(S, A) = U2, (V;, E;).

Let p,qg € {1,2,...,m} and p # ¢q. We will show that (V,, E,) = (Vg, Ey). De-
fine f : V, = V; by f((9,0p,7)) = (g,lg,7). Since |V,| = |V,|, f is a bijection. To
prove that f and f~! are digraph homomorphisms. Let (g,l,,7),(¢',l,7") € V, and
(9:1,7), (9597 € By. Since B, C E(Cay(S, A), (9, bps1)s (9, ps") s an arc in
Cay(S, A). By Lemma 4.3.1, there exists (a,l,7") € A such that ¢’ = ga, ¥’ = r”, and
thus (¢',lg, ") = (g9a,lq,7") = (g,14,7) (a,1,7"). Then ((g,l4,7),(¢q",14,7’)) is an arc in
Cay(S,A). Tt follows that ((g,lq7), (¢',1q,7")) € E4. This shows that f is a digraph
homomorphism. Similarly, f~! is a digraph homomorphism. Hence f is a digraph iso-

morphism. Therefore (V,, E,) = (Vg, E,). O

Lemma 4.3.3. Let S = G x Ly, X Ry, be a rectangular group, A a nonempty subset of S,

G/(p1(4)) = {g1(p1(A)), 92(p1(A)), ..., guw(p1(A))}, and (ge(p1(A)) x {li} X Ry, Eir) a
strong subdigraph of Cay(S, A). Then the following conditions hold:

(1) (G x {li} X Rn, Ei) = Up_1(gr(p1(A)) x {li} X Rn, Eit);

(2) (gr(p1(A)) x {li} X Ry, Ei) = Cay(gr(p1(A)) x {l;} x Rn, A") where A" = {(g,1;,7)]
(g,l,7r) € A forall |l € Ly}.

proof. (1) Note that G = U,_, gx(p1(A)), then G x {I;} x R, = U_; (gr{p1(A)) x
{li} x Ry,). Let ((9,Li,7),(¢',1;,7")) € E;. By Lemma 4.3.1, there exists (a,l,7’) € A such
that ¢’ = ga. Hence g € ¢,(p1(4)), ¢’ € gq(p1(A)) for some p,q € {1,2,...,w}. A simple
computation shows that p = ¢ and then (g,%;,7), (¢, li,7") € (gp(P1(A)) x {l;} X Ry).
Because (gp(p1(A)) x {l;} x Ry, E;,) is the strong subdigraph of Cay(S, A), therefore
((9:Li,7), (¢ 1i,7")) € Ug_1Eix. Hence E; C Up_ E;,. Similarly, we can prove that
Up_1Eix € E;, and then E; = Up_Ey. We conclude that (G x {l;} x Ry, E;) =
U1 (g5 (p1(A)) x {li} X Ry, Ej).

(2) Let D = Cay(gr({p1(A)) x {l;} x R, AY), we will prove that E;, = E(D). Let
((9,1i,7),(¢',li,7")) € Eij,. By Lemma 4.3.1, there exists (a,l,r’') € A such that ¢’ = ga. By
Lemma 4.3.1 again, we get that ((g,l;,r), (¢',1;,7")) € E(D). This shows that E;, C E(D).
Let ((g,1;,7),(¢',li,7")) € E(D). By Lemma 4.3.1, there exists (a,l;, ') € A’ such that
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g = ga. We get that (a,j,r") € A for some j € L,,. Then by Lemma 4.3.1 again,
((g,li,7), (¢',1iy7")) € Ey. This shows that E(D) C Ej,. Therefore E;, = E(D). We
conclude that (gx(p1(A)) x {l;} x Ry, Ei.) = Cay(gr{p1(A)) x {l;} x Ry, A?). O

Theorem 4.3.4. Let S = GX L, X R,, be a rectangular group, A, B nonempty subsets of S.
Let 8" = G x R,,. Then Cay(S, A) = Cay(S, B) if and only if Cay(S’, A") = Cay(S’, B'),
where A" ={(g,7) | (g9,1,7) € A for somel € Ly} and B'={(g,7) | (9,1,7) € B for some
l €Ly}

proof. Let G/(pi(A) = {g1(p(A)) g2l (A}, »gulpr(A))}, G/(m(B)) =
{h1(p1(B)), ha(p1(B)), ..., ho(p1(B))}. We let (G x {l;} x Ry, EA), A¥ = (gr(p1(A)) x
{l;} X Ry, Ei;) be a strong subdigraph of Cay(S, A), and let (G x {l;} x Rn,Ef), B =
(ht(p1(B)) x {l;} x Ry, Ej;) be strong subdigraph of Cay(S,B). By Lemma 4.3.2 and
Lemma 4.3.3(1), we have Cay(S, A) = Cay(S, B)

< Cay(G X Ly, X Ry, A) =2 Cay(G x Ly, x Ry, B)

& UL (G x {li} X Ry, BfY) = UJL, (G x {l;} X Ry, EP)

& UL U AF = Uiy Ui B;.

Since A¥ and B;. are connected subdigraphs, we get that w = z. Then for each
i, k, there exist j,t such that AF = Bi. Let Dt = (gr(p1(A)) x pa(A'), Ey) and DP =
(ht(p1(B)) x p2(B'),Ey) be strong subdigraphs of Cay(gr(p1(A)) X R,, A’) and
Cay(hi(p1(B)) x Ry, B'), respectively. Let A = {(g,1;,7)| (g,l,7) € A}, B = {(h,l;,7)|
(h,l,r) € B}. By Lemma 4.3.3(2) and Theorem 4.2.3, we have

Cay(ge(p1(A)) x {li} x Rn, A") = Cay(he(p1(B)) x {l;} x Rn, B)

& Cay(gre(p1(A)) x Rn, A") = Cay(hi(p1(B)) x Rn, B')

& UL DA U (gh{p1 (A)) X Ry Ear) 2 Ui DB U (hy (1 (B)) X Ry E).
By Lemma 4.2.8 and Theorem 4.2.5, we have U;_;Dif = Uj_DP & D = DP &

Cay((A'), A') = Cay((B'), B') < Cay(s', A') = Cay(§', B). O

Example 4.3.5. Let S = S3 x Ly X R3 be a rectangular group, where S3 = {(1), 0,02, 7,
70?70} is the symmetric group as in Example 4.2.16, and let A = {((1),11,71), (1,11,71),
(1,l2,72)}, B ={(10,l2,71),((1),l2,72), (T0,l2,72)} be subsets of S.

We have A = {((1),71), (7,71),(7,72)} and B = {(70,7r1),((1),r2), (To,72)}. By
Example 4.2.16, Cay(S’, A") = Cay(S’, B'). 1t is easily seen that Cay(S, A) = Cay(S, B).
(See Figures 4.7 and 4.8).
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(W, tr2)  ((lm) (1), 0, ms) (Dulara)  ((Wdar) (1), 12,75)

i

(m,l1,72) (7,01,71) (7,11,73) (1,12,72) (1,12,71) (7,12,73)

(r0?,11,72) (r0?,1y.11) (ro?,11,73) (10?15, 72) (102, 15,71) (ro2,ls, 73)

i

(0,l,72) (0,l1,71) (0,01,73) (0,12,72) (0,12,71) (0,12,73)

(02,12, 72) (02,13,71) (02,13, 73)

i

(T0,11,12) (ro,l1,m1) (to,l1,73) (10,12,72) (r0,12,71) (10,12,73)

Figure 4.7: Cayley digraph Cay(Ss x Loy x Rs, {((1),l1,71), (7,1l1,71), (7,12,72)}).

(), 01,r3) (W) l,r2) (1), 11,71) (1), do,73) (W) loyr2)  ((1),1p,71)

i

(1,12, 73) (7,12, 72) (1,12,71)

(ra?,1a,73) (102,12, 73) (r02,1y,71)

(0,12,73) a,12,73) (0,12,71)

(02,12,73) 02 13,79) (02,19, 71)

(10,11,73) (10,11.72) (ro,11,71) (t0,l9,73) (70, 13,73) (r0,13,71)

Figure 4.8: Cayley digraph Cay(Ss x Lo x Rs,{(70,l2,71),((1),l2,72), (T0,l2,72)}).
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