CONTENTS

Acknowledgement	iv
Abstract in Thai	vi
Abstract in English	viii
List of Tables	xiii
List of Figures	xiv
List of Abbreviations and Symbols	xvii
Statement of Originality in Thai	xviii
Statement of Originality in English	xix
Chapter 1 Introduction	1
1.1 Statement and Significant of the Problem 1	
1.2 Literature Review	2
1.2.1 Distributions and medical important	2
1.2.2 Morphological study	4
1.2.3 Cytological study	5
1.2.4 Molecular study	8
1.3 Purpose of This Study	9
1.4 Usefulness of the Study	9

Chapter 2 Materials and Methods	11
2.1 Materials	11
2.1.1 Metaphase chromosome preparation	11
2.1.2 Polytene chromosome preparation	11
2.1.3 Molecular study	11
2.2 Chemical	12
2.2.1 Metaphase chromosome preparation	12
2.2.2 Polytene chromosome preparation	12
2.2.3 Molecular study	13
2.3 Methods	13
2.3.1 Field collection of Anopheles paraliae and Anopheles lesteri	13
2.3.2 Mosquito identification and processing	14
2.3.3 Mosquito rearing and establishment of isoline colonies	15
2.3.4 Metaphase and polytene chromosome preparation	16
2.3.5 Molecular study	17
1) Amplification and sequencing of the rDNA (ITS2) and	17
mtDNA (COI, COII)	
2) Sequence alignment and phylogenetic analysis	19
2.3.6 Cross-mating experiments	19
AI UNIVERS	
Chapter 3 Results	21
Experiment I	
3.1 Field Collections and Establishment of Isoline Colonies	21
3.2 Metaphase Karyotype of Anopheles paraliae	21
3.3 Cross-mating Experiments	28
3.4 DNA Sequence and Phylogenetic Analysis	32
Experiment II	
3.5 Morphological Identification	33
3.6 Establishment of Isoline Colonies	34
3.7 Cross-mating Experiments	34
3.8 DNA Sequence and Phylogenetic Analysis	37

xi

Chapter 4 Discussion	43
Chapter 5 Conclusions	48
References	49
List of Publications	63
Appendix	64
Curriculum Vitae	87
CAT UNIVER	
ลิขสิทธิมหาวิทยาลัยเชียงไหม Copyright [©] by Chiang Mai University All rights reserved	

LIST OF TABLES

Table 2.1	PCR primers (f = 'forward'; r = 'reverse')	19
Table 3.1	Locations in 4 provinces of Thailand, code of isolines, 5	26
	karyotypic forms (A-E) of An. paraliae and their	
	GenBank accession numbers	
Table 3.2	Cross-mating experiments among 7 isolines of An.	29
	paraliae	
Table 3.3	Crossing experiments among the 4 iso-female lines of	35
	An. lesteri and An. paraliae	
Table 3.4	Genetic distance and number of nucleotide substitutions	39
	in ITS2 sequences among An. lesteri, An. paraliae, An.	
	sinensis and An. peditaeniatus	
Table 3.5	Genetic distance and number of nucleotide substitutions	40
	in COI sequences among An. lesteri, An. paraliae, An.	
	sinensis and An. peditaeniatus	
Table 3.6	Genetic distance and number of nucleotide substitutions	41
0	in COII sequences among An. lesteri, An. paraliae, An.	
ล	sinensis and An. peditaeniatus	
C	opyright [©] by Chiang Mai University	
A	ll rights reserved	

LIST OF FIGURES

Figure 1.1	Metaphase karyotypes of the An. hyrcanus group.	6
	An. sinensis Form A (a) and B (b). An. nigerrimus	
	Form A (c) and B (d). An. crawfordi Form A (e) and	
	B (f). An. argyropus Form A (g) and B (h). An.	
	nitidus: X and Y chromosomes (i) and (j). An.	
	peditaeniatus: X and Y chromosomes (k), (l), (m),	
	(n), (o) and (p)	
Figure 1.2	Schematic representation of metaphase karyotypes of	7
	An. sinensis, An. nigerrimus, An. crawfordi, An.	
	argyropus, An. nitidus and An. peditaeniatus	
Figure 2.1	Summarized experimental design	15
Figure 3.1	Map of Thailand showing 4 provinces where samples	23
	of An. paraliae were collected and the numbers of	
	isolines of the 5 karyotypic forms (A-E) were detected	
Figure 3.2	Metaphase karyotypic forms of An. paraliae. (a) Form	24
	A (X ₃ , Y ₁), (b) Form B (X ₁ , Y ₂), (c) Form B (X ₂ , Y ₂),	
	(d) Form B (X ₃ , Y ₂), (e) Form B (X ₁ , X ₂), (f) Form C	
	(X ₃ , Y ₃), (g) Form D (X ₁ , Y ₄), (h) Form D (X ₂ , Y ₄), (i)	
	Form D (X ₃ , Y ₄), (j) Form D (X ₂ , X ₃), (k) Form E (X ₃ ,	
	Y ₅), (l) Form E (X ₃ , X ₃)	
Figure 3.3	Diagrams of representative metaphase karyotypes of	25
	Forms A, B, C, D and E of An. paraliae	

- Figure 3.4 Complete synapsis in all arms of salivary gland polytene chromosomes of F₁-hybrids of An. paraliae. (a) Sk3A female x Ns1B male; (b) Sk3A female x Rt4B male; (c) Sk3A female x Ch1C male; (d) Sk3A female x Rt7D male; (e) Sk3A female x Rt8D male; (f) Sk3A female x Rt5E male
- Figure 3.5 Neighbor-joining (NJ) trees inferred from sequences of three loci, A: second internal transcribed spacer; B: cytochrome c oxidase subunit I (COI); C: COII of An. paraliae, An. lesteri, An. sinensis and An. peditaeniatus. Numbers on branches are bootstrap values (%) of NJ analysis and Bayesian posterior probabilities (%). A hyphen (-) shows that the branch did not appear in majority rule (50%) consensus trees of Bayesian analysis. Branch lengths are proportional to genetic distance (scale bar)
- Figure 3.6 (a-c) Wings of An. paraliae from Thailand showing: (a) very narrow pale fringe spot at tip of vein R₂, and 2 dark spots on 1A similar to that of An. lesteri, (b) narrow fringe spot at tip of vein R₂, and 2 dark spots on 1A, (c) moderated fringe spot extending from tip of vein R₁₋₃, and 1 dark spot on 1A, and (d) Wing of An. lesteri from Korea showing wide pale fringe spot extending from tip of vein R₁ to R₄₊₅, and 2 dark spots on anal vein (1A)
- Figure 3.7 Complete synapsis in all arms of salivary gland polytene chromosome of F1-hybrid larvae of crosses between An. lesteri and An. paraliae. A: ilG1 female x ipN1 male; B: ilG1 female x ipR1 male; C: ipR1 female x ilG1 male; D: ipS1 female x ilG1 male; E: ipN1 female x ilG1 male; F: ilG1 female x ipS1 male

32

28

33

34

Figure 3.8 Neighbor-joining (NJ) trees inferred from sequences of three loci. A: second internal transcribed spacer; B: cytochrome c oxidase subunit I (COI); C: COII of An. paraliae, An. lesteri, An. sinensis and An. peditaeniatus. Numbers on branches are bootstrap values (%) of NJ analysis and Bayesian posterior probabilities (%). A hyphen (-) shows that the branch did not appear in majority rule (50%) consensus trees of Bayesian analysis. Branch lengths are proportional to genetic distance (scale bar)

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved 42

LIST OF ABBREVIATIONS AND SYMBOLS

%	Percentage
°C	Degree Celsius
μΙ	Microliter
μΜ	Micromolar
bp	Base pair
С	Centromere
cm	Centimeter
COI	Cytochrome c oxidase subunit I
COII	Cytochrome c oxidase subunit II
DNA	Deoxyribonucleic acid
dNTPs	Deoxynucleotide triphosphates
e.g.	Exempli gratia
et al	And others
etc.	Etcetera
i.e.	Id est
ITS2	Second internal transcribed spacer
L	Left arm
min	Minute
ml adansı.	Milliliter
mM Copyright ^C	Millimolar
mtDNA	mitochondrial DNA
PCR	Polymerase chain reaction
pH	Potential of hydrogen
R	Right arms
rDNA	ribosomal DNA
sec	Second
U	Unit

ข้อความแห่งการริเริ่ม

- วิทยานิพนธ์นี้เป็นการศึกษาแรกที่รายงานรูปแบบเมตาเฟสการิโอไทป์ของยุงกันปล่อง Anopheles paraliae
- วิทยานิพนธ์นี้ได้แสดงให้เห็นว่าความหลากหลายทางพันธุกรรมในระดับโครโมโซมของ ยุงกั้นปล่อง Anopheles paraliae นั้น ไม่มีผลต่อการเกิดการวิวัฒนาการเป็นยุงกั้นปล่องกลุ่ม ชนิดซับซ้อน
- วิทยานิพนธ์นี้เป็นการศึกษาแรกที่เปรียบเทียบความสัมพันธ์ทางพันธุกรรมระหว่างยุงก้นปล่อง Anopheles lesteri (สายพันธุ์ประเทศเกาหลี) และยุงก้นปล่อง Anopheles paraliae (สายพันธุ์ ประเทศไทย) ด้วยวิธีสหวิทยาการ และแสดงถึงสถานะที่แท้งริงของยุงก้นปล่อง An. paraliae ว่าเป็นยุงชนิดเดียวกันกับยุงก้นปล่อง An. lesteri

Copyright[©] by Chiang Mai University All rights reserved

STATEMENT OF ORIGINALITY

- 1. This thesis is the first study to report the metaphase karyotypes of *Anopheles paraliae*.
- 2. This thesis demonstrates that genetic diversity at the chromosomal level of *Anopheles paraliae* does not result in the evolution of species complex.
- 3. This thesis is the first study to compare the genetic proximity between *Anopheles lesteri* (Korean strain) and *Anopheles paraliae* (Thailand strain) by using multidisciplinary approaches, and demonstrating the true species status in that *An. paraliae* and *An. lesteri* are synonymous.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved