CHAPTER 4

Isomorphism Conditions for Cayley Digraphs of Rectangular Groups

In this chapter, we give some equivalent conditions for Cayley digraphs of a rectangular group to be isomorphic to each other. In order to contribute to these objectives, the isomorphism conditions for Cayley digraphs of a right group and for Cayley digraphs of a rectangular band have been presented in this chapter.

4.1 Isomorphism Conditions for Cayley Digraphs of Rectangular Bands

We consider an isomorphism of Cayley digraphs of a given rectangular band in this section. First, we will introduce the conditions for Cayley digraphs of a right zero semigroup to be isomorphic to each other. By the definition of a right zero semigroup, we get the following lemma.

Lemma 4.1.1. Let $A \subseteq R_n$, and let v be a vertex in $Cay(R_n, A)$. Then

(1)
$$\overrightarrow{d}(v) = |R_n|$$
 if and only if $v \in A$;

(2) $\overrightarrow{d}(v) = 0$ if and only if $v \notin A$.

proof. (1) Let $\overrightarrow{d}(v) = |R_n|$. Then there is an arc from each vertex in R_n to v. It follows that there exists $w \in A$ such that v = uw for $u \in R_n$. Since uw = w, $v = w \in A$. Conversely, we assume that $v \in A$. Let $u \in R_n$. Since uv = v, there is an arc from u to v. It follows that there is an arc from every vertices in R_n to v. Hence $\overrightarrow{d}(v) = |R_n|$.

(2) Let $\overrightarrow{d}(v) = 0$ and $u \in R_n$. We assume that $v \in A$. Since uv = v, (u, v) is an arc in $Cay(R_n, A)$, and thus $\overrightarrow{d}(v) \neq 0$. There is a contradiction, so $v \notin A$. Conversely, we assume that $\overrightarrow{d}(v) \neq 0$. There is $w \in A$ such that v = uw for some $u \in R_n$. Since $uw = w, v = w \in A$. There is a contradiction, therefore $\overrightarrow{d}(v) = 0$.

By Lemma 4.1.1, we have the following theorem which introduces the isomorphism condition for the Cayley digraphs of a given right zero semigroup.

Theorem 4.1.2. Let $A, B \subseteq R_n$. Then $Cay(R_n, A) \cong Cay(R_n, B)$ if and only if |A| = |B|.

proof. (\Rightarrow) Let $Cay(R_n, A) \cong Cay(R_n, B)$. Then the number of vertices with indegree $|R_n|$ of $Cay(R_n, A)$ and $Cay(R_n, B)$ are equal. By Lemma 4.1.1(1), we get |A| = |B|.

 (\Leftarrow) Let |A| = |B| = l. We assume that $A = \{a_1, a_2, \dots, a_l\}$ and $B = \{b_1, b_2, \dots, b_l\}$. Suppose that $R_n \setminus A = \{a'_1, a'_2, \dots, a'_t\}$ and $R_n \setminus B = \{b'_1, b'_2, \dots, b'_t\}$. We define a mapping $f : R_n \to R_n$ by

$$f(a) = \begin{cases} b_i & \text{if } a = a_i \text{ for } i \in \{1, 2, \dots, l\}; \\ b'_i & \text{if } a = a'_i \text{ for } i \in \{1, 2, \dots, t\}. \end{cases}$$

Clearly, f is well defined and bijective. We will show that f and f^{-1} are digraph homomorphisms. Assume that (x, y) is an arc in $Cay(R_n, A)$. By Lemma 4.1.1(1), we have $y \in A$, and thus $f(y) \in B$. By Lemma 4.1.1(1) again, there exists an arc from every vertices to f(y) in $Cay(R_n, B)$. Then (f(x), f(y)) is an arc in $Cay(R_n, B)$. Therefore f is a digraph homomorphism. Similarly, we can show that f^{-1} is a digraph homomorphism. Hence $Cay(R_n, A) \cong Cay(R_n, B)$.

The following lemma shows that the Cayley digraph of a rectangular band is the union of Cayley digraphs of right zero semigroups.

Lemma 4.1.3. Let $S = L_m \times R_n$ be a rectangular band and $A \subseteq S$. Then Cay(S, A) is the disjoint union of m isomorphic strong subdigraphs $Cay(\{l_i\} \times R_n, \{l_i\} \times p_2(A))$ for $i \in \{1, 2, ..., m\}$.

proof. Let $p, q \in \{1, 2, ..., m\}$. Since $(\{l_p\} \times R_n) \cap (\{l_q\} \times R_n) = \emptyset$ for all $p \neq q$, we get that $Cay(\{l_p\} \times R_n, \{l_p\} \times p_2(A))$ and $Cay(\{l_q\} \times R_n, \{l_q\} \times p_2(A))$ are disjoint. To show that $Cay(\{l_p\} \times R_n, \{l_p\} \times p_2(A)) \cong Cay(\{l_q\} \times R_n, \{l_q\} \times p_2(A))$ and $Cay(S, A) = \bigcup_{i=1}^m Cay(\{l_i\} \times R_n, \{l_i\} \times p_2(A))$. We define a mapping $f : \{l_p\} \times R_n \to \{l_q\} \times R_n$ by $f((l_p, r)) = (l_q, r)$ for every $(l_p, r) \in \{l_p\} \times R_n$. Clearly, f is well defined and is a bijection. We will show that f and f^{-1} are digraph homomorphisms.

For $(l_p, r_1), (l_p, r_2) \in \{l_p\} \times R_n$, let $((l_p, r_1), (l_p, r_2))$ be an arc in $Cay(\{l_p\} \times R_n, \{l_p\} \times p_2(A))$. There exists $(l_p, r) \in \{l_p\} \times p_2(A)$ such that $(l_p, r_2) = (l_p, r_1)(l_p, r) = (l_p, r)$. Therefore $r = r_2$, we get that $r_2 \in p_2(A)$. Hence $(l_q, r_2) \in \{l_q\} \times p_2(A)$ and thus $(l_q, r_1)(l_q, r_2) = (l_q, r_2)$. This means that $((l_q, r_1), (l_q, r_2))$ is an arc in $Cay(\{l_q\} \times R_n, \{l_q\} \times p_2(A))$. We have shown that f is a digraph homomorphism. Similarly, we can show that f^{-1} is a digraph homomorphism. Hence $Cay(\{l_p\} \times R_n, \{l_p\} \times p_2(A)) \cong Cay(\{l_q\} \times R_n, \{l_q\} \times p_2(A))$.

We will show that $Cay(S, A) = \bigcup_{i=1}^{m} Cay(\{l_i\} \times R_n, \{l_i\} \times p_2(A))$. Let $D = \bigcup_{i=1}^{m} Cay(\{l_i\} \times R_n, \{l_i\} \times p_2(A))$. Since $L_m \times R_n = \bigcup_{i=1}^{m} (\{l_i\} \times R_n)$, then $S = \bigcup_{i=1}^{m} (\{l_i\} \times R_n) = V(D)$. We will show that E(Cay(S, A)) = E(D). For $(l_i, r), (l_j, r') \in S$, let $((l_i, r), (l_j, r'))$ be an arc in Cay(S, A). There exists $(l_k, r'') \in A$ such that $(l_j, r') = (l_i, r)(l_k, r'') = (l_i, r'')$, we get $l_i = l_j$ and r' = r''. Since $(l_k, r'') \in A, (l_j, r'') \in \{l_j\} \times p_2(A)$. Consider $(l_j, r') = (l_j, r'') = (l_j, r)(l_j, r'')$, we have that $((l_j, r), (l_j, r')) = ((l_i, r), (l_j, r')) = ((l_i, r), (l_j, r'))$ is an arc in $Cay(\{l_j\} \times R_n, \{l_j\} \times p_2(A))$. Hence $((l_i, r), (l_j, r'))$ is an arc in D. Therefore $E(Cay(S, A)) \subseteq E(D)$. Conversely, let $((l_j, r), (l_j, r')) \in E(D)$. This means that it is an arc in $Cay(\{l_j\} \times R_n, \{l_j\} \times p_2(A))$ for some $j \in \{1, 2, \ldots, m\}$. There exists $(l_j, r'') \in \{l_j\} \times p_2(A)$ such that $(l_j, r') = (l_j, r'') = (l_j, r'')$ and we get that r' = r''. Also since $(l_j, r'') \in \{l_j\} \times p_2(A)$, we have $(l, r'') \in A$ for some $l \in L_m$. Consider $(l_j, r') = (l_j, r'') = (l_j, r'') \in (l_j, r'')$, it follows that $((l_j, r), (l_j, r'))$ is an arc in Cay(S, A).

Theorem 4.1.4. Let $S = L_m \times R_n$ be a rectangular band and $A, B \subseteq S$. Then $Cay(S, A) \cong Cay(S, B)$ if and only if $|p_2(A)| = |p_2(B)|$.

proof. (\Rightarrow) Let $Cay(S, A) \cong Cay(S, B)$. By Lemma 4.1.3, we get $\bigcup_{i=1}^{m} Cay(\{l_i\} \times R_n, \{l_i\} \times p_2(A)) \cong \bigcup_{i=1}^{m} Cay(\{l_i\} \times R_n, \{l_i\} \times p_2(B))$. Then $Cay(\{l_i\} \times R_n, \{l_i\} \times p_2(A)) \cong Cay(\{l_i\} \times R_n, \{l_i\} \times p_2(B))$ and thus $Cay(R_n, p_2(A)) \cong Cay(R_n, p_2(B))$. By Theorem 4.1.2, we get $|p_2(A)| = |p_2(B)|$.

 $(\Leftarrow) \text{ Let } |p_2(A)| = |p_2(B)|. \text{ By Theorem 4.1.2, we get } Cay(R_n, p_2(A)) \cong Cay(R_n, p_2(B)). \text{ Then } \dot{\cup}_{i=1}^m Cay(\{l_i\} \times R_n, \{l_i\} \times p_2(A)) \cong \dot{\cup}_{i=1}^m Cay(\{l_i\} \times R_n, \{l_i\} \times p_2(B)). \text{ By Lemma 4.1.3, we get } Cay(S, A) \cong Cay(S, B).$

Figure 4.1: Cayley digraph $Cay(L_3 \times R_4, \{(l_1, r_2), (l_3, r_4)\}).$

Figure 4.2: Cayley digraph $Cay(L_3 \times R_4, \{(l_2, r_1), (l_3, r_1), (l_3, r_3), (l_1, r_3)\}).$

Example 4.1.5. Let $S = L_3 \times R_4$ be a rectangular band, and let $A = \{(l_1, r_2), (l_3, r_4)\}, B = \{(l_2, r_1), (l_3, r_1), (l_3, r_3), (l_1, r_3)\}$ be subsets of S. It is easily seen that $Cay(S, A) \cong Cay(S, B)$ (see Figures. 4.1 and 4.2), and $|p_2(A)| = |p_2(B)| = 2$.

4.2 Isomorphism Conditions for Cayley Digraphs of Right Groups

In this section, we present the conditions for Cayley digraphs of a given right group to be isomorphic to each other. By the definition of a right group, we get the following lemma.

Lemma 4.2.1. Let $S = G \times R_n$ be a right group, A a nonempty subset of S, $g, g' \in G$, and $r, r' \in R_n$. Then the following statements are equivalent:

- (1) ((g,r), (g', r')) is an arc in Cay(S, A);
- (2) there exists $(a, r') \in A$ such that g' = ga;
- (3) ((g, r'), (g', r')) is an arc in Cay(S, A).

Proof. (1) \rightarrow (2) Let ((g,r), (g', r')) be an arc in Cay(S, A). There exists $(a, r'') \in A$ such that (g', r') = (g, r)(a, r'') = (ga, r''). Hence g' = ga and r' = r'', therefore $(a, r') \in A$.

 $(2) \rightarrow (3)$ Assume that there exists $(a, r') \in A$ such that g' = ga. Since (g', r') = (ga, r') = (g, r)(a, r'), we get ((g, r)(g', r')) is an arc in Cay(S, A).

 $(3) \to (1)$ Let ((g, r')(g', r')) be an arc in Cay(S, A). There exists $(a, r'') \in A$ such that (g', r') = (g, r')(a, r'') = (ga, r''). Hence g' = ga and r' = r''. Since (g', r') = (ga, r'') = (g, r)(a, r''), we get that ((g, r), (g', r')) is an arc in Cay(S, A).

The next result gives some description for Cayley digraphs of right groups.

Lemma 4.2.2. Let $S = G \times R_n$ be a right group, A a nonempty subset of S, $G/\langle p_1(A) \rangle = \{g_1\langle p_1(A) \rangle, g_2\langle p_1(A) \rangle, \dots, g_w\langle p_1(A) \rangle\}$, and $(g_i\langle p_1(A) \rangle \times p_2(A), E_i)$ a strong subdigraph of Cay(S, A) for i = 1, 2, ..., w. Then $(g_j\langle p_1(A) \rangle \times p_2(A), E_j)$ and $(g_k\langle p_1(A) \rangle \times p_2(A), E_k)$ are disjoint strong subdigraphs of Cay(S, A) for all $j \neq k$.

proof. Let $u = (g_j g, r) \in g_j \langle p_1(A) \rangle \times p_2(A)$ and $v \in g_k \langle p_1(A) \rangle \times p_2(A)$. Since $g_j \langle p_1(A) \rangle$ and $g_k \langle p_1(A) \rangle$ are distinct left cosets of $\langle p_1(A) \rangle$ in $G, v \notin g_j \langle p_1(A) \rangle \times p_2(A)$. Assume that (u, v) is an arc from $g_j \langle p_1(A) \rangle \times p_2(A)$ to $g_k \langle p_1(A) \rangle \times p_2(A)$. There exists $a = (h, \lambda) \in A$ such that $v = ua = (g_j g, r)(h, \lambda) = (g_j gh, \lambda) \in g_j \langle p_1(A) \rangle \times p_2(A)$. There is a contradiction because $v \notin g_j \langle p_1(A) \rangle \times p_2(A)$. This means that there is no arc between $(g_j \langle p_1(A) \rangle \times p_2(A), E_j)$ and $(g_k \langle p_1(A) \rangle \times p_2(A), E_k)$.

Theorem 4.2.3. Let $S = G \times R_n$ be a right group, A a nonempty subset of S, $G/\langle p_1(A) \rangle = \{g_1\langle p_1(A) \rangle, g_2\langle p_1(A) \rangle, \dots, g_w\langle p_1(A) \rangle\}$, and $(g_i\langle p_1(A) \rangle \times p_2(A), E_i)$ a strong subdigraph of Cay(S, A). Then $Cay(S, A) = \dot{\cup}_{i=1}^w (g_i\langle p_1(A) \rangle \times p_2(A), E_i) \bigcup \dot{\cup}_{i=1}^w (g_i\langle p_1(A) \rangle \times R_n, E'_i)$, where $E'_i = \{((s, t), (u, v)) \mid t \notin p_2(A), ((s, v), (u, v)) \in E_i\}$.

proof. Let $D = \bigcup_{i=1}^{w} (g_i \langle p_1(A) \rangle \times p_2(A), E_i) \bigcup \bigcup_{i=1}^{w} (g_i \langle p_1(A) \rangle \times R_n, E'_i)$. It is clear that $S = \bigcup_{i=1}^{w} (g_i \langle p_1(A) \rangle \times p_2(A)) \bigcup \bigcup_{i=1}^{w} (g_i \langle p_1(A) \rangle \times R_n) = V(D)$. We will prove that E(Cay(S, A)) = E(D). Let ((g, r), (g', r')) be an arc in Cay(S, A). By Lemma 4.2.1, there exists $(a, r') \in A$ and g' = ga. Hence $g' \in g_{k_1} \langle p_1(A) \rangle$ and $g \in g_{k_2} \langle p_1(A) \rangle$ for some $k_1, k_2 \in \{1, 2, \ldots, w\}$. We have the following cases.

- (case1) If $r \in p_2(A)$, then $(g,r), (g',r') \in \bigcup_{i=1}^w (g_i \langle p_1(A) \rangle \times p_2(A))$. Since $\bigcup_{i=1}^w (g_i \langle p_1(A) \rangle \times p_2(A), E_i)$ is a strong subdigraph of Cay(S, A), ((g, r), (g', r')) is an arc in $\bigcup_{i=1}^w (g_i \langle p_1(A) \rangle \times p_2(A), E_i)$. Therefore ((g, r), (g', r')) is an arc in D.
- (case2) If $r \notin p_2(A)$, then ((g, r'), (g', r')) is also an arc in Cay(S, A) by Lemma 4.2.1 and ((g, r), (g', r')) is an arc in Cay(S, A). This implies that $((g, r'), (g', r')) \in E_i$. Then $((g, r), (g', r')) \in E'_i$. Hence ((g, r), (g', r')) is an arc in D.

Therefore $E(Cay(S, A)) \subseteq E(D)$. To show that $E(D) \subseteq E(Cay(S, A))$. Let ((g, r), (g', r')) be an arc in D. We consider two cases.

(case1) If ((g,r), (g',r')) is an arc in $\dot{\cup}_{i=1}^{w}(g_i\langle p_1(A)\rangle \times p_2(A), E_i)$, then it is an arc in Cay(S, A) because $\dot{\cup}_{i=1}^{w}(g_i\langle p_1(A)\rangle \times p_2(A), E_i)$ is a strong subdigraph of Cay(S, A). (case2) If ((g,r), (g',r')) is an arc in $\dot{\cup}_{i=1}^{w}(g_i\langle p_1(A)\rangle \times R_n, E'_i)$, then it is an arc in E'_k for some k. We get that $((g,r'), (g',r')) \in E_k$ and this implies that ((g,r'), (g',r')) is an arc in Cay(S, A). By Lemma 4.2.1, we have ((g,r), (g',r')) is also an arc in Cay(S, A).

Then
$$E(D) \subseteq E(Cay(S, A))$$
. Hence we prove that $Cay(S, A) = D$.

By the definition of E'_{i} in Theorem 4.2.3 we have the next corollary.

Corollary 4.2.4. Let $S = G \times R_n$ be a right group, A a nonempty subset of S, and $(g_i \langle p_1(A) \rangle \times p_2(A), E_i)$ a strong subdigraph of Cay(S, A). For all $r' \in R_n \setminus p_2(A)$, if ((u, r), (v, r)) is an arc in $\dot{\cup}_{j \in I}(g_j \langle p_1(A) \rangle \times p_2(A), E_j)$, then $((u, r'), (v, r)) \in E'_j$ where $E'_j = \{((s, t), (u, v)) \mid t \notin p_2(A), ((s, v), (u, v)) \in E_j\}.$

Theorem 4.2.5. Let $S = G \times R_n$ be a right group, A a nonempty subset of S, $G/\langle p_1(A) \rangle = \{g_1 \langle p_1(A) \rangle, g_2 \langle p_1(A) \rangle, \dots, g_w \langle p_1(A) \rangle\}$, and $(g_i \langle p_1(A) \rangle \times p_2(A), E_i)$ a strong subdigraph of Cay(S, A). Then $(g_i \langle p_1(A) \rangle \times p_2(A), E_i) \cong Cay(\langle A \rangle, A)$ for i = 1, 2, ..., w.

proof. We define $f : (g_i \langle p_1(A) \rangle \times p_2(A), E_i) \to Cay(\langle A \rangle, A)$ by $(g_i a, r) \mapsto (a, r)$ for all $a \in \langle p_1(A) \rangle$ and $r \in p_2(A)$. Clearly, f is a bijection. We will prove that f and f^{-1} are digraph homomorphisms.

For $(g_ia, r), (g_ia', r') \in g_i\langle p_1(A) \rangle \times p_2(A)$, let $((g_ia, r), (g_ia', r'))$ be an arc in $(g_i\langle p_1(A) \rangle \times p_2(A), E_i)$. Since $(g_i\langle p_1(A) \rangle \times p_2(A), E_i)$ is a strong subdigraph of Cay(S, A), we get that $((g_ia, r'), (g_ia', r'))$ is an arc in Cay(S, A). There exists $(a'', r') \in A$ such that $g_ia' = g_iaa''$ so a' = aa''. Since $f(g_ia', r') = (a', r') = (aa'', r') = (a, r)(a'', r') = f(g_ia, r)(a'', r')$, we have $(f(g_ia, r), f(g_ia', r'))$ is an arc in $Cay(\langle A \rangle, A)$. Therefore f is a digraph homomorphism.

Let $(f(g_ia, r), f(g_ia', r'))$ be an arc in $Cay(\langle A \rangle, A)$. Then there exists $(a'', r'') \in A$ such that $f(g_ia', r') = f(g_ia, r)(a'', r'')$. Therefore (a', r') = (a, r)(a'', r'') = (aa'', r''), a' = aa'', and r' = r''. Hence $(g_ia', r') = (g_iaa'', r'') = (g_ia, r)(a'', r'')$, so $((g_ia, r), (g_ia', r'))$ is an arc in Cay(S, A). Since $(g_ia, r), (g_ia', r') \in g_i \langle p_1(A) \rangle \times p_2(A)$ and $(g_i \langle p_1(A) \rangle \times p_2(A), E_i)$ is a strong subdigraph of Cay(S, A), we thus get $((g_ia, r), (g_ia', r'))$ is an arc in $(g_i \langle p_1(A) \rangle \times p_2(A), E_i)$. Therefore f^{-1} is a digraph homomorphism. This means that $(g_i \langle p_1(A) \rangle \times p_2(A), E_i) \cong Cay(\langle A \rangle, A)$.

The two following lemmas will be used in the proof of Lemma 4.2.8.

Lemma 4.2.6. Let $S = G \times R_n$ be a right group, A a nonempty subset of S, $G/\langle p_1(A) \rangle = \{g_1\langle p_1(A) \rangle, g_2\langle p_1(A) \rangle, \dots, g_w\langle p_1(A) \rangle\}$, and $(g_i\langle p_1(A) \rangle \times p_2(A), E_i)$ a strong subdigraph of Cay(S, A). Then for all $v \in V(Cay(S, A))$, $\overrightarrow{d}(v) \neq 0$ if and only if $v \in \bigcup_{i=1}^w (g_i\langle p_1(A) \rangle) \times p_2(A)$.

proof. (\Rightarrow) Let $v = (h_1, r_1) \in S$ and $\overrightarrow{d}(v) \neq 0$. Then there exists $u = (h_2, r_2) \in S$ such that (u, v) is an arc in Cay(S, A). Hence there exists $a = (g', r') \in A$ such that v = ua. Therefore $(h_1, r_1) = (h_2, r_2)(g', r') = (h_2g', r')$, which implies that $r_1 = r' \in p_2(A)$. Since $h_1 \in G = \bigcup_{i=1}^w (g_i \langle p_1(A) \rangle)$, we have $v = (h_1, r_1) \in \bigcup_{i=1}^w (g_i \langle p_1(A) \rangle) \times p_2(A)$.

 (\Leftarrow) Let $v = (h_1, r) \in \dot{\cup}_{i=1}^w (g_i \langle p_1(A) \rangle) \times p_2(A)$. We get that $h_1 \in G$ and $r \in p_2(A)$. We consider the two cases.

- (case1) If $v \in A$, there exists $(e, r) \in S$, where e is the identity of G. Since $(e, r)(h_1, r) = (eh_1, r) = (h_1, r) = v$, there is an arc from (e, r) to v. Therefore $\overrightarrow{d}(v) \neq 0$.
- (case2) If $v \notin A$, then there exists $(h_2, r) \in A$ for some $h_2 \in G$. Because G is a group and $h_1, h_2 \in G$, this implies that $h_2^{-1} \in G$ and $h_1 h_2^{-1} \in G$. Then we have $(h_1 h_2^{-1}, r) \in S$. Since $(h_1 h_2^{-1}, r)(h_2, r) = (h_1 h_2^{-1} h_2, r) = (h_1, r) = v$, there exists an arc from $(h_1 h_2^{-1}, r)$ to v. Therefore $\overrightarrow{d}(v) \neq 0$.

Lemma 4.2.7. Let $S = G \times R_n$ be a right group, A a nonempty subset of S, $G/\langle p_1(A) \rangle = \{g_1\langle p_1(A) \rangle, g_2\langle p_1(A) \rangle, \dots, g_w\langle p_1(A) \rangle\}$, and $(g_i\langle p_1(A) \rangle \times p_2(A), E_i)$ a strong subdigraph of Cay(S, A). Then for any $i \in \{1, 2, \dots, w\}$, $(g_i\langle p_1(A) \rangle \times p_2(A), E_i)$ is connected.

proof. Let $(g_i x, \beta), (g_i y, \gamma) \in (g_i \langle p_1(A) \rangle \times p_2(A))$. Then $(x, \beta), (y, \gamma) \in \langle p_1(A) \rangle \times p_2(A) = \langle A \rangle$. There are $a_1, a_2, \ldots, a_q \in A$ such that $(y, \gamma) = (x, \beta)a_1a_2 \ldots a_q$ for some $q \leq |A|$. Hence $(g_i y, \gamma) = (g_i x, \beta)a_1a_2 \ldots a_q$. This means that there is an arc from $(g_i x, \beta)a_1a_2 \ldots a_{q-1}$ to $(g_i y, \gamma)$. Since $((g_i x, \beta), (g_i x, \beta)a_1), ((g_i x, \beta)a_1, (g_i x, \beta)a_1a_2), \ldots, ((g_i x, \beta)a_1a_2 \ldots a_{q-2}, (g_i x, \beta)a_1a_2 \ldots a_{q-1})$ are arcs in Cay(S, A), there is a path $(g_i x, \beta), (g_i x, \beta)a_1, (g_i x, \beta)a_1a_2, \ldots, (g_i x, \beta)a_1a_2 \ldots a_{q-1}, (g_i y, \gamma)$ in Cay(S, A). We conclude that $(g_i \langle p_1(A) \rangle \times p_2(A), E_i)$ is connected. \Box

Since a strong subdigraph $(g_i \langle p_1(A) \rangle \times p_2(A), E_i)$ is connected, we have $(g_i \langle p_1(A) \rangle \times p_2(A), E_i) \cup (g_i \langle p_1(A) \rangle \times R_n, E'_i)$ is also connected for any $i \in \{1, 2, \ldots, w\}$, where E' is defined as in Theorem 4.2.3.

Lemma 4.2.8. Let $S = G \times R_n$ be a right group, A and B be nonempty subsets of $S, G/\langle p_1(A) \rangle = \{g_1\langle p_1(A) \rangle, g_2\langle p_1(A) \rangle, \dots, g_w\langle p_1(A) \rangle\}, \text{ and } G/\langle p_1(B) \rangle = \{h_1\langle p_1(B) \rangle, h_2\langle p_1(B) \rangle, \dots, h_z\langle p_1(B) \rangle\}.$ If $\dot{\cup}_{i=1}^w (g_i\langle p_1(A) \rangle \times p_2(A), E_i) \bigcup \dot{\cup}_{i=1}^w (g_i\langle p_1(A) \rangle \times R_n, E'_i) \cong \dot{\cup}_{j=1}^z (h_j\langle p_1(B) \rangle \times p_2(B), E_j) \bigcup \dot{\cup}_{j=1}^z (h_j\langle p_1(B) \rangle \times R_n, E'_j), \text{ then } w = z \text{ and } (g_i\langle p_1(A) \rangle \times p_2(A), E_i) \cong (p_i\langle p_1(B) \rangle \times p_2(B), E_j) \text{ for all } i, j.$

proof. Let $\dot{\cup}_{i=1}^{w}(g_i\langle p_1(A)\rangle \times p_2(A), E_i) \bigcup \dot{\cup}_{i=1}^{w}(g_i\langle p_1(A)\rangle \times R_n, E'_i) \cong \dot{\cup}_{j=1}^{z}$ $(h_j\langle p_1(B)\rangle \times p_2(B), E_j) \bigcup \dot{\cup}_{j=1}^{z}(h_j\langle p_1(B)\rangle \times R_n, E'_j)$. Then there exists an isomorphism $f: \dot{\cup}_{i=1}^{w}(g_i\langle p_1(A)\rangle \times p_2(A)) \bigcup \dot{\cup}_{i=1}^{w}(g_i\langle p_1(A)\rangle \times R_n) \to \dot{\cup}_{j=1}^{z}(h_j\langle p_1(B)\rangle \times p_2(B)) \bigcup \dot{\cup}_{j=1}^{z}(h_j\langle p_1(B)\rangle) \times p_2(A)| = |\dot{\cup}_{j=1}^{z}(h_j\langle p_1(B)\rangle) \times p_2(A)| = |\dot{\cup}_{j=1}^{z}(h_j\langle p_1(B)\rangle) \times p_2(B)|$ $(h_j\langle p_1(B)\rangle) \times p_2(B)|$ and we have $f(\dot{\cup}_{i=1}^{w}(g_i\langle p_1(A)\rangle) \times p_2(A)) = \dot{\cup}_{j=1}^{z}(h_j\langle p_1(B)\rangle) \times p_2(B).$ Since f is an isomorphism, we thus get the restriction of f to $\dot{\cup}_{i=1}^{w}(g_i\langle p_1(A)\rangle) \times p_2(A)$ is a digraph isomorphism from $\dot{\cup}_{i=1}^{w}(g_i\langle p_1(A)\rangle \times p_2(A), E_i)$ to $\dot{\cup}_{j=1}^{z}(h_j\langle p_1(B)\rangle \times p_2(B), E_j).$ Therefore $\dot{\cup}_{i=1}^{w}(g_i\langle p_1(A)\rangle \times p_2(A), E_i) \cong \dot{\cup}_{j=1}^{z}(h_j\langle p_1(B)\rangle \times p_2(B), E_j).$ In view of Theorem 4.2.5 and Lemma 4.2.7, we get that w = z and $(g_i\langle p_1(A)\rangle \times p_2(A), E_i) \cong (h_j\langle p_1(B)\rangle \times p_2(A), E_i) \cong (h_j\langle p_1(B)\rangle \times p_2(A), E_i) \cong (h_j\langle p_1(B)\rangle \times p_2(B), E_j).$

Lemma 4.2.9. Let $S = G \times R_n$ be a right group, A and B nonempty subsets of S. If $Cay(S, A) \cong Cay(S, B)$, then $|p_2(A)| = |p_2(B)|$.

proof. Let $G/\langle p_1(A) \rangle = \{g_1\langle p_1(A) \rangle, g_2\langle p_1(A) \rangle, \dots, g_w\langle p_1(A) \rangle\}$ and $G/\langle p_1(B) \rangle = \{h_1\langle p_1(B) \rangle, h_2\langle p_1(B) \rangle, \dots, h_z\langle p_1(B) \rangle\}$. Assume that $Cay(S, A) \cong Cay(S, B)$. By Theorem 4.2.3 and Lemma 4.2.8, we get that $|\dot{\cup}_{i=1}^w g_i\langle p_1(A) \rangle \times p_2(A)| = |\dot{\cup}_{j=1}^w h_j\langle p_1(B) \rangle \times p_2(B)|$ for all $g_i, h_j \in G$. Since $\dot{\cup}_{i=1}^w g_i\langle p_1(A) \rangle = G = \dot{\cup}_{j=1}^w h_j\langle p_1(B) \rangle$, we have $|G \times p_2(A)| = |G \times p_2(B)|$. Therefore $|G| \times |p_2(A)| = |G| \times |p_2(B)|$. Hence $|p_2(A)| = |p_2(B)|$.

Lemma 4.2.10. Let $S = G \times R_n$ be a right group, A a nonempty subset of S, $G/\langle p_1(A) \rangle = \{g_1\langle p_1(A) \rangle, g_2\langle p_1(A) \rangle, \ldots, g_w\langle p_1(A) \rangle\}$, and $(g_i\langle p_1(A) \rangle \times p_2(A), E_i)$ a strong subdigraph of Cay(S, A). Then for every $i \in \{1, 2, \ldots, w\}$, $\dot{\cup}_{i=1}^w (g_i\langle p_1(A) \rangle \times p_2(A), E_i) \bigcup \dot{\cup}_{i=1}^w (g_i\langle p_1(A) \rangle \times P_2(A), E_i) \cup (g_i\langle p_1(A) \rangle \times R_n, E_i'))$, where E' is defined as in Theorem 4.2.3.

proof. Let $D = \dot{\cup}_{i=1}^{w} (g_i \langle p_1(A) \rangle \times p_2(A), E_i) \bigcup \dot{\cup}_{i=1}^{w} (g_i \langle p_1(A) \rangle \times R_n, E_i')$, and $H = \dot{\cup}_{i=1}^{w} ((g_i \langle p_1(A) \rangle \times p_2(A), E_i) \cup (g_i \langle p_1(A) \rangle \times R_n, E_i'))$. Note that $G = \dot{\cup}_{i=1}^{w} (g_i \langle p_1(A) \rangle)$, then $\dot{\cup}_{i=1}^{w} (g_i \langle p_1(A) \rangle \times p_2(A)) \bigcup \dot{\cup}_{i=1}^{w} (g_i \langle p_1(A) \rangle \times R_n) = G \times R_n = \dot{\cup}_{i=1}^{w} ((g_i \langle p_1(A) \rangle \times p_2(A)) \cup (g_i \langle p_1(A) \rangle \times R_n))$. Therefore V(D) = V(H). We will show that E(D) = E(H).

Let $u, v \in V(D)$ and $(u, v) \in E(D)$. We consider two cases.

(case1) If (u, v) is an arc in $\bigcup_{i=1}^{w} (g_i \langle p_1(A) \rangle \times p_2(A), E_i)$, then (u, v) is an arc in $(g_k \langle p_1(A) \rangle \times p_2(A), E_k)$ for some $k \in \{1, 2, ..., w\}$. It follows that (u, v) is an arc in $((g_k \langle p_1(A) \rangle \times p_2(A), E_k) \cup (g_k \langle p_1(A) \rangle \times R_n, E'_k))$ and so it is an arc in H.

(case2) If (u, v) is an arc in $\bigcup_{i=1}^{w} (g_i \langle p_1(A) \rangle \times R_n, E'_i)$, then (u, v) is an arc in $(g_k \langle p_1(A) \rangle \times R_n, E'_k)$ for some $k \in \{1, 2, \dots, w\}$. Thus (u, v) is an arc in $((g_k \langle p_1(A) \rangle \times p_2(A), E_k) \cup (g_k \langle p_1(A) \rangle \times R_n, E'_k))$. It follows that $(u, v) \in E(H)$.

We have $E(D) \subseteq E(H)$. Let $(u, v) \in E(H)$. Therefore it is an arc in $(g_j \langle p_1(A) \rangle \times p_2(A), E_j) \cup (g_k \langle p_1(A) \rangle \times R_n, E'_k)$ for some $j, k \in \{1, 2, ..., w\}$. We consider two cases.

(case1) If (u, v) is an arc in $(g_j \langle p_1(A) \rangle \times p_2(A), E_j)$, then it is an arc in $\bigcup_{i=1}^w (g_i \langle p_1(A) \rangle \times p_2(A), E_i)$. It follows that $(u, v) \in E(D)$.

(case2) If (u, v) is an arc in $(g_k \langle p_1(A) \rangle \times R_n, E'_k)$, it is an arc in $\bigcup_{i=1}^w (g_i \langle p_1(A) \rangle \times R_n, E'_i)$. It follows that $(u, v) \in E(D)$.

Therefore $E(H) \subseteq E(D)$. Then E(H) = E(D). We conclude that D = H.

It is know that a right group $S = G \times R_n$ is a special case of a completely simple semigroup $\mathcal{M}(G, I, \Lambda, P)$, where |I| = 1, $|\Lambda| = n$ and P is an identity matrix. By Theorem 3.2.7, we have the following corollary.

Corollary 4.2.11. Let $S = G \times R_n$ be right group, and let $(g, \lambda), (h, \beta) \in S$, where $g, h \in G$ and $\lambda, \beta \in R_n$. Then $Cay(S, \{(g, \lambda)\}) \cong Cay(S, \{(h, \beta)\})$ if and only if $|\langle g \rangle| = |\langle h \rangle|$.

Theorem 4.2.12. Let $S = G \times R_n$ be a right group, A and B nonempty subsets of S. Let $A_r = \langle p_1(A) \rangle \times \{r\}$, $\hat{A}_r = A \cap A_r$ and $\hat{A} = \{\hat{A}_r | r \in p_2(A)\}$. B_r, \hat{B}_r and \hat{B} are defined similarly. If $Cay(\langle A \rangle, A) \cong Cay(\langle B \rangle, B)$, then $|\hat{A}| = |\hat{B}|$ and $|\langle p_1(A) \rangle| = |\langle p_1(B) \rangle|$.

proof. Let $Cay(\langle A \rangle, A) \cong Cay(\langle B \rangle, B)$. By Lemma 4.2.9, $|p_2(A)| = |p_2(B)|$ and then $|\hat{A}| = |\hat{B}|$. Since $Cay(\langle A \rangle, A) \cong Cay(\langle B \rangle, B)$, we get that $|\langle A \rangle| = |\langle B \rangle|$. By Lemma 2.2.2,

$$\begin{aligned} |\langle p_1(A) \rangle \times p_2(A)| &= |\langle p_1(B) \rangle \times p_2(B)|; \\ |\langle p_1(A) \rangle| \times |p_2(A)| &= |\langle p_1(B) \rangle| \times |p_2(B)|; \\ |\langle p_1(A) \rangle| &= |\langle p_1(B) \rangle|. \end{aligned}$$

	_	

Theorem 4.2.13. Let $S = G \times R_n$ be a right group, A and B nonempty subsets of S. Let $A_r = \langle p_1(A) \rangle \times \{r\}$, $\hat{A}_r = A \cap A_r$ and $\hat{A} = \{\hat{A}_r | r \in p_2(A)\}$. B_r, \hat{B}_r and \hat{B} are defined similarly. Then $Cay(\langle A \rangle, A) \cong Cay(\langle B \rangle, B)$ if the following conditions hold:

- (1) $|\hat{A}| = |\hat{B}|$ and $|\langle p_1(A) \rangle| = |\langle p_1(B) \rangle|;$
- (2) There exists a bijection $f : \hat{A} \to \hat{B}$ such that $|\hat{A}_r| = |f(\hat{A}_r)|$ for all $\hat{A}_r \in \hat{A}$;
- (3) For each $\hat{A}_r \in \hat{A}$, there exists a bijection $\varphi_r : \hat{A}_r \to f(\hat{A}_r)$ such that $|\langle p_1(a) \rangle| = |\langle p_1(\varphi_r(a)) \rangle|$ for all $a \in \hat{A}_r$.

proof. By (1), $|\langle A \rangle| = |\langle B \rangle|$. By Corollary 4.2.11 and (3), we get that $Cay(\langle A \rangle, \{a\}) \cong Cay(\langle B \rangle, \{\varphi_r(a)\})$ for all $a \in \hat{A}_r$. Then $Cay(\langle A \rangle, \hat{A}_r) = \bigoplus_{a \in \hat{A}_r} Cay(\langle A \rangle, \{a\}) \cong \bigoplus_{a \in \hat{A}_r} Cay(\langle B \rangle, \{\varphi_r(a)\}) = Cay(\langle B \rangle, \varphi_r(\hat{A}_r)).$

By (2), $Cay(\langle A \rangle, \hat{A}_r) \cong Cay(\langle B \rangle, f(\hat{A}_r))$ for all $\hat{A}_r \in \hat{A}$. Then

$$\begin{array}{rcl} \oplus_{\hat{A}_r \in \hat{A}} Cay(\langle A \rangle, \hat{A}_r) &\cong & \oplus_{\hat{A}_r \in \hat{A}} Cay(\langle B \rangle, f(\hat{A}_r)); \\ Cay(\langle A \rangle, \cup_{\hat{A}_r \in \hat{A}} \hat{A}_r) &\cong & Cay(\langle B \rangle, \cup_{\hat{A}_r \in \hat{A}} f(\hat{A}_r)); \\ Cay(\langle A \rangle, A) &\cong & Cay(\langle B \rangle, B). \end{array}$$

Example 4.2.14. Let $S = S_3 \times R_3$ be a right group, where $S_3 = \{(1), \sigma, \sigma^2, \tau, \tau \sigma^2, \tau \sigma^2\}$ is the symmetric group with (1) an identity, $\sigma = (123), \sigma^2 = (132), \tau = (12), \tau \sigma^2 = (13), \tau \sigma = (23)$. Let $A = \{((1), r_1), (\tau, r_1), (\tau, r_2)\}$ and $B = \{(\tau \sigma, r_1), ((1), r_2), (\tau \sigma, r_2)\}$. It is easily seen that $Cay(\langle A \rangle, A) \cong Cay(\langle B \rangle, B)$ (see Figures 4.3 and 4.4).

We have $\hat{A}_{r_1} = \{((1), r_1), (\tau, r_1)\}, \hat{A}_{r_2} = \{(\tau, r_2)\}, \hat{B}_{r_1} = \{(\tau\sigma, r_1)\}, \text{ and } \hat{B}_{r_2} = \{((1), r_2), (\tau\sigma, r_2)\}.$ Therefore $\hat{A} = \{\hat{A}_{r_1}, \hat{A}_{r_2}\}, \hat{B} = \{\hat{B}_{r_1}, \hat{B}_{r_2}\}, \text{ and thus } |\hat{A}| = |\hat{B}|.$ Since $\langle p_1(A) \rangle = \{(1), \tau\}$ and $\langle p_1(B) \rangle = \{(1), \tau\sigma\}, \text{ then } |\langle p_1(A) \rangle| = |\langle p_1(B) \rangle|.$

We thus get $|\hat{A}_{r_1}| = 2 = |\hat{B}_{r_2}|$ and $|\hat{A}_{r_2}| = 1 = |\hat{B}_{r_1}|$. There exists a bijective function f from \hat{A} to \hat{B} such that $f(\hat{A}_{r_1}) = \hat{B}_{r_2}$ and $f(\hat{A}_{r_2}) = \hat{B}_{r_1}$.

Moreover, there are bijective functions

$$\varphi_{r_1} : \hat{A}_{r_1} \to \hat{B}_{r_2} \quad \text{such that} \quad \varphi_{r_1}((1), r_1) = ((1), r_2)$$
$$\varphi_{r_1}(\tau, r_1) = (\tau \sigma, r_2)$$
$$\varphi_{r_2} : \hat{A}_{r_2} \to \hat{B}_{r_1} \quad \text{such that} \quad \varphi_{r_2}(\tau, r_2) = (\tau \sigma, r_1)$$

and $|\langle p_1(a) \rangle| = |\langle p_1(\varphi_{r_1}(a)) \rangle|$ and $|\langle p_1(b) \rangle| = |\langle p_1(\varphi_{r_2}(b)) \rangle|$ for all $a \in \hat{A}_{r_1}$ and $b \in \hat{A}_{r_2}$. According to Theorem 4.2.13, $Cay(\langle A \rangle, A) \cong Cay(\langle B \rangle, B)$.

Figure 4.3: Cayley digraph $Cay(\langle A \rangle, A)$.

Figure 4.4: Cayley digraph $Cay(\langle B \rangle, B)$.

Theorem 4.2.15. Let $S = G \times R_n$ be a right group, A and B be nonempty subsets of S. Then $Cay(S, A) \cong Cay(S, B)$ if and only if $Cay(\langle A \rangle, A) \cong Cay(\langle B \rangle, B)$.

proof. Let $G/\langle p_1(A)\rangle = \{g_1\langle p_1(A)\rangle, g_2\langle p_1(A)\rangle, \dots, g_w\langle p_1(A)\rangle\}$ and $G/\langle p_1(B)\rangle = \{h_1\langle p_1(B)\rangle, h_2\langle p_1(B)\rangle, \dots, h_z\langle p_1(B)\rangle\}.$

 $(\Rightarrow) \text{ Let } Cay(S,A) \cong Cay(S,B). \text{ Then there exists a digraph isomorphism } f: Cay(S,A) \to Cay(S,B). \text{ By Theorem 4.2.3, we get that } \dot{\cup}_{i=1}^{w}(g_i\langle p_1(A)\rangle \times p_2(A), E_i) \bigcup \dot{\cup}_{i=1}^{w}(g_i\langle p_1(A)\rangle \times R_n, E'_i) \cong \dot{\cup}_{j=1}^{z}(h_j\langle p_1(B)\rangle \times p_2(B), E_j) \bigcup \dot{\cup}_{j=1}^{z}(h_j\langle p_1(B)\rangle \times R_n, E'_j). \text{ In view of Lemma 4.2.8, } (g_i\langle p_1(A)\rangle \times p_2(A), E_i) \cong (h_j\langle p_1(B)\rangle \times p_2(B), E_j). \text{ By Theorem 4.2.5, we get } Cay(\langle A\rangle, A) \cong Cay(\langle B\rangle, B).$

 $(\Leftarrow) \text{ Let } Cay(\langle A \rangle, A) \cong Cay(\langle B \rangle, B). \text{ By Theorem 4.2.12, } |\langle p_1(A) \rangle| = |\langle p_1(B) \rangle|$ and thus $w = |G|/|\langle p_1(A) \rangle| = |G|/|\langle p_1(B) \rangle| = z.$ By Theorem 4.2.5, we get $(g_i \langle p_1(A) \rangle \times p_2(A), E_i) \cong (h_j \langle p_1(B) \rangle \times p_2(B), E_j)$ for all $i, j \in \{1, 2, \dots, w\}$. It follows that $\dot{\cup}_{i=1}^w$ $(g_i \langle p_1(A) \rangle \times p_2(A), E_i) \cong \dot{\cup}_{j=1}^z (h_j \langle p_1(B) \rangle \times p_2(B), E_j).$ There exists a digraph isomorphism $f : \dot{\cup}_{i=1}^w (g_i \langle p_1(A) \rangle \times p_2(A), E_i) \to \dot{\cup}_{j=1}^z (h_j \langle p_1(B) \rangle \times p_2(B), E_j).$ Therefore $|\dot{\cup}_{i=1}^w (g_i \langle p_1(A) \rangle \times p_2(A)| = |\dot{\cup}_{j=1}^z (h_j \langle p_1(B) \rangle \times p_2(B)|.$ Since $\dot{\cup}_{i=1}^w g_i \langle p_1(A) \rangle = G = \dot{\cup}_{j=1}^z h_j \langle p_1(B) \rangle,$ then $|G \times p_2(A)| = |G \times p_2(B)|.$ Hence $|G| \times |p_2(A)| = |G| \times |p_2(B)|$ and thus $|p_2(A)| = |p_2(B)|.$ Suppose that $R_n \setminus p_2(A) = \{q_1, q_2, \dots, q_m\}$ and $R_n \setminus p_2(B) = \{q'_1, q'_2, \dots, q'_m\}.$ Let $r \in p_2(A).$ Define $T : \dot{\cup}_{i=1}^w (g_i \langle p_1(A) \rangle \times p_2(A), E_i) \cup \dot{\cup}_{i=1}^w (g_i \langle p_1(A) \rangle \times R_n, E'_i) \to$ $\dot{\cup}_{j=1}^{z}(h_{j}\langle p_{1}(B)\rangle \times p_{2}(B), E_{j}) \bigcup \dot{\cup}_{j=1}^{z}(h_{j}\langle p_{1}(B)\rangle \times R_{n}, E_{j}')$ by

$$T(s,r_l) = \begin{cases} f(s,r_l) & \text{if } r_l \in p_2(A);\\ (p_1(f(s,r)),q'_k) & \text{if } r_l = q_k \text{ for some } q_k \in R_n \setminus p_2(A). \end{cases}$$

Clearly, T is well defined and is surjective. To show T is injective, let $x_1 = (u_1, \lambda_1), x_2 = (u_2, \lambda_2) \in S$ and $T(x_1) = T(x_2)$. We need to consider the following two cases.

- (case1) If $\lambda_1, \lambda_2 \in p_2(A)$, then $T(x_1) = f(x_1)$ and $T(x_2) = f(x_2)$. Since $T(x_1) = T(x_2)$, we have $f(x_1) = f(x_2)$ and $x_1 = x_2$ because f is a digraph isomorphism.
- (case2) If $\lambda_1, \lambda_2 \notin p_2(A)$, assume that $\lambda_1 = q_l$ and $\lambda_2 = q_k$. Thus $T(x_1) = (p_1(f(u_1, r)), q'_l)$ and $T(x_2) = (p_1(f(u_2, r)), q'_k)$. Since $T(x_1) = T(x_2)$, we have $(p_1(f(u_1, r)), q'_l) = (p_1(f(u_2, r)), q'_k)$. It follows that $q'_l = q'_k$ and $p_1(f(u_1, r)) = p_1(f(u_2, r))$. Hence by the definition of $T, \lambda_1 = \lambda_2$. Since f is a digraph isomorphism, we have $u_1 = u_2$. Therefore $x_1 = x_2$.

By the above two cases, we conclude that T is an injection. We will prove that T and T^{-1} are digraph homomorphisms.

Assume that $((x, r_c), (y, r_d))$ is an arc in $\bigcup_{i=1}^w (g_i \langle p_1(A) \rangle \times p_2(A), E_i) \bigcup_{i=1}^w (g_i \langle p_1(A) \rangle \times R_n, E'_i)$. Thus $(y, r_d) = (x, r_c)(a, r_t)$ for some $(a, r_t) \in A$. Hence $(y, r_d) = (xa, r_t)$ and thus $r_d = r_t \in p_2(A)$ and y = xa. We have the following two cases.

- (case1) $r_c \in p_2(A)$. Then $(T(x, r_c), T(y, r_d)) = (f(x, r_c), f(y, r_d))$ is an arc in $\bigcup_{j=1}^{z} (h_j \langle p_1(B) \rangle \times p_2(B), E_j) \bigcup \bigcup_{j=1}^{z} (h_j \langle p_1(B) \rangle \times R_n, E'_j)$ since f is a digraph isomorphism.
- (case2) $r_c \in R_n \setminus p_2(A)$. Then $r_c = q_k$ for some $k \in \{1, 2, \dots, m\}$. Hence $((x, r_c), (y, r_d))$ is an arc in $\dot{\cup}_{i=1}^w (g_i \langle p_1(A) \rangle \times R_n, E'_i)$. Then $((x, r_d), (y, r_d))$ is an arc in $\dot{\cup}_{i=1}^w (g_i \langle p_1(A) \rangle \times p_2(A), E_i)$. By Lemma 4.2.1, $((x, r), (y, r_d))$ is also an arc in $\dot{\cup}_{i=1}^w (g_i \langle p_1(A) \rangle \times p_2(A), E_i)$. This follows that $(f(x, r), f(y, r_d))$ is an arc in $\dot{\cup}_{j=1}^z (h_j \langle p_1(B) \rangle \times p_2(B), E_j)$. Let f(x, r) = (x', r') and $f(y, r_d) = (y', r'_d)$. Therefore $((x', r'), (y', r'_d))$ is an arc in $\dot{\cup}_{j=1}^z (h_j \langle p_1(B) \rangle \times p_2(B), E_j)$ and thus $((x', r'_d), (y', r'_d))$ is also an arc in $\dot{\cup}_{j=1}^z (h_j \langle p_1(B) \rangle \times p_2(B), E_j)$. Therefore $((x', q'_k), (y', r'_d))$ is an arc in $\dot{\cup}_{j=1}^z (h_j \langle p_1(B) \rangle \times p_2(B), E_j)$. Therefore $((x', q'_k), (y', r'_d))$ is an arc in $\dot{\cup}_{j=1}^z (h_j \langle p_1(B) \rangle \times p_2(B), E_j)$. Therefore $(h_j \langle p_1(B) \rangle \times R_n, E'_j)$. Thence $(T(x, r_c), T(y, r_d))$ is an arc in $\dot{\cup}_{j=1}^z (h_j \langle p_1(B) \rangle \times P_2(B), E_j)$. Hence $(T(x, r_c), T(y, r_d))$ is an arc in $\dot{\cup}_{j=1}^z (h_j \langle p_1(B) \rangle \times P_2(B), E_j)$.

Thus T is a digraph homomorphism.

Assume that $(T(x, r_c), T(y, r_d))$ is an arc in $\bigcup_{j=1}^{z} (h_j \langle p_1(B) \rangle \times p_2(B), E_j) \bigcup \bigcup_{j=1}^{z} (h_j \langle p_1(B) \rangle \times R_n, E'_j)$. We have the following two cases.

- (case1) If $(T(x, r_c), T(y, r_d))$ is an arc in $\dot{\cup}_{j=1}^z (h_j \langle p_1(B) \rangle \times p_2(B), E_j)$, then we get that $T(x, r_c) = f(x, r_c)$ and $T(y, r_d) = f(y, r_d)$. Therefore $(f(x, r_c), f(y, r_d))$ is an arc in $\dot{\cup}_{j=1}^z (h_j \langle p_1(B) \rangle \times p_2(B), E_j)$. Since f is a digraph isomorphism from $\dot{\cup}_{i=1}^w (g_i \langle p_1(A) \rangle \times p_2(A), E_i)$ to $\dot{\cup}_{j=1}^z (h_j \langle p_1(B) \rangle \times p_2(B), E_j)$, we get that $((x, r_c), (y, r_d))$ is an arc in $\dot{\cup}_{i=1}^w (g_i \langle p_1(A) \rangle \times p_2(A), E_i)$ to $\dot{\cup}_{i=1}^z (g_i \langle p_1(A) \rangle \times p_2(A), E_i)$ and it is also an arc in $\dot{\cup}_{i=1} (g_i \langle p_1(A) \rangle \times p_2(A), E_i) \bigcup \dot{\cup}_{i=1}^w (g_i \langle p_1(A) \rangle \times R_n, E'_i)$.
- (case2) Suppose that $(T(x, r_c), T(y, r_d))$ is an arc in $\bigcup_{j=1}^{z} (h_j \langle p_1(B) \rangle \times R_n, E'_j)$. Then $r_c = q_k$ for some $k \in \{1, 2, \dots, m\}$. Let $T(y, r_d) = f(y, r_d) = (y', r'_d)$. Then $((p_1(f(x, r)), q'_k), (y', r'_d))$ is an arc in $\bigcup_{j=1}^{z} (h_j \langle p_1(B) \rangle \times R_n, E'_j)$ and so $((p_1(f(x, r)), r'_d), (y', r'_d))$ is an arc in $\bigcup_{j=1}^{z} (h_j \langle p_1(B) \rangle \times p_2(B), E_j)$. Hence there exists $(b, r'_d) \in B$ such that $(y', r'_d) = (p_1(f(x, r)), r'_d)(b, r'_d)$. Let f(x, r) = (x', r'). Then $f(y, r_d) = (x', r'_d)(b, r'_d) = (x'b, r'_d) = (x', r')(b, r'_d) = f(x, r)$ (b, r'_d) . This means that $(f(x, r), f(y, r_d))$ is an arc in $\bigcup_{j=1}^{z} (h_j \langle p_1(B) \rangle \times p_2(B), E_j)$. Therefore $((x, r_c), (y, r_d))$ is an arc in $\bigcup_{i=1}^{w} (g_i \langle p_1(A) \rangle \times P_2(A), E_i)$. Therefore $((x, r_c), (y, r_d))$ is an arc in $\bigcup_{i=1}^{w} (g_i \langle p_1(A) \rangle \times R_n, E'_i)$ and it is also an arc in $\bigcup_{i=1}^{w} (g_i \langle p_1(A) \rangle \times p_2(A), E_i) \bigcup \bigcup_{i=1}^{w} (g_i \langle p_1(A) \rangle \times R_n, E'_i)$.

Thus T^{-1} is a digraph homomorphism. Hence $\dot{\cup}_{i=1}^{w}(g_i\langle p_1(A)\rangle \times p_2(A), E_i) \bigcup \dot{\cup}_{i=1}^{w}(g_j\langle p_1(A)\rangle \times R_n, E'_i) \cong \dot{\cup}_{j\in I}^{z}(h_j\langle p_1(B)\rangle \times p_2(B), E_j) \bigcup \dot{\cup}_{j=1}^{z}(h_j\langle p_1(B)\rangle \times R_n, E'_j)$. By Theorem 4.2.3, we have $Cay(S, A) \cong Cay(S, B)$.

Figure 4.5: Cayley digraph $Cay(S_3 \times R_3, \{((1), r_1), (\tau, r_1), (\tau, r_2)\}).$

Figure 4.6: Cayley digraph $Cay(S_3 \times R_3, \{(\tau\sigma, r_1), ((1), r_2), (\tau\sigma, r_2)\}).$

Example 4.2.16. Let $S = S_3 \times R_3$ be a right group as in Example 4.2.14, let $A = \{((1), r_1), (\tau, r_1), (\tau, r_2)\}$ and $B = \{(\tau\sigma, r_1), ((1), r_2), (\tau\sigma, r_2)\}$ be subsets of S. By Example 4.2.14, we have $Cay(\langle A \rangle, A) \cong Cay(\langle B \rangle, B)$ and it is easily seen that $Cay(S, A) \cong Cay(S, B)$ (see Figures 4.5 and 4.6).

4.3 Isomorphism Conditions for Cayley Digraphs of Rectangular Groups

In this section, we give the necessary and sufficient conditions for the Cayley digraphs of a given rectangular groups to be isomorphic to each other. By definition of rectangular groups, we have the following lemma.

Lemma 4.3.1. Let $S = G \times L_m \times R_n$ be a rectangular group, A a nonempty subset of S, and $(g_1, l_1, r_1), (g_2, l_2, r_2) \in S$. Then $((g_1, l_1, r_1), (g_2, l_2, r_2))$ is an arc in Cay(S, A) if and only if there exists $(a, l, r_2) \in A$ such that $g_2 = g_1 a$ and $l_1 = l_2$.

proof. (\Rightarrow) Let $((g_1, l_1, r_1), (g_2, l_2, r_2))$ is an arc in Cay(S, A). Then there is $(a, l, r) \in A$ such that $(g_2, l_2, r_2) = (g_1, l_1, r_1)(a, l, r) = (g_1a, l_1, r)$. We have $g_2 = g_1a, l_2 = l_1$ and $r_2 = r_1$.

 $\begin{array}{l} (\Leftarrow) \text{ Let } (a,l,r_2) \in A, \ g_2 = g_1 a \text{ and } l_1 = l_2. \text{ Thus } (g_1,l_1,r_1)(a,l,r_2) = (g_1a,l_1,r_2) \\ (=) (g_2,l_2,r_2). \text{ Therefore } ((g_1,l_1,r_1),(g_2,l_2,r_2)) \text{ is an arc in } Cay(S,A). \end{array}$

As a direct consequence of Lemma 4.3.1, we have the following lemma.

Lemma 4.3.2. Let $S = G \times L_m \times R_n$ be a rectangular group, A a nonempty subset of S. Then Cay(S, A) is the disjoint union of m isomorphic strong subdigraphs $(G \times \{l_i\} \times R_n, E_i)$ for some i = 1, 2, ..., m. **proof.** For i = 1, 2, ..., m, let $V_i = G \times \{l_i\} \times R_n$ and $E_i = E(Cay(S, A)) \cap (V_i \times V_i)$. Hence (V_i, E_i) is a strong subdigraph of Cay(S, A). For all $i \neq j, V_i \cap V_j = \emptyset$, then we have $S = \bigcup_{i=1}^n V_i$. Since $E_i \subseteq E(Cay(S, A)), \bigcup_{i=1}^m E_i \subseteq E(Cay(S, A))$. Let $((g, l_j, r), (g', l_k, r')) \in E(Cay(S, A))$. By Lemma 4.3.1, $l_j = l_k$ and thus $((g, l_j, r), (g', l_k, r')) \in E_k$. Then $((g, l_j, r), (g', l_k, r')) \in \bigcup_{i=1}^m E_i$. Hence $E(Cay(S, A)) \subseteq \bigcup_{i=1}^m E_i$ and so $E(Cay(S, A)) = \bigcup_{i=1}^m E_i$. Therefore $Cay(S, A) = \bigcup_{i=1}^m (V_i, E_i)$.

Let $p,q \in \{1,2,...,m\}$ and $p \neq q$. We will show that $(V_p, E_p) \cong (V_q, E_q)$. Define $f: V_p \to V_q$ by $f((g, l_p, r)) = (g, l_q, r)$. Since $|V_p| = |V_q|$, f is a bijection. To prove that f and f^{-1} are digraph homomorphisms. Let $(g, l_p, r), (g', l_p, r') \in V_p$ and $((g, l_p, r), (g', p, r')) \in E_p$. Since $E_p \subseteq E(Cay(S, A)), ((g, l_p, r), (g', l_p, r'))$ is an arc in Cay(S, A). By Lemma 4.3.1, there exists $(a, l, r'') \in A$ such that g' = ga, r' = r'', and thus $(g', l_q, r') = (ga, l_q, r'') = (g, l_q, r) (a, l, r'')$. Then $((g, l_q, r), (g', l_q, r'))$ is an arc in Cay(S, A). It follows that $((g, l_q, r), (g', l_q, r')) \in E_q$. This shows that f is a digraph homomorphism. Similarly, f^{-1} is a digraph homomorphism. Hence f is a digraph isomorphism. Therefore $(V_p, E_p) \cong (V_q, E_q)$.

Lemma 4.3.3. Let $S = G \times L_m \times R_n$ be a rectangular group, A a nonempty subset of S, $G/\langle p_1(A) \rangle = \{g_1\langle p_1(A) \rangle, g_2\langle p_1(A) \rangle, \dots, g_w\langle p_1(A) \rangle\}, \text{ and } (g_k\langle p_1(A) \rangle \times \{l_i\} \times R_n, E_{ik}) \text{ a strong subdigraph of } Cay(S, A).$ Then the following conditions hold:

- (1) $(G \times \{l_i\} \times R_n, E_i) = \dot{\cup}_{k=1}^w (g_k \langle p_1(A) \rangle \times \{l_i\} \times R_n, E_{ik});$
- (2) $(g_k \langle p_1(A) \rangle \times \{l_i\} \times R_n, E_{ik}) = Cay(g_k \langle p_1(A) \rangle \times \{l_i\} \times R_n, A^i)$ where $A^i = \{(g, l_i, r) | (g, l, r) \in A \text{ for all } l \in L_m\}.$

proof. (1) Note that $G = \bigcup_{k=1}^{w} g_k \langle p_1(A) \rangle$, then $G \times \{l_i\} \times R_n = \bigcup_{k=1}^{w} (g_k \langle p_1(A) \rangle \times \{l_i\} \times R_n)$. Let $((g, l_i, r), (g', l_i, r')) \in E_i$. By Lemma 4.3.1, there exists $(a, l, r') \in A$ such that g' = ga. Hence $g \in g_p \langle p_1(A) \rangle$, $g' \in g_q \langle p_1(A) \rangle$ for some $p, q \in \{1, 2, ..., w\}$. A simple computation shows that p = q and then $(g, l_i, r), (g', l_i, r') \in (g_p \langle p_1(A) \rangle \times \{l_i\} \times R_n)$. Because $(g_p \langle p_1(A) \rangle \times \{l_i\} \times R_n, E_{ip})$ is the strong subdigraph of Cay(S, A), therefore $((g, l_i, r), (g', l_i, r')) \in \bigcup_{k=1}^{w} E_{ik}$. Hence $E_i \subseteq \bigcup_{k=1}^{w} E_{ik}$. Similarly, we can prove that $\bigcup_{k=1}^{w} E_{ik} \subseteq E_i$, and then $E_i = \bigcup_{k=1}^{w} E_{ik}$. We conclude that $(G \times \{l_i\} \times R_n, E_i) = \bigcup_{k=1}^{w} (g_k \langle p_1(A) \rangle \times \{l_i\} \times R_n, E_{ik})$.

(2) Let $D = Cay(g_k \langle p_1(A) \rangle \times \{l_i\} \times R_n, A^i)$, we will prove that $E_{ik} = E(D)$. Let $((g, l_i, r), (g', l_i, r')) \in E_{ik}$. By Lemma 4.3.1, there exists $(a, l, r') \in A$ such that g' = ga. By Lemma 4.3.1 again, we get that $((g, l_i, r), (g', l_i, r')) \in E(D)$. This shows that $E_{ik} \subseteq E(D)$. Let $((g, l_i, r), (g', l_i, r')) \in E(D)$. By Lemma 4.3.1, there exists $(a, l_i, r') \in A^i$ such that g' = ga. We get that $(a, j, r') \in A$ for some $j \in L_m$. Then by Lemma 4.3.1 again, $((g, l_i, r), (g', l_i, r')) \in E_{ik}$. This shows that $E(D) \subseteq E_{ik}$. Therefore $E_{ik} = E(D)$. We conclude that $(g_k \langle p_1(A) \rangle \times \{l_i\} \times R_n, E_{ik}) = Cay(g_k \langle p_1(A) \rangle \times \{l_i\} \times R_n, A^i)$.

Theorem 4.3.4. Let $S = G \times L_m \times R_n$ be a rectangular group, A, B nonempty subsets of S. Let $S' = G \times R_n$. Then $Cay(S, A) \cong Cay(S, B)$ if and only if $Cay(S', A') \cong Cay(S', B')$, where $A' = \{(g, r) \mid (g, l, r) \in A \text{ for some } l \in L_m\}$ and $B' = \{(g, r) \mid (g, l, r) \in B \text{ for some } l \in L_m\}$.

proof. Let $G/\langle p_1(A) \rangle = \{g_1\langle p_1(A) \rangle, g_2\langle p_1(A) \rangle, \dots, g_w\langle p_1(A) \rangle\}, \quad G/\langle p_1(B) \rangle = \{h_1\langle p_1(B) \rangle, h_2\langle p_1(B) \rangle, \dots, h_z\langle p_1(B) \rangle\}.$ We let $(G \times \{l_i\} \times R_n, E_i^A), A_i^k = (g_k\langle p_1(A) \rangle \times \{l_i\} \times R_n, E_{ik})$ be a strong subdigraph of Cay(S, A), and let $(G \times \{l_j\} \times R_n, E_j^B), B_j^t = (h_t\langle p_1(B) \rangle \times \{l_j\} \times R_n, E_{jt})$ be strong subdigraph of Cay(S, B). By Lemma 4.3.2 and Lemma 4.3.3(1), we have $Cay(S, A) \cong Cay(S, B)$

$$\Leftrightarrow Cay(G \times L_m \times R_n, A) \cong Cay(G \times L_m \times R_n, B)$$
$$\Leftrightarrow \dot{\cup}_{i=1}^m (G \times \{l_i\} \times R_n, E_i^A) \cong \dot{\cup}_{j=1}^m (G \times \{l_j\} \times R_n, E_j^B)$$
$$\Leftrightarrow \dot{\cup}_{i=1}^m \dot{\cup}_{k=1}^w A_i^k \cong \dot{\cup}_{j=1}^m \dot{\cup}_{t=1}^z B_j^t.$$

Since A_i^k and B_j^t are connected subdigraphs, we get that w = z. Then for each i, k, there exist j, t such that $A_i^k \cong B_j^t$. Let $D_k^A = (g_k \langle p_1(A) \rangle \times p_2(A'), E_k)$ and $D_t^B = (h_t \langle p_1(B) \rangle \times p_2(B'), E_t)$ be strong subdigraphs of $Cay(g_k \langle p_1(A) \rangle \times R_n, A')$ and $Cay(h_t \langle p_1(B) \rangle \times R_n, B')$, respectively. Let $A^i = \{(g, l_i, r) | (g, l, r) \in A\}, B^j = \{(h, l_j, r) | (h, l, r) \in B\}$. By Lemma 4.3.3(2) and Theorem 4.2.3, we have

 $Cay(g_k\langle p_1(A)\rangle \times \{l_i\} \times R_n, A^i) \cong Cay(h_t\langle p_1(B)\rangle \times \{l_j\} \times R_n, B^j)$ $\Leftrightarrow Cay(g_k\langle p_1(A)\rangle \times R_n, A') \cong Cay(h_t\langle p_1(B)\rangle \times R_n, B')$ $\Leftrightarrow \dot{\cup}_{k=1}^w D_k^A \cup (g_k\langle p_1(A)\rangle \times R_n, E_{A'}) \cong \dot{\cup}_{t=1}^z D_t^B \cup (h_t\langle p_1(B)\rangle \times R_n, E_{B'}).$

By Lemma 4.2.8 and Theorem 4.2.5, we have $\dot{\cup}_{k=1}^{w} D_{k}^{A} \cong \dot{\cup}_{t=1}^{z} D_{t}^{B} \Leftrightarrow D_{k}^{A} \cong D_{t}^{B} \Leftrightarrow Cay(\langle A' \rangle, A') \cong Cay(\langle B' \rangle, B') \Leftrightarrow Cay(S', A') \cong Cay(S', B').$

Example 4.3.5. Let $S = S_3 \times L_2 \times R_3$ be a rectangular group, where $S_3 = \{(1), \sigma, \sigma^2, \tau, \tau, \tau\sigma^2, \tau\sigma\}$ is the symmetric group as in Example 4.2.16, and let $A = \{((1), l_1, r_1), (\tau, l_1, r_1), (\tau, l_2, r_2)\}, B = \{(\tau\sigma, l_2, r_1), ((1), l_2, r_2), (\tau\sigma, l_2, r_2)\}$ be subsets of S.

We have $A' = \{((1), r_1), (\tau, r_1), (\tau, r_2)\}$ and $B' = \{(\tau \sigma, r_1), ((1), r_2), (\tau \sigma, r_2)\}$. By Example 4.2.16, $Cay(S', A') \cong Cay(S', B')$. It is easily seen that $Cay(S, A) \cong Cay(S, B)$. (See Figures 4.7 and 4.8).

Figure 4.7: Cayley digraph $Cay(S_3 \times L_2 \times R_3, \{((1), l_1, r_1), (\tau, l_1, r_1), (\tau, l_2, r_2)\}).$

Figure 4.8: Cayley digraph $Cay(S_3 \times L_2 \times R_3, \{(\tau\sigma, l_2, r_1), ((1), l_2, r_2), (\tau\sigma, l_2, r_2)\}).$