CONTENT

Page

с

d

e

i

k

0

р

1

1

4

4

5

6

6

Acknowledgement

Abstract in Thai

Abstract in English

List of Tables

List of Figures

List of Abbreviations

List of Symbols

Chapter 1 Introduction

1.1 Historical Background 1.2 Objectives 1.3 Scope of Study 1.4 Educational Application Advantages Chapter 2 Literature Review Univers 2.1 Dye-Sensitized Solar Cell 2.2 Titanium Dioxide

	Page
2.3 Diamond-Like Carbon	8
2.4 Filtered Cathodic Vacuum Arc Deposition	10
2.5 Annealing of the film	20
2.6 Analysis technique	21
2.7 Photovoltaic Properties Efficiency	-31
2.8 Photocatalytic Antibacterial Properties	33
2.9 Mechanical Properties of DLC	33
Charter 2 Experimental Processes	5 25
Chapter 5 Experimental Processes	
3.1 Substrate Preparation	36
3.2 Film Deposition	37
3.3 Analysis of the Thin Film	43
Chapter 4 Baculta and Discussions	10
Chapter 4 Results and Discussions	49
4.1 TiO ₂ Film Preparation	49
4.2 Application as a Solar Cell	63
4.3 Application as an Antibacterial Compound	65
4.4 DLC Film Preparation	67
ຊີສອີມເຮດຄົກແດລັແມ	2 CL SIL
Chapter 5 Conclusions and Suggestions	
5.1 Conclusions	71
5.2 Suggestions	

ลิ<mark>ขสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

Page

Table 2.1	Comparison of major properties of amorphous carbons with those of reference materials diamond, graphite, C_{60} and polyethylene	8
Table 2.2	Two types of cathodic arc sources which named by its applying current; continuous direct current (DC) and pulsed current	12
Table 2.3	An example of calculated atomic percentage	24
Table 3.1	Various substrate types for their specific analysis techniques	36
Table 3.2	The TiO ₂ film deposited with various deposition conditions	42
Table 4.1	A summary of the deposition and characterization of the 20-min deposited TiO ₂ film for SEM, EDS, Raman analysis and AFM	51
Table 4.2	The atomic percentage of elements in film on various O ₂ pressures.	54
Table 4.3	The relative atomic percentage varied by varying O ₂ pressure.	55
Table 4.4	The varied bias voltage and deposition time TiO_2 deposited substrate's calculated thickness and density.	57
Table 4.5	The summary of deposition condition for the annealing and deposition time effect on film experiment.	59
Table 4.6	The 6 deposition conditions of TiO_2 deposited FTO glass to be a part of DSSC.	63 ers
Table 4.7	The raw data of the photocatalytic antibacterial test result.	66

Table 4.8 The several DLC deposition conditions deposited at arc voltage 600 V,
10 minutes deposition time, base pressure at 5x10⁻⁵ torr with different bias voltage.

Page

Table 4.9 The several DLC deposition conditions deposited at arc voltage 600 V,
 -250 V biased, 10 minutes deposition time, base pressure at 5x10⁻⁵ torr with different working pressure of N₂.

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

Page

		Page
Figure 1.1	Reported timeline of solar cell energy conversion efficiencies.	1
Figure 1.2	Dye-sensitized solar cell.	2
Figure 1.3	The Photograph of the in-house developed FCVAD system at	3
	Chiang Mai University.	
Figure 1.4	Hard disk architecture.	4
Figure 2.1	Unit cells of 3 main phases of TiO ₂ .	7
Figure 2.2	The various phases of diamond-like carbon.	9
Figure 2.3	Components of a DLC material.	9
Figure 2.4	Schematic of FCVAD system.	10
Figure 2.5	Ion current from different elements plotted as a function of arc current.	13
Figure 2.6	Schematic of a 1995 Berkeley Lab's miniature cathodic arc source.	15
Figure 2.7	Schematic of a SEM's installed electron gun.	21
Figure 2.8	Schematic of an arranged SEM's instruments.	22
Figure 2.9	Atomic levels involved in copper K_{α} and K_{β} emission.	23
Figure 2.10	The EDS spectrum of a high temperature nickel based alloy	24
	which is plotted between the spectrum's energy-count.	
Figure 2.11	The three spectrums and their relative intensity detected after	26
	an intense laser beam emits onto a material's surface.	
Figure 2.12	Crystal structure of anatase phase.	27
Figure 2.13	The Raman spectrum of anatase and rutile TiO ₂ .	27
Figure 2.14	Raman spectrum is dominated by G peak and D peak of the sp ²	28
	configuration, indirect method on sp ³ /sp ² ratio.	
Figure 2.15	The Eigen vectors of Raman sp^2 G and D mode respectively.	28
Figure 2.16	A laser beam is in used to provide observing the cantilever movement	30
	by the detector.	

Page

Figure 2.17	Different surface analysis AFM modes identified by their operating	30
	range between the AFM's tip and sample's surface.	
Figure 2.18	Schematic of DSSC photovoltaic properties testing.	32
Figure 2.19	An example of the V-I plotted solar cell's photovoltaic properties test.	32
Figure 2.20	(red line) The current-voltage curve obtained from raw data.	33
Figure 2.21	Hysitron [™] triboindenter plays a role measure the films' hardness and adhesion.	34
Figure 2.22	The specimen is dragging in the horizontal direction while the applied	34
	normal force is increasing overtime.	
Figure 2.23	The increasing applied normal force is measured overtime to detect	35
	the critical load where the friction force increases suddenly.	
Figure 3.1	Small pure titanium rod is attached to the end of stainless steel rod.	37
Figure 3.2	FCVAD cathode holder and substrate holder.	38
Figure 3.3	The installed instrument in a deposition chamber.	38
Figure 3.4	Active guage controller is being used to measure the deposition	39
	chamber's pressure lower than $2x10^{-2}$ torr.	
Figure 3.5	The power supply is set to provide a fixed arc voltage at 0.600 kV	39
	without fixing arc current.	
Figure 3.6	The pulsed plasma of Ti with O ₂ doped (a) top view (b) side view.	40
Figure 3.7	The peak of 6.10 Volts is measured.	40
Figure 3.8	The TiO ₂ post-deposited substrates	41
Figure 3.9	The LTD® annealing furnace is being used for annealing TiO ₂ film.	41
Figure 3.10	Gold-coated TiO ₂ -deposited substrates attached on top and side	43
	of SEM's stubs.	
Figure 3.11	The JEOL® JSM 6335F is being used for analyzing the film by both	44
	SEM and EDS techniques in this study.	
Figure 3.12	Renishaw InVia Reflex Raman spectrometer	44
Figure 3.13	AFM system.	45
Figure 3.14	N719 dye solution soaked annealed TiO ₂ coated FTO glasses.	46

Figure 3.15	Iodine half-filled after testing DSSC.	46
Figure 3.16	The power conversion efficiency test system.	47
Figure 3.17	Schematic of the power conversion efficiency experiment circuit.	47
Figure 3.18	The setup for testing TiO ₂ film photocatalytic antibacterial effect.	48
Figure 4.1	The deposited film on varying distance 1cm and 3cm, with arc voltage 600V, bias -250V, pressure 4.2×10^{-3} for 20 minutes.	49
Figure 4.2	The film transparency as a function of the working pressure.	51
Figure 4.3	SEM images of the films.	52
Figure 4.4	AFM-measured film surface morphology across the boundary between the film and the substrate as a function of the working pressure.	53
Figure 4.5	The thickness of films deposited at different oxygen doping pressure.	53
Figure 4.6	An example of the EDS information of the titanium dioxide thin film which is deposited at 10 ⁻⁴ torr, arc 600 V and -250 V biased with 20 minutes deposition time.	54
Figure 4.7	The plotted relative atomic percentage varied by varying of O ₂ pressure with making use of the non-doping condition as a reference.	55
Figure 4.8	The deposited TiO ₂ film with different oxygen doping pressure at 10^{-1} torr, 10^{-2} torr, 10^{-3} torr and non-oxygen doped at the base pressure at $5x10^{-5}$ torr.	56
Figure 4.9	The relationship between film's mass and deposition time.	57
Figure 4.10	The relationship between film's thickness and deposition time.	58
Figure 4.11	The relationship between film's density and deposition time.	58
Figure 4.12	The not annealed TiO ₂ film deposited with O ₂ doped pressure at 10^{-3} torr for 10 minutes, 20 minutes and 30 minutes deposition time.	60
Figure 4.13	The annealed TiO_2 film deposited with O_2 doped pressure at 10^{-3} torr for 10 minutes, 20 minutes and 30 minutes deposition time.	61
Figure 4.14	The deposited TiO ₂ film with different O ₂ doped pressure 10^{-3} torr and 10^{-2} torr	61

Page

Figure 4.15 The deposited TiO_2 film with annealed and not annealed condition	62
deposited with O_2 doped pressure at 10^{-3} torr.	
Figure 4.16 The deposited TiO ₂ film with annealed and not annealed condition	62
deposited with O_2 doped pressure at 10^{-2} torr.	
Figure 4.17 The circuit's current density affected by varying the source's voltage	64
in annealed and non-annealed TiO ₂ deposited FTO glasses.	
Figure 4.18 The circuit's current density affected by varying the source's voltage	64
in non-biased and -250 V biased TiO ₂ deposited FTO glasses.	
Figure 4.19 The circuit's current density affected by varying the source's voltage	64
in 20 min and 30 min deposition time of TiO ₂ deposited FTO glasses.	
Figure 4.20 The Raman spectrum of DLC with varied bias voltage.	67
Figure 4.21 The plotted ratio of the intensity between D peak and G peak of	68
the films with varied bias voltage from 0 V to -450 V.	
Figure 4.22 The Raman spectrum of the DLC with various working pressure of N_2 .	69
Figure 4.23 Summarized tested properties of DLC films; Hardness, Critical load	69
and intensity ratio between D peak and G peak.	

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

LIST OF ABBREVIATIONS

AFM	Atomic Force Microscopy
a-C:H	Hydrogen doped Amorphous Carbon
СВМ	Conduction Band Minimum
DC	Direct Current
DSSC	Dye-Sensitized Solar Cell
DLC	Diamond-Like Carbon
D peak	Disorder Peak
EDS, EDX	Energy-Dispersive X-ray Spectroscopy
FCVA	Filtered Cathodic Vacuum Arc
FCVAD	Filtered Cathodic Vacuum Arc Deposition
FTO	Fluorine Doped Tin Oxide
G peak	Graphite Peak
SEM	Scanning Electron Microscopy
ТСО	Transparent Conducting Glass
TiO ₂	Titanium Dioxide
ta-C	Tetrahedral Amorphous Carbon
ta-C:N	Nitrogen doped Tetrahedral Amorphous Carbon
UV	Ultraviolet

Copyright[©] by Chiang Mai University All rights reserved

LIST OF SYMBOLS

A	Projected Contact Area
d	Plasma's Duty Cycle
F	AFM Measured Force
F _{max}	Maximum Load which causes a constant penetration depth
FF	Fill Factor
н	Hardness
X	Cantilever Deflection
Jsc	Short Circuit Current Density
J _{mp}	Current Density that provides Maximum Power
k	Spring Constant
κ	System Coefficient
K _{eff}	Filter Efficiency
Voc	Open Circuit Voltage
V _{mp}	Voltage that provides Maximum Power
P	Average Deposition Power
P _m	Maximum Power Provided by DSSC
P _{in}	Input Light Source's Power
n_0	Raman Laser Frequency
	р