CONTENTS

			Page
Ackno	owled	gement	c
Abstra	act in	Thai	d
Abstra	act in	English	e
List of Tables			h
List of Figures i			i
List of Abbreviations 4			k
List of Symbols n			m
Chapter 1 Introduction 1			1
Chapter 2 Literature review 4			4
	2.1	Escherichia coli (E. coli)	4
	2.2	Pathogenesis of E. coli	5
		2.2.1 Enteric or diarrhoeal disease	5
		2.2.2 Urinary tract infection	7
	a	2.2.3 Sepsis or meningitis	8
	2.3	Antibiotic therapy and resistance	8
	2.4	β-lactamase	10
	A	2.4.1 Class A Extended-spectrum β-lactamase (ESBLs)	11
		2.4.2 Class C AmpC β-lactamase	21
Chapt	er 3 (Dbjectives	24
Chapt	er 4 N	Materials and Methods	25
	4.1	Experimental design	25
	4.2	Material and Method	26
		4.2.1 Bacterial isolates	26

	4.2.2 Minimal inhibitory concentration (MIC)	26
	4.2.3 DNA extraction	27
	4.2.4 Amplification of ESBL and AmpC β -lactamase-	28
	encoding genes	
	4.2.5 Agarose Gel Electrophoresis	30
	4.2.6 Nucleotide sequence analysis of PCR product	30
	4.2.7 Statistical analysis	31
Chapter 5 l	Results	32
5.1	Antimicrobial susceptibilities	32
5.2	Molecular characterization	33
	5.2.1 Multiplex PCR detection of ESBL and AmpC	33
	β-lactamase genes	
	5.2.2 To determine ESBL and AmpC β -lactamase genes in	42
	β-lactamase-producing E. coli strains	
5.3	Correlation between distributions of the MICs for ESBL-	57
	producing <i>E. coli</i> with the presence of ESBL genes	
5.4	Correlation between distributions of the MICs for AmpC	59
	β -lactamase-producing <i>E. coli</i> with the presence of AmpC	
	β-lactamase genes	
Chapter 6 l	Discussion	60
Chapter 7 S	Summary	64
References	ขสกธมหาวิทยาลยเชียงไหม	65
Appendice	opyright [©] by Chiang Mai University	84
App	endix A ministres enved	85
Appo	endix B	87
App	endix C	111
Curriculum	n Vitae	119

LIST OF TABLES

Table 2.1	Classification of β -lactamase: The Ambler scheme and the	13
	Bush-Medeiros Jacoby system	
Table 4.1	Antibiotic dilution chart for agar dilution method.	27
Table 4.2	Specific primer for ESBL and AmpC beta-lactamase gene	29
Table 5.1	Distribution of ESBL and AmpC β-lactamase genes among 182clinical isolates	46
Table 5.2	MIC and molecular characterization of bla genes of clinical	48
	isolates	
ີ A	<mark>ขสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> opyright [©] by Chiang Mai University II rights reserved	

LIST OF FIGURES

Page

Figure 2.1	Gram stain of E. coli. E.coli is a Gram-negative bacilli by a	5
	standardized method of Gram stain interpretation	
Figure 2.2	Pathogenic scheme of diarrhoeagenic E. coli	7
Figure 2.3	Amino acid substitutions in TEM ESBL derivatives	15
Figure 2.4	Amino acid substitutions in SHV ESBL derivatives	17
Figure 2.5	Dendrogram of CTX-M families	20
Figure 5.1	Minimal inhibitory concentration (MIC) distribution of	32
	cefotaxime and ceftazidime of β -lactamase producing <i>E.coli</i> .	
Figure 5.2	Amplification products of positive control strains	34
Figure 5.3	Multiple sequence alignment: comparison of nucleotide	37
	sequence of CTX-M-123(unexpected PCR products) with	
	CTX-M-123 from data base and other CTX-M	
Figure 5.4	Multiplex I: Multiplex PCR product of <i>bla</i> _{TEM} (800bp) and	38
	blashv (713bp) at various annealing temperatures	
Figure 5.5	Multiplex II: Multiplex PCR product of <i>bla</i> _{CTX-M-1subgroup}	38
ຄ	(688bp) and $bla_{\text{CTX-M-9subgroup}}$ (561 bp) at various annealing temperatures	
Figure 5.6	Multiplex III: Multiplex PCR product of <i>bla</i> _{CMY8b} (895bp),	39
A	<i>bla</i> _{CMY2} (538bp) and <i>bla</i> _{DHA} (997bp) at various annealing	
	temperatures	
Figure 5.7	Multiplex I: Multiplex PCR products of <i>bla</i> _{TEM} (800bp) and	40
	blashv (713bp) at different concentration of Multi TS-T and	
	Multi TS-S primers-pair	

Figure 5.8	Multiplex II: Multiplex PCR products of <i>bla</i> _{CTX-M-1subgroup}	41
	(688bp) and $bla_{\text{CTX-M-9subgroup}}$ (561bp) at different concentration	
	of Multi CTX-M-G1, Multi CTX-M-G2 and Multi CTX-M-G9	
	primers-pair	
Figure 5.9	Multiplex III: Multiplex PCR products of <i>bla</i> _{CMY1} (895 bp),	42
	bla_{CMY2} (538bp) and bla_{DHA} (997bp) at different concentration	
	of MultiCD-CMY1, MultiCD-CMY2 and MultiCD-DHA	
	primers-pair	
Figure 5.10	PCR products of <i>bla</i> _{TEM} (800bp) and <i>bla</i> _{SHV} (713bp) generated	43
	with Multiplex I at optimal condition	
Figure 5.11	PCR products of <i>bla</i> CTX-M-1subgroup (688bp) and <i>bla</i> CTX-M-9subgroup	44
	(561bp) generated with Multiplex II at optimal condition	
Figure 5.12	PCR products of <i>bla</i> _{CMY8b} (895bp), <i>bla</i> _{CMY2} (538bp) and	44
	bla _{DHA} (997bp) generated with Multiplex III at optimal	
	condition.	
Figure 5.13	Multiple nucleotide sequence alignments were obtained using	45
	phylogenetic analysis with bla gene of unexpected	
	amplification product	
Figure 5.14	Multiple nucleotide sequence alignments were obtained	47
	using phylogenetic analysis of <i>bla</i> _{TEM} , <i>bla</i> _{SHV} and <i>bla</i> _{CTX-M-}	
	subgroup	
Figure 5.15	5 The correlation between the levels of resistance to cefotaxime	57
ลิ	in ESBL-producing E. coli and presence of ESBL genes	
Figure 5.16	The correlation between the levels of resistance to ceftazidime	58
C	in ESBL-producing E. coli and presence of ESBL genes	
Figure 5.17	Correlation between MIC ₉₀ and single and combined type	59
	among different and combined of ESBL genes	

LIST OF ABBREVIATIONS

bla gene	beta-lactamase gene
bp	Base pair
BLAST	Basic local alignment search tools
CFU/ml	Colony-forming unit per milliliter
CNS	Central nervous system
DNA	Deoxyribonucleic acid
dNTP	Deoxynucleotide triphosphate
EDTA	Ethylene diamine tetraacetic acid disodium salt
et al.	Et. Alii (Latin), and other
g	Gram
1	Liter
m	Milli (10 ⁻³)
™ ลิขสิท	Molar Molar Molar Molar Molar Molar Molar
^{mg} Copyri	Milligram (S)
MgCl ₂	Magnesium chloride
MIC	Minimal inhibitory concentration
min	Minute (S)
ml	Milliliter (S)
mm	Millimeter (S)
mM	Millimolar

LIST OF SYMBOLS

α	Alpha
β	Beta
/	Per
%	Percent
°C	Degree Celcius
μ	Micro (10 ⁻⁶)
μg	Micrograme
µl	Microliter
>	greater than
<	less than
2	greater than or equal to
2	less than or equal to

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved