CHAPTER 5

Cayley Digraphs of Brandt Semigroups Relative to Green’s

Equivalence Classes

In this chapter, we describe Cayley digraphs of Brandt semigroups relative to
Green’s equivalence classes £, R and H. Moreover, we shall give isomorphism conditions
for those Cayley digraphs. Note that, digraphs considered in this chapter are digraphs

without multiple arcs and loops.

5.1 Cayley Digraphs of Brandt Semigroups Relative to L-classes

In this section, we describe the Cayley digraph of a given Brandt semigroup S

relative to the L-class S_;. By Lemma 2.4.6(1), we have the following lemma.

Lemma 5.1.1. Let S = B(G,I) be a Brandt semigroup and j € I. There is an arc from

any nonzero vertex in Cay(S,S_j) to the vertex 0.

Proof. Let v = (I, g,k) be any nonzero vertex in S. There is u = (q,h,j) € S_;
such that ¢ # k, therefore vu = 0. This means that there is an arc from any nonzero

vertex to the vertex 0. O

Lemma 5.1.2. Let S = B(G,I) be a Brandt semigroup, j € I, and u, v nonzero vertices
in Cay(S,S_j;). Then (u,v) is an arc in Cay(S,S_j;) if and only if u € Si_ and v € Sk;
forallk e I.

Proof. (=) Letu,v be nonzero vertices in Cay(S,S_;) and (u,v) € E(Cay(S,S_;)).
For each k € I, we take u = (k,g,l) € Sk_ for some g € G,l € I. Since v # 0, there
is a = (I,h,j) € S_; for some h € G such that v = ua = (k,g,0)(l,h,j) = (k,gh,j). It
follows that v € Sj;.

(<) For each k € I, let v = (k,g,1) € Si_ and v = (k,h,j) € Si; for some
g,h € G,l € I. There is (I,g'h,j) € S_j such that u(l,g 'h,j) = (k,g,0)(l,g" h,j) =
(k,h,j) =wv. Then (u,v) is an arc in Cay(S,S_j;). O

From the above lemma we have the following corollary.
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Corollary 5.1.3. Let S = B(G,I) be a Brandt semigroup, j,k € I, and v € Si_ be a
vertez in Cay(S,S_;). Then 7(1)) =0 if and only if v & Si;.

proof. (=) Let 7(’0) = 0. Assume that v € Si; and let u be any vertex in Sj,_. By
Lemma 5.1.2, we have (u,v) is an arc in Cay(S,S_;). There is a contradiction because
7(1}) = 0. Hence v & Sy;.

(<) Let v & Syj, then v = (k,g,1) for some [ # j. Assume that 7(1}) # 0, there
exists u = (q¢,t,s) such that (u,v) is an arc in Cay(S,S_;). It follows that there exists
a = (s,h,j) € S_j such that v = va = (q,t,s)(s, h,j) = (q,th, j). Therefore [ = j, there
is a contradiction because [ # j. Hence 7(1}) = i O

Let S = B(G,I) be a Brandt semigroup and S_; an L-class of S for some j € I.
For any k € I, we denote by (Sk;, Ex;) the strong subdigraph of Cay(S,S_;) induced by
Shj-

Corollary 5.1.4. Let S = B(G,I) be a Brandt semigroup and j, k € I. Then the strong
subdigraph (Skj, Ex;) of Cay(S,S_;) is a complete digraph (K\q)).

proof. Let u,v be a vertices in (Si;, E;). By Lemma 5.1.2, there is an arc between u
and v. Then the strong subdigraph (Sk;, Ey;) is a complete digraph. Because |Sy;| = |G|,
the strong subdigraph (S, Ey;) is a complete digraph K|g. O

For any k € I, we denote by I'y the strong subdigraph (Sj_, Ei) of Cay(S,S_;)
induced by S;_. The following theorem shows that I'j is isomorphic to a Cayley digraph
of right group T'= G X R, where R, is a right zero semigroup such that |n| = |I|.

Theorem 5.1.5. Let S = B(G,I) be a Brandt semigroup and k € I. Then I'y =
Cay(T, M) for some M CT.

proof. Let T = G x R, be a right group where |n| = [I|. Assume that I =
{#1,92,...,in}, Rp = {ri,r2,...,mn}, and let M = G x {r;} C T for some r; € R,,. Since
I';, is the strong subdigraph of Cay(S,S_;) for some j € I, for convenience, we suppose

that j =1, for some z € {1,2,...,n}. For each k € I, we define a map f: V(I'y) = T by

(g,m1) ifig =iz;
f(kygyiq) = (g,r2)  if ig =3
(g,7q) otherwise.
Obviously, f is a bijection. We will show that f and f~! are digraph homomorphisms.

Let u = (k,g1,1s),v = (k, g2,4;) be any vertices in I'y. Suppose that (u,v) is an arc in I'.
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Therefore 7(1}) # 0, it follows that v € Sy;, by Corollary 5.1.3. Thus f(v) = f(k, g2,9) =
f(k,g2,1.) = (g2,7). We consider following three cases.

(casel) If ig = i, then

(92, 71)
= (9191 '92,m1)
(91,70) (91 g2, 71)
= f(k,g1.12) (97 "g2. 1)
= fw)(g; g2, m1)-
Since (g7 'g2. 1) € M, (f(u), f(v)) is an arc in Cay(T, M).

(case2) If ig = i;, then

fw) = (g2,m)
= (9191 '92,m1)
(91.72) (91 92,77)
= flkg1,0) (g7 g2,m0)
= fw)(or 'g2,m0).
Similarly to the casel, (f(u), f(v)) is an arc in Cay(T, M).
(cased) If i, # is # i, similarly to the above two cases, we conclude that (f(u), f(v))
is an arc in Cay(T, M).

By above three cases we have f is a digraph homomorphism.

Suppose that (f(u), f(v)) is an arc in Cay(T, M), then there is (g,7;) € M such
that f(v) = f(u)(g,r). We get that ps(f(v)) = ry, it follows that pa(v) = i. and so
v = (k,g2,i,) € Spi.. By Lemma 5.1.2, there is an arc from u to v. Then f~! is a digraph

homomorphism. Therefore I'y = Cay(T, M). O
Lemma 5.1.6. (Lemma 2.3 [7]) Let S = B(G,I) be a Brandt semigroup, and A a
nonempty subset of S. For any i,k € I, T'; = T, and there is no arc of Cay(S,A)

between T'; and T'y,.

By Lemma 5.1.6, I'; and I';, are isomorphic and there is no arc between I'; and
Ty for any ¢« # k € I. Let I' = U;e/T'; be the disjoint union of |I| isomorphic strong
subdigraphs of Cay(S,S_;). By Lemma 5.1.1 and Lemma 5.1.2, the following proposition

is immediate.
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Proposition 5.1.7. Let S = B(G,I) be a Brandt semigroup and j € I. Then
Cay(S,S_;) =T U (S, Ey) where Ey = {(u,0)|Vu € S\ {0}}.

proof. Clearly, V(Cay(S,S_;)) = V(I'U(S,Ep)) we will show that E(Cay(S,
S_j)) = E(IU(S, Ep)). Let (u,v) be an arc in Cay(S,S_;). Consider the following two

cases.

(casel) If v =0, then (u,v) € Ey. Therefore (u,v) is an arc in I U (S, Ep).

(case2) If v # 0, in view of Lemma 5.1.2, we get that v € Sj_ and v € Sy; for some
k € I. Therefore (u,v) is an arc in I’y and this implies that it is an arc in

T U (S, E).

By above two cases we conclude that E(Cay(S,S_;)) C E(I'U (S, Ep)).

Suppose that (u,v) is an arc in I' U (S, Ep). We consider the following two cases.

(casel) If (u,v) € E(I"), then (u,v) € E(I')) for some k € I. Since I'y is a strong
subdigraph of Cay(S,S_;), (u,v) € E(Cay(S, S_j)).

(case2) If (u,v) € Ep, we have u € S\ {0} and v = 0. By Lemma 5.1.1, we thus get
(u,v) € E(Cay(S,S_j)).

By above two cases we conclude that E(I' U (S, Ey)) € E(Cay(S,S_;)). This shows that
E(Cay(S,S5_;)) = E(I' U (S, Ey)). Hence Cay(S,S_;) =T'U (S, Ep). O

The following theorem shows that I' is isomorphic to a Cayley digraph of a rectan-
gular group Y = G x L,, X R, where L,, is a left zero semigroup and R, is a right zero

semigroup such that |m| = |n| = |I|.

Theorem 5.1.8. Let S = B(G,I) be a Brandt semigroup, S_; an L-class of S for some
j €1, and T the disjoint union of isomorphic strong subdigraphs of Cay(S,S_;). Then I'

1 a rectangular group digraph.

proof. Let Y = G x L,, x R, be a rectangular group where |m| = |n| = |I|.
Assume that I = {iy,i2,...,in}, Ly = {li,l2,...,l,} and R, = {ri,72,...,m,}. Let
C =GxLx{r} CY for some r, € R. For convenience, we suppose that j = iy for some

ke{l,2,...,n}. We define amap f: V(') =Y by

(9, lpse)  if ig = ig;
Flip griq) = (g)lp,rx)  ifdg =i

(g,1p,rq) otherwise.
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Obviously, f is a bijection. We will show that f and f~! are digraph homomorphisms.
Let u = (i, g1,1s),v = (i, g2,1t) be any vertices in I" and (u, v) is an arc in I". By Lemma
2.4.5 and Corollary 5.1.3, w = z and v € S;;,. Thus f(v) = f(iz, g2,%) = f(iz,92,%) =

(92,1:,7¢). We only need to consider three cases.

(casel) If ig = i, then

g2, l27 Tt)

(
= (9197 'g2:L2,71)
(91,2570 (g7 925 Las 7t)
(91, L, 7) (97 925 L2, 72)
= f(rw, g1,ix) (g7 92,12, 7e)

= f(u)(gy g2, L 70).

Since (g7 ‘g2, 12,71) € C, (f(u), f(v)) is an arc in Cay(Y,C).

(case2) If ig = 44, then

f(w) = (92,L:,m¢)

(9191 'g2, L=, 70)

(91,02, m1) (97 92, Lz 7t)
(91, Lus &) (97 ' 92, Lz, 7t)
= [(rws91,8t) (g1 " g2, L= 7t)

= f(u)(gy 92, Lz m0).

Similarly to the casel, (f(u), f(v)) is an arc in Cay(Y,C).

(cased) If iy # is # iy, similarly to the above two cases, we conclude that (f(u), f(v))

is an arc in Cay(Y,C).

This means that f is a digraph homomorphism. Similarly, f~! is a digraph homo-
morphism. Therefore I' = Cay(Y, C). O

Example 5.1.9. Let S = B(Zs,I) be a Brandt semigroup, where Zg = {0,1,2}, I =
{1,2}.

By the definition of S_;, we have S_; = {(1,0,1),(1,1,1),(1,2,1),(2,0,1),(2,1,1),
(2,2,1)} is an L-class of S. Then the strong subdigraph I' = I'1Ul'y of Cay(S,S_1) are
shown in Figure 5.1 and Cay(S,S_1) =T U (S, Ey) see Figure 5.2.
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Figure 5.1: The strong subdigraph I' of Cay(B(Zs,{1,2}), B(Z3,{1,2}) 1).

Iy Iy

Figure 5.2: Cayley digraph Cay(B(Zs,{1,2}), B(Zs,{1,2}) 1).
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Theorem 5.1.10. Let S = B(G, I) be a Brandt semigroup. Then Cay(S,S_;) = Cay(S,S_;)
foralli,jel.

proof. We define a map f:S — S by f(0) =0 and

(k,g,5) if 1=
(k,g,1) otherwise.

Obviously, f is a bijection. We will show that f and f~! are digraph homomorphisms.
Let u,v € S and (u,v) be an arc in Cay(S,S_;).

If v =0, then f(v) = 0 and there is an arc from f(u) to f(v) by Lemma 5.1.1.

If v # 0, then we get that u,v € S for some k € I. Since 7(1}) #£0, v € Sy by
Corollary 5.1.3. Therefore f(v) € Sy, and f(u) € Sp_. By Lemma 5.1.2, (f(u), f(v)) is
an arc in Cay(S,S_;).

This means that f is a digraph homomorphism. Similarly, f~! is a digraph homo-
morphism. Therefore Cay(S,S_;) = Cay(S,S_;). O

Example 5.1.11. Let S = B(Zs, I) be a Brandt semigroup as in Example 5.1.9. By the
definition of S 5, we have S_5 = {(1,0,2),(1,1,2),(1,2,2),(2,0,2),(2,1,2), (2,2,2)} is
an L-class of S. Consider Cayley digraph Cay(S,S 1) in Figure 5.2 and Cay(S,S_2) in
Figure 5.3 It is easily seen that Cay(S,S 1) = Cay(S,S _2).

Figure 5.3: Cayley digraph Cay(B(Z3,{1,2}), B(Z3,{1,2}) 2).

o8



5.2 Cayley Digraphs of Brandt Semigroups Relative to R-classes

In this section, we describe Cayley digraphs of a given Brandt semigroup S relative

to the R-class S; .

Lemma 5.2.1. Let S = B(G, ) be a Brandt semigroup, i € I, and u,v € S. Then (u,v)
is an arc in Cay(S,S;_) if and only if, for each k € I, one of the following conditions
hold:

(1) 0% u & Ski and v =0.
(2) u € Sy and v € Si_.

proof. (=) Let u,v € S and (u,v) be an arc in Cay(S,S; ). If 0 # u & Sy, then
u € Sy for some [ # i. Let u = (k,g,l) for some g € G. Since, for all (i,h,j) € S;_,
u(i, h,j) = (k,g,0)(i,h,5) =0, v=0.

If u € Sk, it is easily seen that v # 0. Let u = (k, g1,1) and v = (m, g2, n) for some
91,92 € G and m,n € I. By Lemma 2.4.5, k = m. Hence v = (k,ga,n) € Si_.

(<) If (1) holds, then u = (k,g,1) for some [ # i. By Lemma 2.4.6(2), ((k,g,1),0)
is an arc in Cay(S,S; ). Then (u,v) is an arc in Cay(S,S; ). If (2) holds, let u =
(k,g1,1) € Sk; and v = (k,g2,7) € Sy_ for some g1,g91 € G and j € I, then there exists
a=(i,g9y 'g2,7) € Si_ such that ua = (k, g1,7)(i, gy *92,5) = (k,g2,7) = v. Hence (u,v) is
an arc in Cay(S,S; ). O

From the above lemma the following corollaries are immediate.

Corollary 5.2.2. Let S = B(G,I) be a Brandt semigroup and i € I. Then 7(1}) £0 for
all the vertices v in Cay(S, S;_).

Corollary 5.2.3. Let S = B(G,I) be a Brandt semigroup and i,k € I. Then the strong
subdigraph (Ski, Eyi) of Cay(S,Si_) is a complete digraph (K\q).

proof. Let u,v be any vertices in Si;. By Lemma 5.2.1(2), we get that the both
(u,v) and (v,u) are arcs in Cay(S, S;_). It follows that (u,v), (v,u) € Ey; for any u,v €
Ski- Since |Ski| = |G|, (Ski, E:) is a complete digraph (K\g). O
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Theorem 5.2.4. Let S = B(G,I) be a Brandt semigroup. Then Cay(S,S; ) = Cay(S,
S;_) foralli,jel.

proof. Let i,j5 € I. We define a map f: S — S by f(0) =0 and

(k,g,7) if 1=4;
fkog 1) =< (k,g,0) if 1=7j;
(k,g,1) otherwise.

Obviously, f is a bijection. We will show that f and f~! are digraph homomorphisms.
Let u,v € S and (u,v) be an arc in Cay(S, S;_ ).

If v =0, then 0 # u & Sy; for each k € I by Lemma 5.2.1(1). It follows that f(v) =0
and 0 # f(u) & Sk; and so (f(u), f(v)) is an arc in Cay(S, S;_) by Lemma 5.2.1(1).

If v # 0, then u,v € Si_ for some k € I. By Lemma 5.2.1(2), u € Si;. Therefore
f(u) € Skj and f(v) € Sp_. Hence (f(u),f(v)) is an arc in Cay(S,S;_) by Lemma
5.2.1(2).

This means that f is a digraph homomorphism. Similarly, f~! is a digraph homo-
morphism. Therefore Cay(S,S;_) = Cay(S,S;_). O

Example 5.2.5. Let S = B(Zs, I) be a Brandt semigroup as in Example 5.1.9. By the def-
inition of S;_ and Sy, we have S; = {(1,0,1),(1,1,1),(1,2,1),(1,0,2),(1,1,2),(1,2,2)}
and So_ = {(2,0,1),(2,1,1),(2,2,1),(2,0,2),(2,1,2),(2,2,2)} are R-classes of S. It is
easily seen that Cay(S, 51 ) = Cay(S, S2_) (see Figures 5.4 and 5.5).

202

Figure 5.4: Cayley digraph Cay(B(Zs,{1,2}), B(Z3,{1,2})1_).
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222

Figure 5.5: Cayley digraph Cay(B(Zs,{1,2}), B(Z3,{1,2})2_).

For each i € I, we let D; = S_; US;_, where S_; and S;_ are an L-class and an

R-class of S, respectively. The next result shows that a strong subdigraph (Sk_, Ex) of
Cay(S, D;) is undirected.

Theorem 5.2.6. Let S = B(G,I) be a Brandt semigroup and i € I. Then the strong
subdigraph (Sk_, Ex) of Cay(S, D;) is undirected for all k € I.

proof. For each k € I, let u,v € Si,_ and let (u,v) be an arc in (Sg_, Ey). Hence it

is an arc in Cay(S, D;). By Lemma 5.1.2 and Lemma 5.2.1 we only need to consider two

cases.
(casel) If u € Sk_ and v € Sk, then we assume that u = (k,g,l) and v = (k, h,i)
for some g,h € G,l € I. There is a = (i,h"'g,1) € S;_ C D; such that
va = (k,h,i)(i,h"1g,1) = (k,g,1) = u. Then (v,u) is an arc in Cay(S, D;).

Since u,v € Sk_, (v,u) is an arc in the (Sg_, Ex).
(case2) If u € Si; and v € S, then we assume that u = (k,g,i) and v = (k,h,l)
for some g,h € G,l € I. There is a = (I,h"'g,i) € S_; C D; such that
va = (k,h,1)(I,h~tg,i) = (k,g,i) = u. Then (v,u) is an arc in Cay(S, D;).

Since u,v € Si_, (v,u) is an arc in the (S;_, Ek).
We conclude that the strong subdigraph (Sy_, Ex) of Cay(S, D;) is undirected. O

From Theorem 5.2.6, we have the strong subdigraph (S\{0}, E) of Cay(S, D;) is also

undirected, because (Si_, Ey) and (S;_, Ej) are disjoint strong subdigraphs of Cay(S, D;).
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Theorem 5.2.7. Let S = B(G,I) be a Brandt semigroup and i € I. Then the strong
subdigraph (Sk_, Ex) of Cay(S, D;) is a complete n-partite digraph where n = |G|+ 1 for
all ke I.

proof. Assume that G = {g1,92,...,9m}. Let Vi = {(k,q1,7)}, Vo = {(k, 92,7)},
vy Vin ={(k, gm, )} and Vi1 = {(k, g,7)| for all g € G,j € I such that j # i}. We will
show that there is no arc between vertices in Vi, 1.

Let (k,9,7),(k.g,j') € Vg1 and assume that ((k,g,7),(k,¢’,j')) is an arc in
(Sk_,Er). Then ((k,g,7),(k,¢',5")) is an arc in Cay(S,D;). There is (I,h,q) € D;
such that (k,g,7)(l,h,q) = (k,g',7"), so we have | = j and ¢ = j'. Since (I,h,q) € D;,
[ =i or g =1. There is a contradiction because | = j # ¢ and ¢ = j' # i. This means that
there is no arc between vertices in Vi, 1.

By Corollary 5.2.3, there is an arc between V. and V; for all ¢ # d in {1,2,... ,m}.
The following, we prove that there is an arc from all of the vertices in V,,,+1 to a vertex
inV; fort=1,2,...,m.

Let (k,g9,5) € Vips1 and (k,g1,i) € Vi. There is (j, g 'g:,i) € D; such that
(k,9,79)5,9  g:,i) = (k,gt,4). Then we have that ((k,g,j),(k,gt,i)) is an arc in
Cay(S, D;). It follows that there is an arc from any vertices in V,,4; to the vertex in V;.
Similarly, we can show that there is an arc from the vertex in V; to all of vertices in V1.
We conclude that the strong subdigraph (Sg_, Ex) of Cay(S, D;) is a complete n-partite
digraph where n = m + 1. (]

(S1_,Er) (Sa_, E»)

Figure 5.6: Cayley digraph Cay(B(Zs,{1,2}), B(Zs,{1,2})_1 U B(Z3,{1,2})1_).
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Example 5.2.8. Let S = B(Z3,I) be a Brandt semigroup as in Example 5.1.9. Then
Dy = S, uUS_ = {(1,0,1),(1,1,1),(1,2,1),(2,0,1),(2,1,1), (2,2,1)(1,0,2), (1,1,2),
(1,2,2)}. The Cayley digraph Cay(S, D;) is shown in Figure 5.6.

The set of vertices of the strong subdigraph (S;_, Fy) is partitioned into four dis-
joint subsets as follows: V4 = {(1,0,1)}, Vo = {(1,1,1)}, V3 = {(1,2,1)} and V; =
{(1,0,2),(1,1,2),(1,2,2)}. It is easily seen that there is no arc between two vertices in
one subset. Therefore the strong subdigraph (S;_, E7) is a completely 4-partite digraph.
Similarly, the strong subdigraph (S2_, E») is also a completely 4-partite digraph.

5.3 Cayley Digraphs of Brandt Semigroups Relative to #-classes

In this section, we introduce the conditions for Cayley digraphs of a given Brandt

semigroup S relative to the H-class to be isomorphic to each other.

Lemma 5.3.1. Let S = B(G,I) be a Brandt semigroup, i,j € I, and u,v € S. Then
(u,v) is an arc in Cay(S, Sij) if and only if, for each k € I, one of the following conditions
hold:

(1) 0# u & Ski and v =0.
(2) u € Sk and v € Si;.

proof. (=) Let u,v € S and (u,v) be an arc in Cay(S, Si;). If 0 # u & Sy;, then
u € Sy for some [ # i. Let u = (k,g,l) for some g € G. Since, for all (i,h,j) € Sij,
u(i, h,j) = (k,g,0)(i,h,7) =0, v =0.

If u € Sk, it is easily seen that v # 0. Let u = (k, g1,7) and v = (m, g2, n) for some
91,92 € G and m,n € I. By Lemma 2.4.5, k = m and (i, g; ‘g2, n) € S;;. Hence n = j.
Therefore v = (k, g2, j) € Sk;-

(<) If (1) holds, then u = (k, g, 1) for some [ # i. By Lemma 2.4.6(2), ((k, g,(),0) is
an arc in Cay(S, Si;). Then (u,v) is an arc in Cay(S, Si;). If (2) holds, let u = (k, g1,17) €
Ski and v = (k, g2, ) € Sk; for some g1, g2 € G, then there exists a = (i,gflgg,j) € Sij
such that ua = (k, g1,) (i, 97 *92,5) = (k, g2,§) = v. Hence (u,v) is an arc in Cay(S, S;;).

(]

By the above lemma, the following corollary is immediate.

Corollary 5.3.2. Let S = B(G,I) be a Brandt semigroup, i,j,k € I, and v € S_ be a
vertex in Cay(S, Sij). Then 7(1}) =0 if and only if v & Sk;.
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From (2) of Lemma 5.3.1, the next result shows that when the strong subdigraph
(Skj, Exj) of Cay(S, Sij) is a complete digraph.

Lemma 5.3.3. Let S = B(G,I) be a Brandt semigroup and i,j,k € I. Then the strong
subdigraph (Skj, Ex;) of Cay(S, Sij) is a complete digraph (K|g)) if and only if i = j.

proof. (=) Let u and v be any vertices in the strong subdigraph (Sk;, Ej;). Since
(Skj, Exj) is a complete digraph, there is an arc from u to v in Cay(S, Sij). By (2) of
Lemma 5.3.1, u € Sy;. Therefore ¢ = j.

(<) Let i = j and u, v be any vertices in the strong subdigraph (Sy;, Ey;). It follows
that u,v € Sk;. There is an arc between w and v by (2) of Lemma 5.3.1. This means
that (Skj, Fx;) is a complete digraph. Because |Si;| = |G|, then the strong subdigraph
(Skj, Erj) is a complete digraph K)g. O

5.4 Isomorphism Conditions for Cayley Digraphs of Brandt Semigroups

Relative to H-classes

In this section, we introduce the conditions for Cayley digraphs of a given Brandt

semigroup S relative to H-class to be isomorphic to each other.

Theorem 5.4.1. Let S = B(G,I) be a Brandt semigroup and i,j,l,m € I. Then
Cay(S, Sij) = Cay(S, Sim) if and only if one of the following conditions hold:

(1) If i = j then I =m.
(2) If i # j then |l # m.

proof. (=) Let Cay(S, Si;) = Cay(S, Sim). (1) Let i« = j. By Lemma 5.3.3,
a strong subdigraph (Sk;, Exj) of Cay(S,S;;) is a complete digraph K\g for all k € I.
Hence there is a complete strong subdigraph Kg| of Cay(S, Spn). Assume that [ # m. By
Lemma 5.3.3, a strong subdigraph (Skm, Fxm) of Cay(S, Siy) is not a complete digraph.
Then there exists a vertex u of the complete strong subdigraph K¢ of Cay(S, Si,;,) and
u & Skm. Also since u is a vertex of the complete digraph K|g, j(u) # 0. By Corollary
5.3.2, u € Si,,. That is a contradiction and thus [ = m.

(2) Similarly, if ¢ # j then [ # m.
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(<) If (2) holds, we define a map f:S — S by f(0) =0 and

(k,g,1) if r=i;
(k,g,m) if r=j;
fkyg,r) =9 (k.g,i) it r=1
(k,g,5) if r=m;
(

k,g,7)  otherwise.

Since i # j and [ # m, f is a bijection. We will show that f and f~! are digraph
homomorphisms. Let u,v € S and (u,v) is an arc in Cay(S, S;j). By Lemma 5.3.1, we
need only consider two cases.

If v =0, then 0 # u & Sy; for each k € I, it follows that f(v) = 0and 0 # f(u) & Sk;.
By Lemma 5.3.1(1), (f(u), f(v)) is an arc in Cay(S, Sim).

If v # 0, then u € Si; and v € Sy; for each k € I. Hence f(u) € Sy and f(v) € Sg,.
By Lemma 5.3.1(2), (f(u), f(v)) is an arc in Cay(S, Sim).

This means that f is a digraph homomorphism. Similarly, f~! is a digraph homo-
morphism. Therefore Cay(S, Si;) = Cay(S, Sim)-

If (1) holds, then S;; = S;; and Sy, = Sy. We define a map h : S — S by h(0) =

and

(k,g,0) if r=1;
h(k,g,r) =< (k,g,i) if r=1;
(k,g,r) otherwise.

Obviously, A is a bijection. With a similarly argument of the proof of (2) holds, we can
show that h and h~! are digraph homomorphisms. Hence Cay(S, Sij) = Cay(S, Si). O

Example 5.4.2. Let S = B(Zs,I) be a Brandt semigroup as in Example 5.1.9. By
the definition of Sy, 591,511 and Sg2, we have S1o = {(1,0,2),(1,1,2),(1,2,2)}, So1 =
(2,0,1),(2,1,1),(2,2,1)}, Su1 = {(1,0,1), (1,1, 1), (1,2, 1)} and Ssp = {(2,0,2), (2,1,2),
(2,2,2)} are H-classes of S.

We see that Cay(S, S11) = Cay(S, Sa2) # Cay(S, S12) = Cay(S, S21) (see in Figures
5.7 - 5.10).
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Figure 5.8: Cayley digraph Cay(B(Zs,{1,2}), B(Z3,{1,2})22).
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Figure 5.9: Cayley digraph Cay(B(Zs,{1,2}), B(Z3,{1,2})12).
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122 112 222 212

Figure 5.10: Cayley digraph Cay(B(Zs,{1,2}), B(Z3,{1,2})21)-

Next, we shall give the necessary conditions for Cayley digraphs of a Brandt semi-

group are isomorphic. We begin with the following lemma.

Lemma 5.4.3. Let S = B(G,I) be a Brandt semigroup, (i,g,j) € S, and v a nonzero
vertex of Cay(S,{(i,g,7)}). Then 7(1}) # 0 if and only if v € Sy; for all k € I.

proof. (=) For all k € I, let v = (k,h,0) € S and d (v) # 0 . By Lemma 2.4.5,
I =j. Hence v = (k,h,j) € Sk;.

(<) Assume that v = (k, h,j) € Sk, for all k € I, then there is (k, hg~1,i) € S such
that (k,hg=1,4)(i,g,7) = (k,h,j) = v. This means that 7(1}) £ 0. O

The next lemma shows the number of nonzero vertices with nonzero in-degree in

Cay(S,A).

Lemma 5.4.4. Let S = B(G,I) be a Brandt semigroup, A a nonempty subset of S, and
La={jl(i,g9,j) € A}. Then Uyer jer,Skj is a set of all nonzero vertices of Cay(S, A)

with nonzero indegree and | Uger jer, Ski| = []|Lal|G]|.

proof. Let v € Uger jer,Skj- Hence v € Sy, for some 7 € I,m € L, and also
there is (I,h,m) € A. By Lemma 5.4.3, 7(1}) # 0 this means that Upes jer,Skj is a set
of vertices of Cay(S, A) with nonzero indegree. Let 0 # u € S and j(u) # 0, by Lemma
5.4.3, u € Sy; for some k € I,j € L, it follows that u € Ugey jer , Skj. Moreover, we have

! Ukel,jeLa Skj‘ = |I||La||G|, because |Si;| = |G|. O
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Lemma 5.4.5. Let S = B(G,I) be a Brandt semigroup, (i,g,j) € S, and u a vertezx of

Cay(S,{(i,g,7)}). Then there is an arc from u to a nonzero vertez if and only if u € Si;
forallk e 1.

proof. (=) Let u = (k,h,m) for all k € I, and assume that there is an arc from u
to a nonzero vertex. By Lemma 2.4.5, ¢ = m. Hence u = (k, h,i) € Sk;.

(<) Let u € Sy; for all k € I. Assume that v = (k, h, i), there is 0 # (k, hg,j) € S
such that u(i,g,7) = (k, h,i)(i,9,7) = (k, hg, j). Hence there is an arc from u to a nonzero

vertex. |

The next lemma shows the number of vertices which adjacent to a nonzero vertices

in Cay(S, A).

Lemma 5.4.6. Let S = B(G,I) be a Brandt semigroup, A a nonempty subset of S, and
Ra = {i|(i,9,j) € A}. Then Uker,icr,Ski is a set of all vertices of Cay(S, A) with, for
all w € Ugericr,Ski, there exists a nonzero vertex v € S such that (u,v) is an arc in

Cay(S,A) and } UkericRa Skn" = |I||Ral|G].

proof. Let v € Upcricr,Ski- Hence v € Sy; for some k € 1,7 € R4 and it implies
that there is (i, h,l) € A. By Lemma 5.4.5, there is an arc from v to a nonzero vertex.
Let u,v € S,v # 0 and (u,v) be an arc in Cay(S, A). By Lemma 5.4.5, u € Sy; for some
k € I,i € Ry it follows that u € Ugericr,Ski- Moreover, we have ‘ Ukel,icRa Ski{ =
II||RA||G| because |Ski| = |G]. O
The following theorem gives the necessary conditions for Cayley digraphs of a given

Brandt semigroup .S to be isomorphic to each other.

Theorem 5.4.7. Let S = B(G,I) be a Brandt semigroup, A, B nonempty subsets of
Sz Ly = {]](Z,g,]) € A}? Lp = {j|(l,g,j) € B}7 Ry = {Z|(nga]) € A}7 and Rp =
{il(i,9,7) € B}. If Cay(S, A) = Cay(S, B), then |Ls| = |Lg| and |R4| = |RB]|.

proof. Let Cay(S,A) = Cay(S,B). We have that the numbers of nonzero ver-
tices with nonzero indegree of Cay(S, A) and Cay(S, B) are equal. By Lemma 5.4.4,
II||LA||G| = |I||Lg||G|, it follows that |L4| = |Lp|. Similarly, the numbers of vertices
which have an arc from them to a nonzero vertices of both Cay(S, A) and Cay(S, B) are

equal. By Lemma 5.4.6, |I||R4||G| = |I||Rp||G], it follows that |Ra| = |Rp|. O
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Example 5.4.8. Let S = B(Zs,I) be a Brandt semigroup as in Example 5.1.9. Let
A= {(1,1,1),(1,2,2)}, B = {(2,1,2),(2,2,1)} be subsets of S. Then we have Ly =
{1,2}, Ra = {1}, Lp = {1,2} and Rp = {2}. It is easily seen that |La| = 2 = |Lp|,
|Ra| =1 =|Rp| and Cay(S, A) = Cay(S, B). (see in Figures 5.11 and 5.12).

7z
102@7

Figure 5.11: Cayley digraph Cay(B(Zs,{1,2}),{(1,1,1),(1,2,2)}).

122 112 222 212

Figure 5.12: Cayley digraph Cay(B(Zs,{1,2}),{(2,1,2),(2,2,1)}).

The converse of Theorem 5.4.7 does not hold. For example, let A’ = {(1,0,1),(1,2,2)},
B = {(1,1,1),(1,0,2)} be subsets of S. Then we have Ly = {1,2}, Ry = {1},
Lp = {1,2} and R = {1}. Therefore |La/| = 2 = |Lp/| and |Ra/| = 1 = |Rp/|,
but Cay(S, A") % Cay(S, B') (see Figures 5.13 and 5.14).
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Figure 5.13: Cayley digraph Cay(B(Zs,{1,2}),{(1,0,1),(1,2,2)}).
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Figure 5.14: Cayley digraph Cay(B(Zs,{1,2}),{(1,1,1),(1,0,2)}).
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