หัวข้อวิทยานิพนธ์ สภาวะฮีโมโกลบินเอฟสูงในคนไทยที่เป็นพาหะบีตาธาลัสซีเมีย

และพาหะฮิโมโกลบินอื่

ผู้เขียน นางสาวศศิวัลย์ เกิดภู่

ปริญญา วิทยาศาสตรมหาบัณฑิต (เทคนิคการแพทย์)

คณะกรรมการที่ปรึกษา รองศาสตราจารย์ ดร. ธนูศักดิ์ ตาตุ อาจารย์ที่ปรึกษาหลัก

อาจารย์ คร. สุพรรษา ปาต๊ะ อาจารย์ที่ปรึกษาร่วม

บทคัดย่อ

์ ฮีโมโกลบิน เอฟ (Hb F) เป็นฮีโมโกลบินที่พบมากในทารกในครรภ์และทารกแรกเกิด และมี ระดับต่ำในผู้ใหญ่ปกติ แต่จะพบสูงขึ้นในสภาวะที่เรียกว่า hereditary persistence of fetal hemoglobin (HPFH) และการอยู่ร่วมกันของ HPFH และบีตาชาลัสซีเมียลคการไม่สมคุลของการสร้างสายโกลบิน ลงส่งผลให้อาการทางคลินิกไม่รุนแรง Swiss-type HPFH เป็นชนิดหนึ่งของ hetero cellular HPFH ที่ มี Hb F สูงขึ้นเล็กน้อยระหว่าง 0.8% – 5.0% และพบบ่อยในประชากรไทย บีตาธาลัสซีเมีย (βthalassemia) และฮีโมโกลบินอี (HbE) เป็นความผิดปกติของสายโกลบินที่พบได้บ่อยในประชากร ใทยเช่นกัน ดังนั้นจึงมีโอกาสสูงที่ Swiss-type HPFH และ บีตาธาลัสซีเมียหรือฮีโมโกลบิอีจะอยู่ ร่วมกันวิทยานิพนธ์นี้มีวัตถุประสงค์ 1) เพื่อพัฒนา *in-house* sandwich ELISA สำหรับการตรวจวัด ปริมาณ Hb F ในน้ำละลายฮีโมโกลบิน, 2) ศึกษาความชุกของ Swiss-type HPFH นอกจากนี้ วิทยานิพนธ์นี้ยังมีวัตถุประสงค์เพื่อศึกษาความสัมพันธ์ของ single nucleotide polymorphisms (SNPs) in XmnI-^Gy, HBBP1: rs2071348, BCL11A: rs766432, HMIP: rs9376092, KLF1: rs140252918 และ *Fnu*-4H1 sites กับปริมาณ Hb F ในคนไทยที่เป็นพาหะ β-thalassemia และ HbE ผลการศึกษาใน วิทยานิพนธ์นี้สามารถผลิต polyclonal antibody ต่อ HbF สำเร็จและติดฉลากด้วย FITC และตั้งชื่อว่า pAbaHbF-FITC ทำการพัฒนาเทคนิค in-house sandwich ELISA โดยใช้ monoclonal antibody ต่อ γglobin chain ชื่อ Thal N/B ซึ่งผลิตได้ก่อนหน้าเป็น solid-phase antibody และ $pAb \alpha HbF$ -FITC เป็น แอนติบอดีตัวที่สอง และใช้ HRP-conjugated antibody ต่อ FITC เป็นระบบตรวจสอบผลบวก และ พบว่าน้ำละลายฮีโมโกลบินที่การเจือจาง 1:200 ถึง 1:800 ขึ้นกับปริมาณ Hb Bart's เหมาะสมต่อ เทคนิคใหม่ที่พัฒนาขึ้น เทคนิค in-house sandwich ELISA ที่พัฒนาขึ้นไม่มีการรบกวนจาก Hb Bart's และ Hb Portland 1 นอกจากนั้นปริมาณ Hb F ที่ตรวจวัดได้มีความสัมพันธ์กับปริมาณที่ได้จากวิธี มาตรฐาน HPLC แต่อย่างไรวิทยานิพนธ์นี้ไม่สามารถหาตัวอย่างเลือดที่มีระดับ HbF ที่คลอบคลุมทั้ง

ต่ำและสูงได้ซึ่งอาจจะพบในการตรวจจริง จึงทำให้การตรวจสอบประเมินเทคนิคนี้ยังไม่สมบูรณ์ ดังนั้นปริมาณ Hb F ที่ได้จากวิธีมาตรฐาน HPLC จะนำไปใช้ในการศึกษาหาความสัมพันธ์ต่อไป

ประชากรในการศึกษานี้ประกอบด้วย พาหะ HbE 77 ราย (พาหะ HbE 67 รายและพาหะ HbE ร่วมกับพาหะα-thalassemia 10 ราย) และพาหะ β-thalassemias 8 ราย นอกจากนี้ประกอบด้วยผู้ที่เป็น โรคได้แก่ homozygous HbE 7 ราย, HbE/β-thalassemia 7 ราย และ HbH & HbH-CS diseases 9 ราย และคนปกติที่ไม่เป็นธาลัสซีเมีย 17 รายซึ่งเป็นกลุ่มควบคุม การกระจายตัวของปริมาณ Hb F ในกลุ่ม ประชาการนี้มีลักษณะเบ้บวา และมี 40.8% ของประชากรที่มีปริมาณ HbF อยู่ระหว่าง 0.8% – 5.0% ซึ่งอยู่ในเกณฑ์การเป็น Swiss-type HPFH จากศึกษาพบว่าในกลุ่มประชากรที่เป็น thalassemia/hemoglobinopathies มีปริมาณ HbF สูงกว่ากลุ่มคนปกติ การศึกษาความสัมพันธ์ของ SNPs พบว่า *Xmn*I-^G γ ; +/- & +/+, *HBBP1: rs2071348*; A/C & C/C และ *BCL11A: rs766432*; A/C & C/C มีความสัมพันธ์กับปริมาณ Hb F ที่สูงขึ้นในกลุ่มที่เป็นพาหะ HbE แต่ไม่ชัดเจนในกลุ่มที่เป็น พาหะ β -thalassemia ซึ่งเป็นการยืนยันความสัมพันธ์ของ HbE กับยืน Xmn I- $^{\mathrm{G}}\gamma$; + ของการศึกษาก่อน หน้านี้ การศึกษานี้รายงานความสัมพันธ์ของ HbE กับ HBBP1 และของ XmnI- $^{G}\gamma$ กับ HBBP1 เป็นครั้ง แรก อย่างไรก็ตามความหลากหลายของยืนเหล่านี้มีความสัมพันธ์กับปริมาณ Hb F ที่ต่ำในกลุ่มของ HbE/β-thalassemia เมื่อเปรียบเทียบกับผู้ป่วยที่ไม่มีความหลากหลายดังกล่าว นอกจากนี้ความ หลากหลายของ *Fnu*-4H1 ยังเกี่ยวข้องกับปริมาณ Hb F ที่ลดลงซึ่งเป็นการยืนยันผลการค้นพบที่ผ่าน มา และการมี α-thalassemia ใม่มีอิทธิพลต่อความสัมพันธ์ของ HbF กับความหลากหลายของ SNPs เหล่านั้น การศึกษาครั้งนี้ประสบความสำเร็จในพัฒนาเทกนิค tetra-primer ARMS PCR ในการตรวจ *HBBP1: rs2071348* เป็นครั้งแรก แต่ไม่ประสบความสำเร็จกับ *HMIP: rs9376092* และ *KLF1:* rs140252918

จากการศึกษานี้สรุปว่าสามารถพัฒนาเทคนิค in-house sandwich ELISA ขึ้นเพื่อเป็น ทางเลือกในการตรวจวัดปริมาณ Hb F ในน้ำละลายฮีโมโกลบิน และสามารถพัฒนาเทคนิค tetraprimer ARMS PCR สำหรับตรวจหา A>C polymorphism ของ HBBP1: rs2071348 และ Swiss-type HPFH มีความชุกที่สูงในประชากรที่ศึกษาและในพาหะฮีโมโกลอี ซึ่งสะท้อนให้เห็นถึงความชุกของ ภาวะดังกล่าวในประชากรไทย ความรู้เกี่ยวกับความชุกของ Swiss-type HPFH และความสัมพันธ์ของ SNPs กับปริมาณ Hb F สูง จากการศึกษาครั้งนี้ทำให้เข้าใจสภาวะ Hb F สูงในประชากรไทย

Thesis Title Study of High Hemoglobin F Status in Thai β-

Thalassemia and Hemoglobin E Carriers

Author Miss Sasiwan Kerdphoo

Degree Master of Science (Medical Technology)

Advisory Committee Assoc. Prof. Dr. Thanusak Tatu Advisor

Lect. Dr. Supansa Pata Co-advisor

ABSTRACT

Hemoglobin F (HbF) is the major hemoglobin in fetuses and newborns. Low level of HbF is produced in adults. HbF level can be elevated in adult life in a condition termed hereditary persistence of fetal hemoglobin (HPFH). Existence of HPFH in βthalassemia reduces degree of imbalanced globin chain synthesis, resulting in mild clinical symptom. Swiss-type HPFH is a condition in which slightly increased HbF is produced in adults (0.8% - 5.0%). This type of HPFH is fairly common in general population. β-thalassemia and HbE are among β-globin gene disorders commonly found in Thailand. Co-existence of Swiss-type HPFH in β-thalassemia or HbE is highly probable in Thailand. This thesis aimed to (1) develop the *in-house* sandwich ELISA for measuring HbF levels in blood lysate, (2) determine prevalence of Swiss-type HPFH. This thesis also aimed to determine relationships of single nucleotide polymorphisms in $XmnI^{-G}\gamma$, HBBP1: rs2071348, BCL11A: rs766432, HMIP: rs9376092, KLF1: rs140252918 and Fnu-4H1 sites and HbF levels in adult Thai β-thalassemia and HbE carriers. Polyclonal antibody against HbF was successfully produced. It was subsequently conjugated with FITC and arbitrarily named pAbaHbF-FITC. The inhouse sandwich ELISA was developed employing the "Thal N/B", the monoclonal antibody against γ -globin chain, previously produced, as the solid phase antibody and the pAbaHbF-FITC as a second antibody. The HRP-labeled antibody to FITC was utilized to generate the positive signal. The optimal dilutions of blood lysate for this new ELISA technique were 1:200 to 1:800 depending on amount of Hb Bart's in the

lysate. This developed *in-house* sandwich ELISA was shown to be free of interference from Hbs Bart's and Portland 1. It was also shown to correctly quantify HbF in blood lysate as compared to those obtained from standard HPLC technique. However, since the samples having the whole range of HbF levels possibly encountered in adult blood could not be accessed in this thesis. This made the full validation of the new technique not completed. Thus, HbF levels generated from the standard HPLC technique were used for subsequent analyses.

The studied samples included 77 HbE carriers (67 single HbE carrier and 10 double HbE/α-thalassemia carriers) and 8 β-thalassemia carriers. In addition, thalassemia diseases including 7 homozygous HbE, 7 HbE/β-thalassemia and 9 HbH & HbH-CS diseases and 17 normal thalassemia-free samples were also analyzed as control groups. The HbF distribution was found to be positively skewed with 40.8% of all studied samples and 40.4% of HbE carriers having HbF levels of 0.8% - 5.0% range, falling in the category of Swiss-type HPFH. HbF levels in thalassemia/ hemoglobinopathies were higher than normal individuals. The $\mathit{Xmn}I^{-G}\gamma; +/- \& +/+,$ HBBP1: rs2071348; A/C & C/C and BCL11A: rs766432; A/C & C/C were associated with high HbF levels in HbE carriers. However, this association was not obvious in the β-thalassemia carriers. Linkage of HbE and $XmnI^{-G}\gamma$; + allele was confirmed. The linkages of HbE and HBBP1 as well as of XmnI-Gy and HBBP1 polymorphisms were shown for the first time. However, these polymorphisms were involved in lower HbF levels in HbE/β-thalassemia as compared to those having wild type allele. The *Fnu*-4H1 was involved in low HbF levels. α-thalassemia did not interfere the HbF-reactivating effects of these single nucleotide polymorphisms (SNPs). The tetra-primer ARMS PCR was successfully established to detect the HBBP1: rs2071348 for the first time in this thesis, but not for HMIP: rs9376092 and KLF1: rs140252918.

It was concluded that the *in-house* sandwich ELISA for HbF quantification and the tetra-primer ARMS-PCR for genotyping A>C polymorphism of *rs2071348* in *HBBP1* gene were successfully developed. High prevalence of the Swiss-type HPFH was shown in this cohort and HbE carriers, reflecting its prevalence in general population of Thailand. The knowledge of the Swiss-type HPFH prevalence as well as associations between the analyzed SNPs and high HbF levels in this cohort would be useful for better understanding of high HbF production in Thai population.

