CHAPTER 3

Results

Experiment I

3.1 Field Collections and Establishment of Isoline Colonies

Samples of fully engorged females of *An. paraliae* were collected from cowbaited traps in 4 provinces of Thailand (Figure 3.1, Table 3.1). A total of 16 isolines were established and maintained in an insectary at Chiang Mai University, and they were used for studies on metaphase karyotype, cross-mating experiments and molecular analysis.

3.2 Metaphase Karyotype of Anopheles paraliae

Cytogenetic observation of F₁- and/or F₂- progenies of the 16 isolines which were represented in 4 provinces across 3 regions (western, eastern, southern) in Thailand, demonstrated that *An. paraliae* has the typical chromosome number of 2n = 6, consisting of two pairs of autosomes (submetacentric and metacentric) and one pair of heteromorphic sex chromosomes (XX in females and XY in males). Based on the number and amount of major block(s) of the heterochromatin present in the heterochromatic arm of the sex chromosomes, 3 types of X (X₁, X₂, X₃) and 5 types of Y (Y₁, Y₂, Y₃, Y₄, Y₅) chromosomes were obtained in this investigation (Figure 3.2-3.3 and Table 3.1). The X₁ chromosome has a small metacentric shape with one arm euchromatic, and the opposite one totally heterochromatic. The X₂ chromosome is different from the X₁ chromosome in having an extra block of heterochromatin in the heterochromatic arm, making it a long arm of submetacentric configuration. The X₃ chromosome has a large submetracentric shape that was slightly different from the X₂ chromosome in having an extra block of heterochromatin at the distal end of the long heterochromatic arm. A good comparison of the size and shape between X₂ and X₃ chromosomes can be seen in heterozygous females (Figure 3.2j). Similar to the situation in the X chromosome, the Y chromosome also exhibited extensive variation in size and shape, due to differing amounts and distribution of heterochromatic block. Thus, the Y_1 chromosome is a small telocentric figure, which probably represents the simple or ancestral form of the Y chromosome (Figure 3.2a). The Y₂ chromosome has a small subtelocentric or acrocentric shape that slightly differs from the Y_1 chromosome which has a very small portion of the short arm present (Figure 3.2b-d). Chromosome Y₃ has a large subtelocentric shape that obviously differs from the Y₂ chromosome in having an extra block of heterochromatin at the distal end of the long heterochromatic arm (Figure 3.2f). The Y_4 chromosome is clearly submetacentric, with the short arm approximately 1/3 the length of the long arm. It appears to have derived from the Y₃ chromosome by means of adding an extra block of heterochromatin onto the short arm, and transferring it to a submetacentric configuration (Figure 3.2g-i). Chromosome Y₅ has a medium metacentric configuration, which is slightly shorter than that in the Y₄ chromosome. It could have arisen from the ancestral Y₁ chromosome simply through additional of 2 extra blocks of heterochromatin onto the opposite long arm (Figure 3.2k). Hence, 5 karyotypic forms were recognized based on unique characteristics of the X and Y chromosomes and they were designated as Forms A (X3, Y1), B (X1, X2, X3, Y2), C (X3, Y₃), D (X₁, X₂, X₃, Y₄) and E (X₃, Y₅).

> ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

AI UNIVER

Figure 3.1 Map of Thailand showing 4 provinces where samples of *An. paraliae* were collected and the numbers of isolines of the 5 karyotypic forms (A-E) were detected

Figure 3.2 Metaphase karyotypic forms of *An. paraliae*. (a) Form A (X_3, Y_1) , (b) Form B (X_1, Y_2) , (c) Form B (X_2, Y_2) , (d) Form B (X_3, Y_2) , (e) Form B (X_1, X_2) , (f) Form C (X_3, Y_3) , (g) Form D (X_1, Y_4) , (h) Form D (X_2, Y_4) , (i) Form D (X_3, Y_4) , (j) Form D (X_2, X_3) , (k) Form E (X_3, Y_5) , (l) Form E (X_3, X_3)

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

Figure 3.3 Diagrams of representative metaphase karyotypes of Forms A, B, C, D and E of *An. paraliae*

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

 Table 3.1 Locations in 4 provinces of Thailand, code of isolines, 5 karyotypic forms (A-E) of An. paraliae and their GenBank accession numbers

Location	Code of	Karyotypic	DNA Region	GenB	ank accession num	lber	Reference	
(Geographical coordinate)	isoline ^a	form		ITS2	COI	COII		
An. paraliae		B	0	21	31			
Chanthaburi	Ch1C ^a	C (X ₃ , Y ₃)	ITS2, COI, COII	AB733475	AB733491	AB733507	This study	
(12° 38' N, 102° 12' E)		1.882	A. M	×]	562			
Ratchaburi	Rt1D	D (X ₃ , Y ₄)	ITS2, COI, COII	AB733476	AB733492	AB733508	This study	
(13° 30' N, 99° 54' E)		101	N		Z			
	Rt2D	D (X ₃ , Y ₄)	ITS2, COI, COII	AB733477	AB733493	AB733509	This study	
	Rt3D	D (X ₃ , Y ₄)	ITS2, COI, COII	AB733478	AB733494	AB733510	This study	
	Rt4B ^a	B (X ₂ , Y ₂)	ITS2, COI, COII	AB733479	AB733495	AB733511	This study	
	Rt5E ^a	E (X ₃ , Y ₅)	ITS2, COI, COII	AB733480	AB733496	AB733512	This study	
	Rt6D	D (X3, Y4)	ITS2, COI, COII	AB733481	AB733497	AB733513	This study	
	Rt7D ^a	D (X ₂ , Y ₄)	ITS2, COI, COII	AB733482	AB733498	AB733514	This study	
	Rt8D ^a	$D(X_1, Y_4)$	ITS2, COI, COII	AB733483	AB733499	AB733515	This study	
	Rt9E	E (X3, Y5)	ITS2, COI, COII	AB733484	AB733500	AB733516	This study	
	Rt10D	D (X ₃ , Y ₄)	ITS2, COI, COII	AB733485	AB733501	AB733517	This study	

All rights reserved

Table 3.1 (c	continued)
---------------------	------------

Location	Code of	Karyotypic	DNA Region	Gen	Bank accession n	umber	Reference
(Geographical coordinate)	isoline ^a	form	50,0	ITS2	COI	COII	
Nakhon Si Thammarat	Ns1B ^a	B (X ₃ , Y ₂)	ITS2, COI, COII	AB733486	AB733502	AB733518	This study
(08° 29′ N, 100° 0′ E)		10	D Comment	17	131		
Songkhla	Sk1B	B (X ₁ , Y ₂)	ITS2, COI, COII	AB733487	AB733503	AB733519	This study
(07° 13′ N, 100° 37′ E)		565	Star St		565		
	Sk2D	D (X ₁ , Y ₄)	ITS2, COI, COII	AB733488	AB733504	AB733520	This study
	Sk3A ^a	A (X ₃ , Y ₁)	ITS2, COI, COII	AB733489	AB733505	AB733521	This study
	Sk4D	D (X ₃ , Y ₄)	ITS2, COI, COII	AB733490	AB733506	AB733522	This study
An. sinensis	i2ACM	$A(X, Y_1)$	ITS2	AY130473	A,]∦	-	Min et al. 2002
	-	B (X, Y ₂)	COI	ost	AY444351	-	Park et al. 2003
	i1BKR	B (X, Y ₂)	COII	IVER /	<u> </u>	AY130464	Min et al. 2002
An. pullus	-	$A(X_1, X_2, Y_2)$	ITS2, COI, COII	AY444345	AY444348	AY444347	Park et al. 2003
An. peditaeniatus	RbB	B (X ₃ , Y ₂)	ITS2, COI, COII	AB539061	AB539069	AB539077	Choochote 201

Copyright[©] by Chiang Mai University

All rights reserved

3.3 Cross-mating Experiments

Details of hatchability, pupation, emergence and adult sex ratio of parental, reciprocal and F₁-hybrid experiments among the 7 isolines of *An. paraliae* representing Forms A-E are shown in Table 3.2. All crosses gave viable progenies through the F₂-generations. No evidence of genetic incompatibility and/or post-mating reproductive isolation was observed among these crosses. The salivary gland polytene chromosomes of the hybrid larvae from all crosses showed complete synapsis without inversion loops in all chromosome arms (Figure 3.4).

Figure 3.4 Complete synapsis in all arms of salivary gland polytene chromosomes of F₁-hybrids of *An. paraliae*. (a) Sk3A female x Ns1B male; (b) Sk3A female x Rt4B male; (c) Sk3A female x Ch1C male; (d) Sk3A female x Rt7D male; (e) Sk3A female x Rt8D male; (f) Sk3A female x Rt5E male

			ANEN	Ø		Total emerg	ence n (%)	
Crosses	Total eggs	Embryonation	Hatched	Pupation	Emergence	Female	Male	
(Female x Male)	(number) ^a	rate ^b	n (%)	n (%)	n (%)			
Parental cross		12/		\geq / $\langle \rangle$				
Sk3A x Sk3A	316 (158, 158)	84	231 (73.10)	212 (91.77)	208 (98.11)	120 (57.69)	88 (42.31)	
Ns1B x Ns1B	319 (162, 157)	83	258 (80.88)	248 (96.12)	199 (80.24)	121 (60.80)	78 (39.20)	
Rt4B x Rt4B	372 (150, 222)	84	305 (81.99)	305 (100.00)	305 (100.00)	143 (46.89)	162 (53.11	
Ch1C x Ch1C	394 (187, 207)	82	315 (79.95)	277 (87.94)	265 (95.67)	151 (56.98)	114 (43.02	
Rt7D x Rt7D	285 (167, 118)	92	242 (84.91)	242 (100.00)	220 (90.91)	116 (52.73)	104 (47.27	
Rt8D x Rt8D	299 (190, 109)	85	245 (81.94)	213 (86.94)	196 (92.02)	83 (42.35)	113 (57.65	
Rt5E x Rt5E	309 (147, 162)	81	226 (73.14)	212 (93.80)	208 (98.11)	106 (50.96)	102 (49.04	
Reciprocal cross		151	18-19	M	~ //			
Sk3A x Ns1B	346 (186, 160)	73	242 (69.94)	213 (88.02)	194 (91.08)	97 (50.00)	97 (50.00)	
Ns1B x Sk3A	359 (158, 201)	75	266 (74.09)	231 (86.84)	204 (88.31)	106 (51.96)	98 (48.04)	
Sk3A x Rt4B	339 (157, 182)	89	295 (87.02)	289 (97.97)	274 (94.81)	162 (59.12)	112 (40.88	
Rt4B x Sk3A	391 (194, 197)	90	344 (87.98)	310 (90.12)	292 (94.19)	110 (37.67)	182 (62.33	

Table 3.2 Cross-mating experiments among 7 isolines of An. paraliae

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All right eserved

			- 1010			Total emer	gence n (%)
Crosses (Female x Male)	Total eggs (number) ^a	Embryonation rate ^b	Hatched n (%)	Pupation n (%)	Emergence n (%)	Female	Male
Sk3A x Ch1C	344 (189, 155)	90	299 (86.92)	299 (100.00)	275 (91.97)	121 (44.00)	154 (56.00
Ch1C x Sk3A	331 (206, 125)	96	314 (94.86)	314 (100.00)	308 (98.09)	135 (43.83)	173 (56.17
Sk3A x Rt7D	348 (158, 190)	88	306 (87.93)	278 (90.85)	272 (97.84)	131 (48.16)	141 (51.84
Rt7D x Sk3A	325 (125, 200)	90	260 (80.00)	260 100.00)	260 (100.00)	130 (50.00)	130 (50.00
Sk3A x Rt8D	347 (157, 190)	84	232 (66.86)	204 (87.93)	200 (98.04)	93 (46.50)	107 (53.50
Rt8D x Sk3A	305 (147, 158)	82	247 (80.98)	247 (100.00)	237 (95.95)	117 (49.37)	120 (50.63
Sk3A x Rt5E	353 (167, 186)	86	297 (84.13)	273 (91.92)	273 (100.00)	134 (49.08)	139 (50.92
Rt5E x Sk3A	376 (194, 182)	82	293 (77.92)	293 (100.00)	293 (100.00)	126 (43.00)	167 (57.00
F ₁ - hybrid cross		131	NA Z	$\pi \wedge I$.	9 /		
(Sk3A x Ns1B)F ₁ x	200 (100, 200)	70	220 (74.11)	100 (86 00)	102 (06 40)	90 (46 25)	102 (52 (5
(Sk3A x Ns1B)F1	309 (109, 200)	/8	229 (74.11)	199 (86.90)	192 (96.48)	89 (46.35)	103 (53.65
(Ns1B x Sk3A)F ₁ x	200 (104 114)	08	274 (89.07)	196 (67.99)	196 (100.00)	120 (60 25)	ET (20 CE)
(Ns1B x Sk3A)F1	308 (194, 114)	98	274 (88.96)	186 (67.88)	186 (100.00)	129 (69.35)	57 (30.65)
(Sk3A x Rt4B)F1 x	250 (155 105)	02	201 (86.00)	256 (85.05)	250 (07 (0)	117 (46 90)	122 (52.20
(Sk3A x Rt4B)F1	300 (100, 195)	93	301 (86.00)	256 (85.05)	250 (97.66)	117 (46.80)	133 (53.20

Table 3.2 (continued)

Copyright[©] by Chiang Mai University All rights reserved

		/				Total eme	rgence n (%)
Crosses	Total eggs	Embryonation	Hatched	Pupation	Emergence	Female	Male
(Female x Male)	(number) ^a	rate ^b	n (%)	n (%)	n (%)		
$(\mathbf{R}\mathbf{t}\mathbf{A}\mathbf{R}\mathbf{v}\mathbf{S}\mathbf{k}3\mathbf{\Delta})\mathbf{F}_1\mathbf{v}$		1.51	SUL	2 4	20/		
$(Rt4B \times Sk3A)F_1$	383 (220, 163)	94	326 (85.12)	297 (91.10)	293 (98.65)	140 (47.78)	153 (52.22)
$(Sk3A \times Ch1C)F_1 \times$		1311			31		
$(Sk3A \times Ch1C)F_1$	345 (150, 195)	76	228	228 (100.00)	221 (96.93)	93 (42.08)	128 (57.92)
$(Ch1C \times Sk3A)F_1 \times$		100%	146		204		
(Ch1C x Sk3A)F ₁	248 (118, 130)	80	169 (68.14)	169 (100.00)	169 (100.00)	73 (43.20)	96 (56.80)
(Sk3A x Rt7D)F1 x					224 (21.02)	00 (10 75)	126 (56.25)
(Sk3A x Rt7D)F1	406 (220, 186)	73	252 (62.07)	244 (96.83)	224 (91.80)	98 (43.75)	126 (56.25)
(Rt7D x Sk3A)F1 x	251 (190, 162)	76	252 (72.08)	252 (100.00)	248 (08 02)	127 (55.24)	111 (44 76)
(Rt7D x Sk3A)F1	331 (189, 162)	70	255 (72.08)	253 (100.00)	248 (98.02)	137 (33.24)	111 (44.76)
(Sk3A x Rt8D)F1 x	201 (200, 182)	67	242 (61.80)	242 (100.00)	240 (00 17)	120 (50 00)	120 (50 00)
(Sk3A x Rt8D)F1	591 (209, 182)	0/ 1	242 (01.89)	242 (100.00)	240 (99.17)	120 (30.00)	120 (30.00)
(Rt8D x Sk3A)F1 x	224 (149, 196)	70	220 (68 86)	222 (06.06)	216(06.96)	115 (52 24)	101 (46 76)
(Rt8D x Sk3A)F1	554 (148, 180)	12	230 (68.86)	223 (96.96)	210 (90.80)	115 (53.24)	101 (46.76)
(Sk3A x Rt5E)F1 x	402 (200 104)	02	2(2(00.07)	241 (02.04)	210 (02 55)	145 (45 45)	174 (54 55)
(Sk3A x Rt5E)F1	403 (209, 194)	92	363 (90.07)	341 (93.94)	319 (93.55)	145 (45.45)	174 (54.55)
(Rt5E x Sk3A)F1 x	405 (220, 105)		244 (24.04)	000 (04.01)	202 (07 50)	100 (67.00)	02 (22 00)
(Rt5E x Sk3A)F1	405 (220, 185)	opyn ⁸ /	344 (84.94)	289 (84.01)	282 (97.58)	189 (67.02)	93 (32.98)

 Table 3.2 (continued)

a: Two selective egg-batches of inseminated females from each cross; *b*: dissection from 100 eggs; n = number

3.4 DNA Sequence and Phylogenetic Analysis

DNA sequences of the ITS2, COI and COII of the 16 isolines of *An. paraliae* Forms A-E were analysed. They all showed the same lengths for ITS2 (448 bp), COI (658 bp) and COII (685 bp) sequences. All 5 karyotypic forms showed completely identical of ITS2 sequences. Neighbor-joining (NJ) trees were constructed in order to determine genetic relationships among the 5 karyotypic forms (Figure 3.5). The 16 isolines were monophyletic with high supported in NJ tree (bootstrap values 100%). Obviously, the mean genetic distance within and between the 5 karyotypic forms exhibited no significant difference (0.000-0.002) in these DNA regions. However, the trees for ITS2, COI and COII of these isolines (Forms A-E) were clearly different from the 3 species members of the Hyrcanus Group, i.e., *An. peditaeniatus, An. pullus* and *An. sinensis*, with strongly supported bootstrap values (100%).

Figure 3.5 Neighbor-joining (NJ) trees inferred from sequences of 3 loci (a) ITS2, (b) COI and (c) COII of the 16 isolines of *An. paraliae* compared with *An. peditaeniatus, An. pullus* and *An. sinensis*. Numbers on branches are bootstrap values (%) after 1,000 replications. Bootstrap values under 50% not shown. Branch lengths are proportional to genetic distance (scale bar)

Experiment II

3.5 Morphological Identification

The morphological characteristics of adult female that distinguished *An. lesteri* from *An. paraliae* were shown in Figure 3.6. The wing of *An. lesteri* from Korea showing wide pale fringe spot extending from tip of vein R_1 to R_{4+5} , and 2 dark spots on anal vein (1A), whereas, wings of *An. paraliae* from Thailand showing very narrow pale fringe spot at tip of vein R_2 , and 2 dark spots on 1A similar to that of *An. lesteri*, narrow fringe spot at tip of vein R_2 , and 2 dark spots on 1A, and moderated fringe spot extending from tip of vein R_2 , and 1 dark spots on 1A.

Figure 3.6 (a-c) Wings of *An. paraliae* from Thailand showing: (a) very narrow pale fringe spot at tip of vein R_2 , and 2 dark spots on 1A similar to that of *An. lesteri*, (b) narrow fringe spot at tip of vein R_2 , and 2 dark spots on 1A, (c) moderated fringe spot extending from tip of vein R_{1-3} , and 1 dark spot on 1A, and (d) Wing of *An. lesteri* from Korea showing wide pale fringe spot extending from tip of vein R_1 to R_{4+5} , and 2 dark spots on anal vein (1A)

3.6 Establishment of Isoline Colonies

Three and 5 isolines of *An. lesteri* (ilG1, ilG2, ilG3) and *An. paraliae* (ipR1, ipR2, ipN1, ipS1, ipS2), respectively, were established successfully, and maintained in colonies for more than 5 consecutive generations in our laboratory. They were used for crossing experiments and comparative DNA sequence analyses.

3.7 Cross-mating Experiments

Details of hatchability, pupation, emergence and adult sex-ratio of parental, reciprocal and F_1 -hybrid crosses between *An. lesteri* from Korea and *An. paraliae* from Thailand are shown in Table 3.3. All crosses yielded viable progenies through the F_2 -generations. No evidence of genetic incompatibility and/or post-mating reproductive isolation was observed among these crosses (repeated twice: experiments 2 and 3, data are not shown). The salivary gland polytene chromosomes of F_1 -hybrid larvae from all crosses showed complete synapsis without inversion loops in all chromosome arms (Figure 3.7).

Figure 3.7 Complete synapsis in all arms of salivary gland polytene chromosome of F₁hybrid larvae of crosses between *An. lesteri* and *An. paraliae*. A: ilG1 female x ipN1 male; B: ilG1 female x ipR1 male; C: ipR1 female x ilG1 male; D: ipS1 female x ilG1 male; E: ipN1 female x ilG1 male; F: ilG1 female x ipS1 male

		1	18181	6		Total emer	gence n (%)
Crosses (Female x Male)	Total eggsEmbryona(number)arateb		Hatched n (%)	Pupation n (%)	Emergence n (%)	Female	Male
Parental cross		15/~		$\leq \sqrt{2}$	3		
ilG1 x ilG1	345 (155, 190)	65	221 (64.05)	221 (100.00)	221 (100.00)	111 (50.23)	110 (49.77)
ipR1 x ipR1	352 (194, 158)	84	296 (84.09)	245 (82.77)	240 (97.96)	98 (40.83)	142 (59.17)
ipN1 x ipN1	380 (190, 190)	86	327 (86.05)	327 (100.00)	327 (100.00)	137 (41.90)	190 (58.10)
ipS1 x ipS1	344 (194, 150)	73	186 (54.07)	171 (91.93)	165 (96.49)	61 (36.97)	104 (63.03)
Reciprocal cross		1 EI	A A	(Λ / s)	Se //		
ilG1 x ipR1	382 (131, 251)	97	332 (86.91)	289 (87.05)	282 (97.57)	169 (59.93)	113 (40.07)
ipR1 x ilG1	393 (187, 206)	98	334 (84.99)	334 (100.00)	317 (94.91)	190 (59.94)	127 (40.06)
ilG1 x ipN1	402 (182, 220)	60	233 (57.96)	233 (100.00)	233 (100.00)	116 (49.79)	117 (50.21)
ipN1 x ilG1	263 (109, 154)	57	147 (55.89)	147 (100.00)	147 (100.00)	59 (40.14)	88 (59.86)
ilG1 x ipS1	309 (200, 109)	46	117 (37.86)	107 (91.45)	105 (98.13)	50 (47.62)	55 (52.38)
ipS1 x ilG1	308 (118, 190)	44	114 (37.01)	111 (97.37)	111 (100.00)	47 (42.34)	64 (57.66)

Table 3.3 Cross-mating experiments among the 4 isolines of An. lesteri and An. paraliae

Copyright[©] by Chiang Mai University All rights reserved

Table	3.3	(continue)	(b
		(•••••••••••	~,

			016191	2		Total emerg	gence n (%)
Crosses (Female x Male)	Total eggs (number) ^a	Embryonation rate ^b	Hatched n (%)	Pupation n (%)	Emergence n (%)	Female	Male
F ₁ - hybrid cross		8.1	3 We	$\leq \sqrt{3}$			
(ilG1 x ipR1)F ₁ x (ilG1 x ipR1)F ₁	352 (194, 158)	94	320 (90.91)	320(100.00)	314 (98.13)	157 (50.00)	157 (50.00)
(ipR1 x ilG1)F ₁ x (ipR1x ilG1)F ₁	341 (186, 155)	88	290 (85.04)	261 (90.00)	258 (98.85)	113 (43.80)	145 (56.20)
(ilG1 x ipN1)F ₁ x (ilG1 x ipN1)F ₁	324 (157, 167)	67	201 (62.04)	201 (100.00)	201 (100.00)	101 (50.25)	100 (49.75)
(ipN1 x ilG1)F1 x (ipN1 x ilG1)F1	347 (197, 150)	58	180 (51.87)	180 (100.00)	175 (97.22)	85 (48.57)	90 (51.43)
(ilG1 x ipS1)F ₁ x (ilG1 x ipS1)F ₁	347 (190, 157)	65	215 (61.96)	213 (99.07)	209 (98.12)	97 (46.41)	112 (53.59)
(ipS1 x ilG1)F ₁ x (ipS1 x ilG1)F ₁	348 (158, 190)	60	174 (50.00)	167 (95.98)	164 (98.20)	77 (46.95)	87 (53.05)

a: Two selective egg-batches of inseminated females from each cross; *b*: dissection from 100 eggs; n = number

3.8 DNA Sequence and Phylogenetic Analysis

The level of genetic distance and number of base substitutions between sequences of the 3 regions are presented in Tables 3.4-3.6. Analysis of the ITS2 sequence revealed no intraspecific sequence variation among the 3 and 5 isolines of An. lesteri and An. paraliae, respectively. Comparison of ITS2 sequences indicated that An. *lesteri* differed from An. paraliae by 16 base substitutions (pairwise distance = 0.040). In addition, 3 isolines of An. lesteri from Korea were identical with An. lesteri from China (= Anopheles anthropophagus) (AY803732, AY375467), Japan (AB159606) and Korea (EU789791), but they differed from those of the Philippines (AY375469) by 3 base substitutions (pairwise distance = 0.007). The average percentages of base composition for the ITS2 sequence of the 8 isolines (3 of An. lesteri from Korea and 5 of An. paraliae from Thailand) were: A, 29.9% (29.2-30.5%); T, 24.2% (23.6-24.9%); G, 25.2% (25.0-25.4%), and C, 20.8% (20.6-20.9%). Percentage of GC content was 46.0% in An. lesteri (448 bp) and 45.0% in An. paraliae (448 bp). All 8 sequences differed markedly from An. sinensis (pairwise distance = 0.321-0.338) and An. *peditaeniatus* (pairwise distance = 0.550-0.566) (Table 3.4). The analysis of COI (658) bp) among the 8 isolines revealed 4-9 base substitutions (pairwise distance = 0.007-0.017). On the contrary, An. lesteri and An. paraliae showed significant differences from An. sinensis (pairwise distance = 0.034-0.042) and An. peditaeniatus (pairwise distance = 0.037-0.041) (Table 3.5). The analysis of COII (685 bp) among the 8 isolines revealed 5-7 base substitutions (pairwise distance = 0.008-0.011). These 2 species also showed significant differences from An. sinensis (pairwise distance = 0.039) and An. *peditaeniatus* (pairwise distance = 0.031-0.036) (Table 3.6). Chiang Mai University

The NJ and Bayesian trees of *An. lesteri*, *An. paraliae*, *An. sinensis* and *An. peditaeniatus* were constructed based on the ITS2, COI and COII sequences (Figure 3.8). For ITS2, *An. lesteri* (n=8) and *An. paraliae* (n=5) were clustered in each monophyletic and well separated from *An. sinensis* and *An. peditaeniatus* with high bootstrap values (93-100%) in both NJ and Bayesian trees. The trees indicated that *An. lesteri* was more closely related to *An. paraliae* (average genetic distances = 0.038) than to the other species. Further, lower sequence divergences (0.000-0.002) were found within the population of each species. For COI and COII, the trees showed that *An.*

lesteri was more closely related to *An. paraliae* than to the other species with low level of average genetic distances (0.008-0.011) for both regions, while very low genetic distances (0.003-0.005) were obtained within the population of each species.

					1.	918	1817	10	01							
Taxon	1	2	3	4	5	6	do	8	9	10	11	12	13	14	15	16
1 ilG1		0	0	16	16	16	16	16	0	0	0	0	3	107	108	163
2 ilG2	0.000		0	16	16	16	16	16	0	0	0	0	3	107	108	163
3 ilG3	0.000	0.000		16	16	16	16	16	0	0	0	0	3	107	108	163
4 ipR1	0.040	0.040	0.040		0	0	0	0	16	16	16	16	17	110	111	160
5 ipR2	0.040	0.040	0.040	0.000		0	0	0	16	16	16	16	17	110	111	160
6 ipN1	0.040	0.040	0.040	0.000	0.000		0	0	16	16	16	16	17	110	111	160
7 ipS1	0.040	0.040	0.040	0.000	0.000	0.000	N	0	16	16	16	16	17	110	111	160
8 ipS2	0.040	0.040	0.040	0.000	0.000	0.000	0.000	π [16	16	16	16	17	110	111	160
9 anthC (AY803792)	0.000	0.000	0.000	0.040	0.040	0.040	0.040	0.040	°/	0	0	0	3	107	108	163
10 anthC (AY375467)	0.000	0.000	0.000	0.040	0.040	0.040	0.040	0.040	0.000	~ //	0	0	3	107	108	163
11 lesJ (AB159606)	0.000	0.000	0.000	0.040	0.040	0.040	0.040	0.040	0.000	0.000		0	3	107	108	163
12 lesK (EU789791)	0.000	0.000	0.000	0.040	0.040	0.040	0.040	0.040	0.000	0.000	0.000		3	107	108	163
13 lesP (AY375469)	0.007	0.007	0.007	0.042	0.042	0.042	0.042	0.042	0.007	0.007	0.007	0.007		105	106	163
14 sinK (EU789790)	0.321	0.321	0.321	0.334	0.334	0.334	0.334	0.334	0.321	0.321	0.321	0.321	0.314		3	154
15 sinT (AY130473)	0.325	0.325	0.325	0.338	0.338	0.338	0.338	0.338	0.325	0.325	0.325	0.325	0.318	0.007		155
16 pedT (AB539061)	0.566	0.566	0.566	0.550	0.550	0.550	0.550	0.550	0.566	0.566	0.566	0.566	0.567	0.520	0.525	

Table 3.4 Genetic distance and number of nucleotide substitutions in ITS2 sequences among An. lesteri, An. paraliae, An. sinensis and An.

 peditaeniatus

Above triangle: number of nucleotide substitutions; below triangle: genetic distance

	A818186											
Taxon	1	2	3	40	0,5	6	7	8	9	10		
1 ilG1		1	2	7	6	6 3	8	7	22	22		
2 ilG2	0.002	1 6	3	8	0 7	7	9	8	21	21		
3 ilG3	0.004	0.006		5	5 4	4	6	5	20	22		
4 ipR1	0.013	0.015	0.009	d'a	MAN .	1 8	5	0	19	21		
5 ipR2	0.011	0.013	0.007	0.002	X	0	4	1	18	20		
6 ipN1	0.011	0.013	0.007	0.002	0.000	18	4	1	18	20		
7 ipS1	0.015	0.017	0.011	0.009	0.007	0.007		5	22	20		
8 ipS2	0.013	0.015	0.009	0.000	0.002	0.002	0.009		19	21		
9 sinK (GQ265918)	0.042	0.040	0.038	0.036	0.034	0.034	0.042	0.036		29		
10 PedT (AB539069)	0.041	0.039	0.041	0.039	0.037	0.037	0.037	0.039	0.055			

Table 3.5 Genetic distance and number of nucleotide substitutions in COI sequences among An. lesteri, An. paraliae, An. sinensis and An. peditaeniatus

Above triangle: number of nucleotide substitutions; below triangle: genetic distance Copyright[©] by Chiang Mai University All rights reserved

Table 3.6 Genetic distance and number of nucleotide substitutions in COII sequences among An. lesteri, An. paraliae, An. sinensis and An.

 peditaeniatus

				0	0	0.0				
Taxon	1	2	\$ 3	4	5	6	7	8	9	10
1 ilG1		10	0	5	5	5	6	5	25	20
2 ilG2	0.002		1	6	6	6	7	6	25	20
3 ilG3	0.000	0.002		25	5	5	6	5	25	20
4 ipR1	0.008	0.009	0.008	T	0	0	5	0	25	22
5 ipR2	0.008	0.009	0.008	0.000	1 WK	0	5	0	25	22
6 ipN1	0.008	0.009	0.008	0.000	0.000	12	5	0	25	22
7 ipS1	0.009	0.011	0.009	0.008	0.008	0.008		5	25	23
8 ipS2	0.008	0.009	0.008	0.000	0.000	0.000	0.008		25	22
9 sinK (AY130464)	0.039	0.039	0.039	0.039	0.039	0.039	0.039	0.039		29
10 PedT (AB539077)	0.031	0.031	0.031	0.034	0.034	0.034	0.036	0.034	0.045	

Above triangle: number of nucleotide substitutions; below triangle: genetic distance

Copyright[©] by Chiang Mai University All right⁻ eserved

Figure 3.8 Neighbor-joining (NJ) trees inferred from sequences of three loci. A: second internal transcribed spacer; B: cytochrome c oxidase subunit I (COI); C: COII of *An. paraliae*, *An. lesteri*, *An. sinensis* and *An. peditaeniatus*. Numbers on branches are bootstrap values (%) of NJ analysis and Bayesian posterior probabilities (%). A hyphen (-) shows that the branch did not appear in majority rule (50%) consensus trees of Bayesian analysis. Branch lengths are proportional to genetic distance (scale bar)