CONTENTS

Acknowledgement	iii			
Abstract in Thai				
Abstract in English v				
List of Tables x				
List of Figures xi				
List of Abbreviations xiii				
Chapter 1 Introductions	1			
1.1 Historical Background	1			
1.2 Objectives	3			
1.2 Objectives	Л			
1.5 Literature Review	4			
Chapter 2 Materials and Methods 33				
2.1 Chemicals and Reagents	33			
2.2 Leukemic Cell Lines Culture	33			
2.3 Screening of FLT3 Expression on Leukemic Cell Lines	33			
2.4 Development of Flow Cytometric Method	41			
2.5 Method Validation of Flow Cytometric Method	43			
2.6 Application for Detecting Expression of FLT3 in Patients	46			
2.7 Statistical Analysis	47			
Chapter 3 Results	48			
3.1 FLT3 Expression on Leukemic Cell Lines	48			
3.2 Development of Flow Cytometric Method	51			

3.3 Validation of Flow Cytometry	55
3.4 Application for Detecting Expression of FLT3 on Leukemic Cells	60
Chapter 4 Discussion	65
Chapter 5 Conclusion	72
References	74
Appendix	90
Appendix A	90
Appendix B	93
Appendix C	95
Curriculum Vitae	101
ราชิตธิ์งแนวอิตองอังเมืองใน	

ลิขสิทธิ์มหาวิทยาลัยเชียงไหม Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

Table 1.1	Types of leukemia	7
Table 1.2	The French-American-British (FAB) Classification of AML	9
Table 1.3	WHO classification of AML	10
Table 1.4	Cytogenetic-based risk stratification	12
Table 1.5	Genetic Abnormalities in Normal Cytogenetic AML	13
Table 1.6	Activation loop mutations of the FLT3 kinase domain	19
Table 1.7	FLT3-targeted therapies currently in clinical development	25
Table 2.1	Preparation of Bovine serum albumin standard solution	36
Table 2.2	The preparation of multiple reactions for cDNA synthesis	41
Table 2.3	The set of FLT3 and β -actin primers	41
Table 3.1	Intra-day and inter-day precision	57
Table 3.2	The percentage recovery and percentage relative error of intra-day	59
	and inter-day assay	
Table 3.3	The percentage coefficient of variation (%CV) of QC levels on day	60
	0, 1, 2, 7 and 14	
Table 3.4	The Δ mean fluorescence intensity (Δ MFI) and percentage coefficient	60
	of variation (%CV) of QC levels in stability assay	
Table 4.1	Categories of bioanalytical methods	68
Table 4.2	Recommended biomarker assay performance parameters	68
AII	rights reserved	

LIST OF FIGURES

Figure 1.1	The new cases of leukemia are expected to be diagnosed in the	6
	United States in 2013	
Figure 1.2	Schematic of the structure of the FLT3 receptor	15
Figure 1.3	Signaling pathways initiated by FLT3 ligand (FL) activation of	16
FL	Γ3 receptor	
Figure 1.4	FLT3 signal transduction	21
Figure 1.5	Schematic of a Western blot analysis	27
Figure 1.6	A schematic overview of a flow cytometer diagram	29
Figure 1.7	Schematic diagram of RT-PCR	30
Figure 3.1	Representative flow cytometric profiles of EoL1, MV4-11, U937,	49
	K562, Molt4 and HL60 cells incubated with anti-FLT3 antibody	
Figure 3.2	The FLT3 protein levels on leukemic cell lines was performed by	50
	Western blot analysis	
Figure 3.3	The cytoplasmic and membrane FLT3 protein expression by	50
	Western blotting on HL60 cell line	
Figure 3.4	FLT3 mRNA levels of leukemic cell lines (EoL1, MV4-11,	51
	U937, K562, Molt4, and HL60) using RT-PCR assay	
Figure 3.5	Optimization of primary antibody concentration	52
Figure 3.6	Optimization of cell concentration	53
Figure 3.7	Histogram overlay of optimal staining time	54
Figure 3.8	Variation of the primary antibody reaction time	55
Figure 3.9	Calibration curve of flow cytometric analysis	56
Figure 3.10	The histogram overlay of the expression of FLT3 protein on	61
	leukemic cell	

- Figure 3.11 The expression of FLT3 protein in leukemic cells obtained from 62 leukemia patient's samples using flow cytometry and Western blotting
- Figure 3.12 The levels of FLT3 mRNAs in leukemic cells using RT-PCR

63

Figure 3.13 The percentages of relative FLT3 levels in leukemic cells obtained from leukemia patient's samples were detected by flow cytometry, Western blotting, and RT-PCR

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม Copyright[©] by Chiang Mai University All rights reserved

LIST OF ABBREVIATIONS

ALL	Acute lymphocytic leukemia
AML	Acute myelogenous leukemia
APS	Ammonium persulfate
bp	Base pair
BSA	Bovine serum albumin
CLL	Chronic lymphoblastic leukemia
CML	Chronic myelogenous leukemia
CO_2	Carbon dioxide
CuSO ₄	Copper sulfate
DEPC	Diethyl pyrocarbonate
DI water	Deionized distilled water
DMSO	Dimethyl sulfoxide
DNA	Deoxyribonucleic acid
FBS	Fetal bovine serum
FSC	Forward scatter
g	Gram
GAPDH	Glyceraldehyde 3-phosphate dehydrogenase
h	Hour
HEPES	N-2-hydroxyethylpiperazine- N-2-ethanesulfonic acid
IMDM	Iscove's Modified Dulbecco's Medium
KCl	Potassium chloride
Coperight [©]	Kilodalton ang Mai University
mg	Milligram
min 8	Minute S C C C C C
ml	Milliliter
mRNA	Messenger ribonucleic acid
Ν	Normality
NaCl	Sodium chloride

Na ₂ CO ₃	Sodium carbonate
NaHCO ₃	Sodium bicarbonate
NaH ₂ PO ₄	Sodium dihydrogen phosphate
Na ₂ HPO ₄	Disodium hydrogen phosphate
NaOH	Sodium hydroxide
PVDF	Polyvinylidene fluoride
q.s.	Quantum satis or sufficit
R-PE	R-Phycoerythrin
rpm	Revolution per minute
RPMI	Roswell Park Memorial Institute
RT-PCR	Reverse transcription polymerase chain reaction
SSC	Side scatter
SDS-PAGE	Sodium dodecyl sulfate polyacrylamide gel
335	electrophoresis
TEMED	Tetramethylethylenediamine
CHERRY C.M.	AI UNIVERSIT

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ **Copyright[©]** by Chiang Mai University All rights reserved