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In this work, the effect of random vacancy defects on the electrical properties of ferro-
electric thin-films was smdied. The Monte Carlo simulation, based on the fervoelectric
DIFFOUR model, was performed in the lattice system with free and periodic boundairy
comnditions. The Metrapolis algorithm was considered in choosing the proper states un-
der the presence of the electric field. From the results, the hysteresis area at a given field
was found to depend on the thickness of thin films and the vacancy defects of svstem. For
instance, in thicker films, the larger hysteresis area was observed, which is resulred from
the stronger ferroelectric interaction. On the other hand, the hysteresis area decreases
with increasing vacancy concentration, due to the reducrion of ferroelectric interaction
on the average. To undersiand the hysteresis behaviors, the scaling exponents of as-
sociated parameters in the power law scaling form were considered. The results were
discussed and compared with these from literatires,

1. Introduction

The dynamic hysteresis has now been considered important in both fundamental and tech-
nological point of view in terms of their associates, such as hysteresis shape, loop area,
remnant polarization, coercivity field. For instance, the hysteresis area is the energy dissi-
pated within one cycle of dipole switching, which identifies the nature of phase transition
between ferro- and para-phase. Moreover, the remanence and coercivity show the stabil-
ity of the ordered alignment at nonzero temperature. The studies in such a topic become
interesting subject from the point of view of applications, due to the high-speed memory
devices in which ferroelectric thin films are being developed extensively [1]. Therefore,
the responses of ferroelectric thin films to external field including films structure, such as
thin film's thickness, were investigated in detail to design better devices [2, 3]. However,
the roles of hysteresis on electrical properties of ferroelectric thin films affected by the
external applied field have not been quite well recognized. due to the complexity of thin
films structure, and dynamic hysteresis has received less emphasis [4-6]. Although a num-
ber of the defect-free systems had been investigated and reported [7-11], a more realistic
maodel which includes the effects of the defects, especially the non-electric inclusion, has
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Dynamic Hysteresis Properties of Ferroelectric Thin Films 141

not been studied, in details. In this work, the Monte Carlo simulation [12] was employed to
investigate the electrical properties of ferroelectric thin films with internal vacancy defects.
The purpose is to obtain a more detailed understanding of how both defect concentration
and film thickness affect the hysteresis properties.

2. Methodology

In this work, the DIFFOUR model with an inclusion of non-electric-sites was considered.
The Hamiltonian was written as [13, 14]

H= E(—m——ﬁ +—H‘) Uzu, —E“} Zun (1}

=ff=

where P /2m denotes the kinetic energy, &; is the ferroelectric dipole at site i and is
considered to be a vector with constant magnitude, a and b are the double-well potential
parameters, <ij> means the summation taking over the nearest 11eighbors' pairs of dipoles,
U refers to the ferroelectric interaction and E(f) = Egsin(27 f1)Z represents an external
electric field acting only on the z-direction of thin-films, where £ and f are field amplitude
and frequency respectively. The Hamiltonian in Eq. (1) can be simplified by using the
appropriate reference energy, and as |ii;| is constant in magnitude (to emphasize effects of
domain reorientation), Eq. (1) can be rewritten as

H=-U Z it - iy — E(F)Zu, \ (2)

<ij=

where ii; is a unit vector having to one of the possible 14 ferroelectric dipole directions (8
from rhombohedral and 6 from tetragonal structures). The magnitude of each dipole was
absorbed into U, and u,. is the z-component dipole at site i. Moreover, I/ was used as the
unit of energy, therefore the unit of temperature T and electric field £ were redefined as
Ulkg and U respectively, where kg is the Boltzmann’s constant.

In preparing the system, the ferroelectric dipoles were assumed to reside in the unit
cells the considered ferroelectric lattice system consisting of N = L x L x [ dipoles, where
L x L denotes a film’s size and [ is the ideal-film thickness (the number of monolayer)
and N refers to the total ferroelectric dipoles. Here, ! is chosen to be I, 2, 4, 6 and 8.
L =1 was chosen to preserve the film geometry. Therefore, L = 100 was considered
where results from larger sizes were not significantly different. The Metropolis algorithm
[13] was considered and periodic and free boundary conditions were used along the xy-
plane (in-plane direction) and the z-direction (nul—nf—plane direction). Moreover, the defect
concentrations (non-electric sites) of system ¢, included into the structure varies from ¢ =
0, 1.4, 6, 10 and 20%.

In updating the dipole configuration, a dipole #; was randomly chosen and assigned a
new random direction (from possible 14 directions). The new direction was accepted with
the following Metropolis algorithm

exp(—AH()/ ks T)  if AHi(t) >0
1

ifAH (1) =0 ®

prob =

where A H;(r) is the energy difference due to the update at site f and time ¢. The unit time
was scaled in unit of Monte Carlo step per sites (mcs), which is equivalent to N trial updates.
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142 S. Srinoi and Y. Laosiritaworn

The site it; was updated if AH;(¢) = 0 or random number r < prob, where r € [0, 1). These
procedures were repeated until the simulation terminates.

In measuring the observables, a fixed temperature T = 0.5 Ufky was chosen since all
considered ferroelectric films are in their ferroelectric phase at this 7' [16]. Moreover, a
given fixed field Ey = 4.0 U was considered to investigate how the other parameters affect
the hysteresis behaviors. Therefore, with varying [, f, and ¢, the hysteresis loops were drawn
by calculating the polarization per dipole at time /, i.e.

1
Pt = Zu;—;(& (4)

where N is the total number of available dipoles. The first 1000 hysteresis loops were
discarded for the steady state condition, and next 10000 loops were performed to average
the hysteresis area

A= fﬁ pdE ()

In this work, f varied from 0.010 to 1.000 mcs~'.

3. Results and Discussions

Figure 1{a) presents the simulated hysteresis loops, which was performed on 2 layered films,
at a series of frequencies f but fixed £y = 4.0 UV, The system without the vacancy defects
was considered. From the results, at low frequency (or large period), the hysteresis shape
looks like a thin rhombic pattern or s-shape loop. but as frequency increases, hysteresis
loops reduce along polarization axis since the phase-lag is large. This is as with faster field
switching, the dipoles have less time to respond the field change.
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Figure 1. The hysteresis loops of (a) perfect structure and (b) defected system e = 20% with varying
frequency f from (LOTO to (L8000 mes tatl=2,T=05 Ufky.
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Figure 2. The thickness dependence of hysteresis loops at (a) ¢ = 0 and (b) ¢ = 20% and [ varies
from 1 to 8 layers at j = 0.025 mes—.

The effect of vacancy defect with ¢ = 20% on hysteresis loops were shown as Fig. 1(b).
From the results, the hysteresis loop, e.g. at f = 0.010 mes™! was slimmer compared to
the ideal structure case, and so does hysteresis area since the ferroelectric interaction was
decreased on the average due to some dipoles missing. The energy dissipated in dipole
switching was also decreased.

From the results of perfect structure, the layer dependence of hysteresis loops at fixed
frequency f = 0.025 mes™! and field amplitude £y = 4.0 U was exhibited in Fig. 2(a).
It was found that, at = 1, the hysteresis shape look likes a slim s-shape. However, for
I = 2, the hysteresis loops are similar to oval-shape loop due to the stronger ferroelectric
interaction, in enhancing the phase-lag, and the energy dissipated in changing the dipole’s
direction is larger. Figure 2(b) shows the hysteresis loops of structure with vacancy defect ¢
= 20%. The results are similar to the perfect structure, but the hysteresis areas are smaller
due to the weaker ferroelectric interaction.

To investigate how hysteresis area responds to the field frequency f, the film’s thickness
I and the defect concentration ¢, the hysteresis area A as function of f, [ and ¢ were
calculated. Examples were shown in Fig. 3(a) and Fig. 3(b). Both of them displayed the
qualitatively same area profile, that is, A gets increasing at thicker films due to stronger
ferroelectric interaction and decreasing at low frequency region (f < 0.1 mes™'), with
higher concentration ¢, i.e. Fig. 2(b), less area was observed due to the weaker ferroelectric
interaction. Then at high frequency region (f = 0.1 mes™'), A decreases in this very high
frequency region and become less dependent of [ and ¢ because the system have less time
to switch the dipoles of system. These results are consistent with the hysteresis results in
Figs. 1 and 2.

It is also of interest to introduce the empirical scaling relation in power law, i.e.

Ao fUP(1— o), (6)
where &, f# and y are the exponents to scaling. These exponents imply how the hysteresis

area (or the dissipation energy) responds to f, I and ¢. The appropriate fit was obtained at
high f (=0.100 mes ™) as there is not enough data for the fit in the low f region. Results and
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Figure 3. The frequency dependence of hysteresis area at (a) ¢ = 0% and (b) ¢ = 20%, ! ranges from
I to 8 layers.

their good R? were shown in Fig. 4, where good their R? confirm the scaling accuracy with
the exponents @« = —0.979, § = —0.082 and y = —0.114. According to the previous work
[16], without any defects in considered system, the scaled exponents of f and [/ were —0.969
and —0.028 respectively. These results show that the area A decreases with increasing f and
I

The remnant polarization p, and coercive field £, were also discussed in this work via
slim hysteresis loops shown in Fig. 5. When the external electric field drops to zero, the
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Figure 4. The scaling between A andf_m"'q!_n'n”( 1-¢)~ 014 for f = 0,100 mes™ 1

71



Dynamic Hysteresis Properties of Ferroelectric Thin Films 145

1

0.8

0.6

0.4

02

0

Polarization (p)

02

0.4

0.6

0.8

Electric field (E)

1 layer

Figure 5. The slim hysteresis loop simulated at f = 00010 mes™', Ey = 4.0 U, T = 1.0 Ufkg and ¢
= 0% for | and 2 layers respectively.

system retains a nonzero polarization ot p, since it does not relax back to zero polarization
since dipoles require more time to response the field change. (This is useful as a memory
device). To switch the polarization back to zero, the coercive field E, is required. Both
p. and E, can be positive and nagative values. In addition, p, increases in thicker films
and so does E, due to the larger number of dipoles and stronger ferroelectric interaction.
Therefore, the imposed electric field have to be increased to switch the polarization to zero.

4. Conclusions

The hysteresis behaviors of ferroelectric thin films with vacancy defects were investigated by
Monte Carlo simulation. The DIFFOUR model was employed in this work and Metropolis
algorithm was considered to update the system. The evolution of hysteresis loops was
simulated to investigate the hysteresis behavior. The layer and frequency dependence of
hysteresis loop and the frequency dependence of hysteresis area were found, and the power
law relation among the hysteresis area, the field frequency, and the vacancy concentration,
was proposed. The remnant polarization and coercive field were also discussed.
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Ferroic hysteresis modeling is an approach applicable to study lagging relationship
berween ferroic properties and external-dynamic-perturbation behaviors. The under-
standing to the lagging hysteresis behaviors, such as hysteresis area, coercive field, or
remmnant magnetization/polarization, is essential to the material-industry development.
In this review, fundamental analysis as a microscopic study, including spin models,
mean-field method and Monte Carlo simulation, and data processing analysis as a
linking bridge between macroscopic analysis and the experiment results, such as the
artificial neutral network (ANN) and Fourier analysis, were elaborated on how they can
be used to model the dynamic ferroic hysteresis. Then, fervoic behaviors were explained
on how they depend on the external perturbations, such as the field parameters and
temperature. The responses of ferroic behaviors on these factors, in both qualitatively
and quantitatively, were also discussed in details.

Keywords Ferroic hysteresis; spin model; mean-field analysis; Monte Carlo simula-
tion; artificial neural network: Fourier transformation

1. Introduction

Ferroic is a generic name given to groups of ferroelectric, ferromagnetic, and ferroelastic
materials, and associated ferro-type behavior. The comprehensive understanding in ferroic
behaviors is very essential for making the best use of complex materials in applications. For
instance, the ferroic materials have been used as vital compositions in some smart-structure
applications, such as sensors and actuators [1]. In addition. during recent years, ferroic
materials also play an important role in developing the memory media for modern technol-
ogy era, such as ferroelectric materials in high-speed nonvolatile memory application (2],
ferromagnetic materials in high-density magnetic recording media [3], and ferroelastic ma-
terials in shape memory alloys (SMAs)—a material that can retain to its original geometry
after deformation [4, 5].
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Ferroic Hysteresis Modeling 203

In general, ferroic materials are sensitive to external perturbations e.g. temperature T,
electric field E, magnetic field h, or stress o. When ferroic materials are subjected to a
time-dependent oscillatory external field, they exhibit a history-dependent behavior called
hysteresis. Typically, behaviors of ferroic materials can be analyzed from their hysteresis
which reveal the existence of a strong nonlinearity and phase transition in thermodynamic
systems. For example, ferromagnetic materials under an external time-dependent magnetic
field e.g. 11(#) = hy sin(ewr), the time-dependent magnetization m(¥) is found to lag behind
the external field, and m-h hysteresis occurs. Similarly, under the external electric field
e.g. E(1) = Eysin(wr), the time-dependent polarization p(7) in ferroelectric materials lags
behind the field, and p-E hysteresis is also obtained. In ferroelastic materials, under the
applied stress o, the stress-dependent strain ¢ is found, and ferroelastic hysteresis or £-o
loop is observed [6]. The p-E, m-h, or e- loops can be numerically studied and simulated
by various theoretical models [6—12], to name a few such as the mean-field method based
on the Ising model [7, 10, 12] and Heisenberg model [9], and Monte Carlo method based
on spin models [8, 11]. After simulating, the ferroic properties can be extracted from their
hysteresis loops.

From literatures, by using ferromagnetic notations/language in referring to ferroic
behavior, the hysteresis loop area A, coercivity field hc, remnant magnetization m,, and
the period average magnetization O are generally investigated. It is usually found that the
hysteresis properties depends on the external perturbations, such as the field frequency o,
field amplitude fy, and temperature T, and the dynamic phase transition diagram can be
obtained from @ [13]. In general, in order to empirically obtain how hysteresis area relates
to these perturbations, the power-law scaling is usually performed in many experimental
and theoretical studies of ferromagnetic materials [7, 8, 10, 14-16] and ferroelectric ma-
terials [17-24]. For instance, the hysteresis area can be written in a form of A o ru"hf:TV
where @, £, and y are exponents to the scaling [16]. After scaling, the exponents can be
estimated, and then the power-law dependency on these external factors of the hystere-
sis area can be predicted. The same way can be applied for remnant magnetization and
coercivity.

However, based on the power-law scaling, the obtained exponents are strongly influ-
enced by the considered parameter range. For example, in BaTiO; bulk ceramics, above
and under the coercive field, the hysteresis area scaling are in the forms A o f~023
and A oc [~ E}% respectively, where f and Ey are field frequency and field amplitude
[22]. In addition, from the A-f relationships, the exponents cannot be predicted in the region
close to the turning point (where the scaling function has to change from power-law growth
to power-law decay). Consequently, some important hysteresis behavior cannot be fitted
(predicted) by power-law scaling. Apart from the power-law scaling, Fourier analysis can
also be used to find the relations between the hysteresis area and field parameters, e.g. the
ferroelectric hysteresis of the BaTiO: bulk ceramic [25].

In this review, to understand how hysteresis behaviors of ferroic materials response
to the external perturbations and how to define the dynamic ferroic phase diagram from
hysteresis properties in details, fundamental analysis was proposed to study the dynamie
ferroic behaviors in microscopic view, and data processing analysis was proposed to link
experimental results with external perturbation empirically. In general, data processing
analysis is performed to found a connection between the macroscopic phenomena and
experimental conditions of ferroic materials. On the other hand, fundamental analysis
seeks for the understanding of nature from microscopically inside out. In this review, both
fundamental analysis, such as the spin models, the mean-field approach and Monte Carlo
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simulation, and the data processing analysis, such as the artificial neural network and
Fourier analysis, will be discussed in details in the next section.

2. Methodologies

2.1 Fundamental Analysis

The idea of fundamental analysis is to assume that macroscopic properties of materials
are resulted from the interactions in microscopic level. Thus, this method focuses on the
microscopic interaction in materials as detailed in the following sections.

2.1.1 Spin Model. A spin model is a mathematical model used widely in studying the
dynamic properties of magnetic materials at the microscopic scale. The considered mag-
netic material consists of many magnetic dipole moments called spins. Under an external
magnetic field, the spin Hamiltonian of a system is given as [26]

- - 58 Gy Fg)E - Ey) = -
H=- Z-ﬂ'_;-ﬁ ‘S;‘+Z Kij [ r.—‘.} - = Jrj - ]4-2(5; -Sr-)z—z-'r(r)--m
ij i i

gt if ij
(1)

where J;; represents the exchange interaction between spin vector 5; and ¥, D; denotes
the anisotropic interaction, Kj; refers to dipolar interaction strength, and E{r) is a time-
dependent oscillating external magnetic field, The symbol <ij= indicates that sum takes
only the first neighbor pairs. By absorbing the unit of s; into Jy, Kj;, D; and h(r), this gives
Jiis Kij. Dy and hir) to have as a unit of energy. Further, the spin models can be classified
into two subgroups — discrete and continuous spin models. The examples of well-known
discrete spin models are the Ising model and the Potts model as well as the DIFFOUR
model, while the two most widely studied models of continuous spin models are the XY
maodel and the Heisenberg model [27].

Starting with the simplest spin model, i.e. the Ising model, each Ising spin is allowed
to have only 2 possible directions on one axis e.g. the z-axis. Therefore, 5; = 5, = +1Z as
s; can be only £1. Typically, the z-direction is chosen to be the easy axis direction or the
applied field direction. If the field is periodic in time and on the z-direction, it is possible
to choose !-I(r) = hy sin(ewr )2 where hy and e are the field amplitude and field frequency,
respectively. For an isotropic case considering only the sirongest interaction, it is possible to
choose Kjj = Dy = 0 and Ji; = J where J is the ferromagnetic (if J = 0) or antiferromagnetic
exchange interaction (if / < (). Therefore, from Equation (1), the Ising Hamiltonian can

be wrilten as
H=-J Z 585 — Zhﬂ'}sf. 2)

i i

where fi(1) = hy sin{ewr). On the other hand, the Potts model is another discrete spin model,
but its spin can take more discrete values, that is, s5; = 1, 2, 3, ..., g where g is the
maximum state a spin can have. Note that the Potts model is equivalent to the Ising model
when g = 2 [27]. Additionally, an improved version of the Potts model is the DIFFOUR
model which is usually used to study the ferroelectric dynamic behaviors which will be
discussed in section 2.1.3.
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Ferroic Hysteresis Modeling 205

Unlike the discrete-spin models, e.g. the Ising or the Potts model, the XY model
provides spin as two-components vector of unit length and can point to any directions
on a two-dimensional plane, that is, 5; = (cos &, sin#;). Therefore, 5; - §; can be replaced
by cos#;;, where 8;; is an angle between the two spins. It should be noted that although
XY spins are two-dimensional vectors, they can also be used in the three-dimensional
spatial-structure. The Heisenberg model has a same concept as the XY model, but the
spins are three-dimensional unit vectors, and can be represented by two angles of spherical
coordinate - ¢ and ¢ i.e., 5 = (sin#; cos ¢, sind; sin ¢y, cos ;) [27]. In this review, both
the Ising and Heisenberg models will be discussed through the mean-field approach and
Monte Carlo simulation as in the following section.

2.1.2 Mean-Field Theory. The mean-field theory is an analytic method assuming that
fluctuations can be neglected, and the magnetic spins align in an effective field created
by all surrounding spins and the external field. For the Ising model, within the mean-
field framework, the equation of motion for the average magnetization m(r) is given by

[28]

dmir)
T { = —m(f)+tanh B {E), (3)
dr
where 7 represents the microscopic relaxation time, § = 1/kgT where kg is the Boltz-
mann’s constant, and () denotes the local field which has the same value overall the
system. Further, f# {E) can be written as
Zundm(t) + h“)

BILE) = T (4)

where 7, is the coordination number related to the nearest-neighbor isotropic-system (i.e.
e = 4, 6, 8 and 10 for a cubic, simple cubic, body centered cubic and face centered
cubic lattice, respectively). Analytically, Eq. (4) can be straightforwardly solved only in
simple system, e.g. defect-free, uniform interaction and least surface effect systems. On
the other hand, for imperfect structure, solving differential equation using numerical tech-
nigue, e.g. the fourth order Runge Kutta method, becomes more appropriate to obtain the
magnetization as a function of time. Then, from the time-dependent magnetization mi1), the
dynamic order parameter (or the so called the period average magnetization) for classifying
dynamic hysteresis phase can be defined from Q = (I{P)fup mit)dr where P =2 faw is
the field-period. With this dynamic order parameter, the dynamic phase transition bound-
aries between the dynamic ferromagnetic phase (Q £ 0) and the dynamic paramagnetic
phase (2 = 0) can be drawn [13, 29-31]. Specifically, the dynamic critical temperature
T, which states the phase boundaries, can be defined at the lowest temperature giving
() =0, e.g. see Fig. |. Therefore, at a fixed field frequency but varying hy, pairs of (i,
T¢) on the dynamic phase boundaries can be obtained. These boundary lines separate a
dynamic ferromagnetic phase or asymmetric hysteresis phase (where @ % 0) from a dy-
namic paramagnetic phase or symmetric hysteresis phase (where @ = 0). For pairs of
(hy, T) lying above the boundary line, a magnetic hysteresis is a symmetric type, but for
those lying below the boundary line, a magnetic hysteresis is an asymmetric type. Exam-
ple of these boundary lines are shown in Fig. 2. Further, with increasing frequencies, the
phase boundaries tend to move upward since the phase lag between the magnetization and
the external magnetic field is enhanced. Therefore, the asymmeitric-hysteresis behavior is
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Figure 1. The dynamic order parameter profiles of the mean-field Ising hysteresis extracted at
(a) m = 0.5 r~! (presenting a continuous transition at i, = 1.0 J but a discontinuous transition at
hy = 2,00y and (b) iy = 1.0.J (presenting a continuous transition at w = 1.0/ 7~' but a discontinuous
transitions at w = 0.1 7.

more outstanding, since the magnetizaiion has less time to follow the oscillating field. Fur-
ther, it is found that the change in  from finite to zero values (from dynamic ferromagnetic
phase to dynamic paramagnetic phase) can be either continuous transition or discontinuous
transitions, depending on field amplitudes and field frequencies. as shown in Fig. 1.

For Heisenberg model, the mean-field equation can be proposed using kinetic Bethe-
Peierls approximation (KBPA) [10, 32, 33]. For instance, for ferromagnetic films with

44 rpecm

T (Jikg)

iy ()

Figure 2. The dynamic phase diagram of the two-dimensional Ising-hysteresis extracted from mean-
field analysis. The frequency e is in a unit of T ' and lines are used for visual aids.
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the simple cubic structure and N Heisenberg spins in three-dimension [9], the mean-field
equation of average magnetization can be written as [34]

= —E kT
N
R = —mir) + W. (5)
;

In Eq. (5), E; refers to the energy of the i spin. If only exchange interaction and anisotropic
energy are laken into account, £; could take a form [9]

Ei = =5 - [Zanlm & +m, § +m.2) + (K /)G - )i + h()/al, (6)

where K is the anisotropy constant which easy axis is parallel to ii; and a = AJ where 4 is
l‘he mean-field coefficient, Note that @ = 1 can be used as unit of energy, In addition, i; and
hit) are all along z-axis, that is i#; = Z. Further, if K =0and E,- = +1, Eq. (6) becomes an
scalar equation of motion [10, 12]. In addition to that of the Ising model, the period average
magnetizations should be investigated both along z- and x-axes, 1.e. Q. = (w/2m) f m_(t)dt
and @, = (w/2m) Jf mdt, along with the hysteresis area, i.e. A; = (w,f?.rs)f m;(t)dh
(i = x, ¥, z). It was found that m,—h and Q—T loops for the Heisenberg model are different
from those for the Ising model due to more degree of freedom of the spin directions [9].

2.1.3 Monte Carlo Simulation. Although the mean-field method can predict magnetic
phase transition and explain magnetic behaviors near the critical temperature T, it gen-
erally overestimates T and reports critical-exponent values that do not depend on system
dimensionality [35]. These are the weak points of the mean-field analysis caused by ne-
glecting important fluctuation near the phase transition. On the other hand, Monte Carlo
simulation is one of the well-known sophisticaie methods in studying statistical physical
problem, including phase transition and critical phenomena topics. The basic concept be-
hind Monte Carlo simulation is to use stochastic process (e.g. Boltzmann’s probability and
random thermal fluctuation) to take the system from one state o to another possible state
v, The system can then pass through series of states with well-defined set of probabilities
at time 1, L.e. | p,(1)}. The state evolution is governed by the master equation [27]

Pl S PR > 10 = puORGE > )], @
where Ri{p — v) is the transition rate for the probability p,(t) = (1/Z)e P, Z =
Z“ e FE, E, denotes the energy of state p, and 8 = 1/kgT. Currently, the commonly
used algorithms in Monte Carlo simulation for spin models can be divided into spin-flip
and cluster-flip algorithms.

In spin-flip algorithm, a spin is chosen at random and updated to a new spin (different
value), and the unit is accepted with the Metropolis probability [36]

e“'ﬂﬁf: AE =10
walp — v) = { 1 ;otherwise ®
or the Glauber probability [27]
_JaFefrEy i AE =0
walp — v) = I i ;otherwise @

79
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In Egs. (8) and (9), AFE is the energy difference due to the spin update (the spin
flip). Between these 2 algorithms, the Metropolis algorithm is more efficient at high tem-
perature but the Glauber algorithm is more effective at low temperature. However, due
to less computational effort in each turn, the Metropolis is more commonly used than
the Glauber in studying critical behavior of spin model. Further, the simulation time unit
is usually termed as 1 Monte Carlo Step per site or 1 MCS, which equals to N spins
update (either successful or unsuccessful) and N refers to total number of spins in the
system.

Although the spin-flip algorithm is easy to implement, it has a disadvantage in guiding
the system towards equilibrium state at temperatures close to the critical point. Therefore,
the properties extracted from these temperatures in the critical region tend to suffer from
large statistical error due to the large correlation time among successive states. To overcome
the problem, the cluster-flip algorithms, such as Swendsen-Wang (SW) [37] and Wolff [38]
algorithms, were proposed. The central idea is to make the clusters of spins and flip all spins
in each cluster in one move, rather than trying to switch spin one by one. Consequently,
this enhances the state updating towards equilibration, lessens the correlation time, and
improves the statistical error. However, the cluster-flip algorithms are somewhat difficult
to be applied for anisotropic system. Further, since the clusters of spins vary in sizes and
strongly depend on system temperature and internal-interaction, it is unlikely to define
universal time-unit for the simulation. Therefore, most Monte Carlo studies of dynamic
hysteresis behaviors tend to use the spin-flip algorithm as it is more convenient.

Similar to the mean-field analysis, the dynamic phase transition boundaries can also be
investigated using the Monte Carlo simulation. For instance, Fig. 3 shows the dynamic phase
transition diagram obtained from performing Monte Carlo simulation on two-dimensional
Ising model. The results are found to qualitatively agree well with the mean-field approach,

3.5 T T T T T

[=001 @
Paramagnetic f=002 m

3+ =003 @ -
J=005 e
=010 &

25 F=030 & 1
=100 »
=400 =

[3%]

T (Jikg)

Fervomagnetic

0 " ! )
0 05 1 15 2 25 3 35 4

.IrJn {J’)

Figure 3. The dynamic phase diagram of the two-dimensional Ising-hysteresis extracted from Monte
Carlo simulation. The frequency f is in a unit of mes™' and lines are used for visual aids,
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that is, with increasing the frequencies, the phase boundaries tend to move upward. This
confirms that the dynamic phase transition behavior is universal in general and does not
depend on the techniques used in the investigation. Nevertheless, it is worth to emphasize
that it is not possible to directly compare the results (the boundary lines) of these 2
techniques quantitatively. This is as by nature of mean-field method, any fluctuations are
discarded, but the Monte Carlo takes the fluctuations very much into account. Henceforth,
their quantitative results are different both in values and physical meaning especially in the
critical region.

Apart from the ferromagnetic subject, the basic idea of spin model can also be applied
to study the dynamic hysteresis behaviors of ferroelectric materials. In ferroelectric spin
systems, p-I loops can be obtained using Monte Carlo simulation on the DIFFOUR maodel.
In many previous works, the DIFFOUR model was successfully used to investigate the
dynamic ferroelectric hysteresis [39-42]. For example, ferroelectric hysteresis properties in
thin films were investigated using the DIFFOUR model with the Metropolis algorithm [41].
It was found that their hysteresis properties, such as the hysteresis area, remnant polarization
and coercivity field, depend on the film-thickness, frequency and amplitude of the field.
Moreover, the DIFFOUR model can be considered in a special material, such as acceptor-
doped ferroelectric material [42]. The obtained hysteresis profiles qualitatively agreed well
with experimental results. The concepts of the DIFFOUR model can be described as the
following.

Based on the DIFFOUR model, the Hamiltonian can be written as [43, 44]

P oa, by, oL B 3
Hz?(ﬂ‘?‘f"’ﬁ“; _Zuf;’“f'“j_JZE(-’)'“i. (10)

<ij=

where F}fﬂm is the kinetic energy, u; is the ferroelectric dipole (polarization) at site i, & and
b are the double-well potential parameters, <ij= means that only nearest neighbors pairs
are taken into the sum, Uy; refers to the ferroelectric interaction and f-'(r) = Eysin(2mw f1)Z
is the time-dependent electric-field along one axis, e.g. the z-axis. In Eq. (10}, the first
summation is due to the Landau free energy, the second summation represents the elec-
trical dipole-dipole energy, and the last summation is the external electric field energy.
In many previous works, @ and & were set as constants with the condition a/b < |
[40, 45-47], such as a/b = 0.1 [40, 47] or a/b = 0.5 [453, 46]. This is o satisfy the
Landau phase transition between ferroelectric and paraelectric phase. In the Landau the-
ory, a is proportional to temperature away from the critical point, that is a o (T, — T').
Therefore, close to the critical point, or a/b << 1, the Landau theory gives a solution of
u? = a/b under the absence of external electric field which is found to agree with mean-
field solutions [48]. As a result, although the ratio a/b changes, but as long as it is small
enough, the qualitative ferroelectric behavior close to the critical point should remain the
same.

In performing Monte Carlo simulation using the DIFFOUR model, if the considered
ferroelectric behavior is mainly due to the dipole switching, e.g. the behavior close to
the critical point, |u;| may be assumed temperature independent. Therefore, at a fixed

F 4

. . a2
temperature simulation, 3 (5% — Fu; + Qur.) may be assumed as a constant and can be

i
assigned as new energy reference. In this case, Eq. (10) reduces to

Ho= =" Uiy ity — E@0)Y e, (1)

<if= i

81



210 5. Srinoi et al.

oo

=

~~~=
LT

aagaaq

[

Increasing

Ao
_,ﬂf’"dg Stress
1 ?i'@"

0.001 0.01 0.1 1 10
f(mes™

Figure 4. Stress dependence of the hysteresis areas as a function of the electric field frequency
obtained from Monte Carlo simulation on the DIFFOUR model. Lines are used for visual aids,

where ii; is a unit vector referring to one of the possible ferroelectric dipole directions
(e.g. 14 directions from rhombohedral and tetragonal structures), u;. is the dipole’ s z-
component at site . For directional uniformity, Uy = U may be treated as a constant
[40, 45-47]. However, under some circumstances, Uj; could be directional dependent e.g.
in anisotropic material or under the application of external perturbations. For instance, with
an application of uniaxial stresses perturbation er/Y, i.e. the stress to Young’s modulus ratio,
the ferroelectric interaction Uj; becomes directional dependent and is a function of o/¥ [49].
Accordingly, in such the case, ferroelectric hysteresis area A depends on the stress ratio o/Y
[50]. For example, with increasing stresses, it was found that the hysteresis area decreases,
and the maximum area shifts to higher frequency, as shown in Fig. 4. This is because, the
stress suppresses the growth of average polarization along the applied stress direction, and
hence p, and A. Further, it also lessens ferroelectric interaction, so the maximum phase lag
(where A is maximum), shifts to higher frequencies with increasing stresses [50].

2.2 Data Processing Analysis

Although fundamental analysis is an appropriate method used to understand the nature
behaviors of materials, but sometimes it is too difficult to use this method due to the
complexity of materials. Data processing analysis is a very straightforward way to establish
the relationship between input and output parameters without the need to acquire the
fundamental knowledge. Mostly it is used for designing extensive database for specific
ranges of input for easy and quick prediction of the output. Although it has been limited to
use outside the original input range, due to nature of empirical recognition, it is worthwhile
in enhancing technological development in designing applications used in known/specific
environments. In this review, the ‘learn by example’ Artificial Neural Network and the
‘harmonic recognition’ Fourier transformation are presented as examples.
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Figure 5. Schematic diagram displaying the input signals, the input-weighted-sum and the output
signal of a neuron in ANN modeling.

2.2.1 Artificial Neural Network. The Artificial Neural Network (ANN) is a computer
madel consisting of a number of processing elements or “artificial neurons’ inspired by
the real human neurons in the brain. In the human brain, when a neuron receives a strong
enough signal, it is activated and emiis the signal to adjacent neurons, and the signal is
linked to a recognized perception taken from the pool of experiences. In the same manner,
each artificial neuron behaves as a processing unit which receives inputs (usually more than
one) and transforms them to input-weighted-sum a = za" inputs 1 Wi where x; is an input
signal and w; is a signal weight. To compute the output, an activation function f is applied
on a, then the output f{a) is obtained as illustrated in Fig. 5. One of the most commonly
used activation functions takes form of

S 12
1+eor 2

flx)=

where ¥ = g and ¢ 1s a positive scaling constant.

In performing ANN modeling, artificial neurons are organized in layers (see Fig. 6).
where the first layer on the left hand side is the input laver. Input data are fed to the network
through this layer. Outputs from ANN are obtained from the output layer on the right
hand side. The layers between input and output are called the hidden layers. There may be
one or more hidden layers between the input and output layers. Neurons in each layer are
connected together (indicated by a lines connecting between neurons). The strength of the
connection is indicated by signal weight (w;). In Fig. 6, the field frequency, field amplitude,
or temperatures are provided in the input layer, and the corresponding hysteresis area is

Field frequency O

Field amplitude O

Temperature O
Input layer Hidden layers Output layer

Figure 6. An example of schematic diagram for ANN modeling of ferroelectric hysteresis area.
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obtained from the output layer. However, if preferred, there could be more than one output
in the output layer, such as hysteresis area, remnant magnetization, coercive field, and etc.
During the ANN processing, the signal weights w; are adjusted to minimize the error
between the network outputs and desired outputs. The weight adjustment process is called
‘training” which is governed by the learning algorithm. One of most well-known learning al-
gorithms is the Back Propagation (BP) algorithm [51, 52]. The idea of the BP algorithm can
be described as the following. The training begins with assigning small random number to
all signal weights. Then two-stages calculations are performed. Firstly, in the ‘forward pass®
input data are presented to the network, and then output from each neurons are calculated
using input-weighted-sum a and Eq. (12) to obtain the final outputs in the output layer. These
outputs are then compared with the actual outputs, and the deviation or error are determined.
Secondly, the ‘backward pass’ is performed by adjusting all signal weights in order to min-
imize the error. These two-stages calculations are repeated with the new set of input-output
examples until the stopping criterion is met, and the weights are kept for ANN prediction.
The ANN model has been efficiently applied to many works in physics and materials
science [ 16, 51, 53-56], manufacturing [57, 58] and business [59, 60]. For example, an ANN
model was used in modeling ceramics-powder preparation in obtaining the pure perovskite
phase [54]. It was also used to found the complex relation between ferroelectric hysteresis
properties and external electric field parameters [56], and between ferromagnetic hysteresis
behavior and external magnetic field perturbation [16]. An example of how accurate the
ANN is in hysteresis modeling can be found in Fig. 7, where the predicted and the real
hysteresis areas were found to agree well over the considered parameter ranges. As can be
seen, this truly reflects the advantages of using ANN modeling as the dynamic hysteresis
behavior can be predicted without the comprehension of how dynamic hysteresis behaviors
depend on the applied perturbation and complex internal interaction in the system.

0.01 0.1 | 10 100
fh

Figure 7. Comparison of the predicted hysteresis area from ANN (solid lines) and the actual hys-
teresis area taken from mean-field analysis on two-dimensional Ising hysteresis at iy = 3.25 J.
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Figure 8. The hysteresis results of the bulk BaTiOs, measured at £, = 10 kV/em, f = 10 Hz and
room temperature (25°C), which are (a) the electric field and polarization as a function of data points
and (b) the p-E hysteresis loop, and their Fourier results which are (c) the & harmonic amplitudes of
real and imaginary parts and (d) the associated amplitude spectrum.

2.2.2 Fourier Transformation. In Fourier transformation, any periodic function in time
domain f(¢) can be expressed as the sum of sine and cosine series, i.e.

1 . .
f)= an “+ ’Za,- cos(w;t) + ,Eb,v sin(w;t). i =1, 2, 3,... (13)

where ay, a; and b; are Fourier coefficients, w; is the i"-order frequency, and ¢ is time. Fourier
transformation is an alternative method that can be used to model the dynamic hysteresis
behaviors. However, since hysteresis data are discretely measured at a time interval 8¢, the
time domain parameter ¢ has to be represented by the data-point domain n. For instance,
by taking hysteresis of BaTiO3 bulk ceramics as an application [25], the electric field and
polarization as a function of data-point can be shown in Fig. 8(a), while the original field
dependence of polarization, or p-E hysteresis loop, is illustrated in Fig. 8(b). In order to
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change the data from data-point domain » to the frequency domain &, Fourier transformation
is considered as the following equation [25, 61, 62]

N1

Fky=3" flnye N, (14)
n=0
which can be rewritten as
N=1 N-1
F(ky="Y" fm)cosQunk/N) =iy fln)sin2mnk/N) = a, —iby, (1)
=0 n=0

where N is the number of data points in one field period, a; and & are the Fourier coefficients
or the amplitudes of " harmonic of real and imaginary parts, respectively. Then, by
applying Eq. (15) to ferroelectric hysteresis of BaTiO; bulk ceramics measured at Ey =
10 kV/em, f = 10 Hz and room temperature (25°C) [25], the k" harmonic amplitudes of
real and imaginary parts of the polarization signal can be shown in Fig. 8(c). As can be
seen, all even-harmonics are small due to the almost symmetric behavior of the hysteresis
loop. Therefore even-harmonics can be ignored, while the odd-harmonics are prominent,
especially the first harmonic as shown in Fig. 8(d). As a result, the hysieresis area can be
calculated from [25]

2
A= ——Fpa, 16
~ Eod (16}

where « is the first-harmonic amplitude of the real part and Ey represents the field ampli-
tude. It was also found that the positive and negative remnant polarizations depend on all
odd-harmonic of real parts as

2 N2
p:=¢ﬁzcmr (17)
n=l
In addition, the positive and negative coercive field can be computed from the first-harmonic
amplitude of both real and imaginary parts as

EY = +Eysin[tan'(a, /B))]. (18)

To confirm their validities, the hysteresis area from Eg. (16), the remnant polarizations
from Eq. (17) and coercive fields from Eq. (18) were compared with those measured from
experiment, and were found to agree very well as shown in Table 1.

Table 1
Comparison of ferroelectric hysteresis properties obtained from the Fourier prediction and
real measurement

Observables Fourier prediction Real measurement
A (mCV/em®) 133.6468 133.5459
EZP (uClem?) 8.1887 8.1887
EE (kviem) 3.4367 3.4594
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In fact, these hysteresis properties can be directly extracted from the original hysteresis.
For instance, the hysteresis area can be calculated by performing the numerical integration
methods e.g. trapezoidal or Simpsons methods. However, due to the electronic noise or poor
experimental set up, the p-E loops obtained from the experiment may be distorted, asym-
metric, or unexpectedly shifted along p-axis or E-axis. These random or unwanted noises
distort the hysteresis loop from its ideal shape and hence hysteresis area. Consequently,
this may concealed some important fundamental phenomena and may prohibit unbiased
link between the true hysteresis properties and the external perturbations. Therefore, the
Fourier transformation can be used to ease these problems.

3. Summary

In this review, ferroic hysteresis modeling was categorized in terms of both fundamental
and data processing analysis. Several approaches for fundamental investigation, such as
mean-field analysis and Monte Carlo simulation, and data analysis investigation, such as
Artificial Neural Network and Fourier analysis, were detailed. Examples of how to use
these approaches on ferromagnetic and ferroelectric systems were reported with evidences
of applicability. However, to enhance the ferroic understanding from individual ferroic
material to multi-ferroic systems, in future work, the coupling effect between different
ferroic properties and field perturbations, such as magnetostrictive effect, or electrostrictive
effect, shall be elaborately considered.
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In this work, the hysteresis loops of ferroelectric film with defects were investigated with
Maonte Carlo simularion and the modified Heisenberg model (discrete vectar model)
with DHFFOUR type interaction. The effect of localized vacancy defects on the electrical
properties of ferroelectric film was studied. The defected ferroelectric film was simulated
on the two-dimensional lattice with periodic boundary conditions. From results, at
a given electric field, the hysteresis loop area was found to depend on the defect
cancentration of system. The higher defect concentravion, the smaller hysteresis loop
was obtained, which resulted from weaker ferroelectric interaction.

Keywords Heisenberg model; DIFFOUR interaction; hysteresis loop: Monte Carlo

simulation

1. Introduction

Ferroelectrics are useful materials and have been widely used as parts in various elec-
tronic devices such as capacitor, sensor, actuator, and nonvolatile memory [1]. Due to
the high-speed memory, the ferroelectric thin-film devices have been developed exten-
sively. The responses of ferroelectric thin film to external field electric were investigated
in detail to design more efficient devices [2, 3]. Typically, ferroelectric material under-
goes a succession of phase-transitions from high-structural-symmetry paraelectric phase
at high temperatures to low-structural-symmetry ferroelectric phase at low temperatures.
Although many defect-free systems had been investigated and reported [4-7], the deep
understanding in relationship between structural symmetry and the phase transition from
paraelectric to ferroelectric (and vice versa) is still incomplete material intrinsic defects
are taken into account. For instance, the mechanism underlying this defect inspired phase-
transition in ferroelectrics is not clear. Consequently, to understand the intrinsic behaviors
and phase-transitions of defected ferroelectric materials in details, this work investigated
the defect-driven ferroelectric phase-transition under the presence of external electric field.
The modified Heisenberg model (in a form of discrete vector model) was considered and
simulated via Monte Carlo simulation. Metropolis algorithm [8, 9] was performed to update
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Figure 1. The hysteresis loops simulated at (a) £y = 0.50 U and (b) E, = 1.00 U with varying defect
concentration ¢ = 0, 2, 4, 6, 8, 10%, but fixing frequency f = 0.001 mes™' and temperature 7 = 0.5
Ulky.

the two dimensional ferroelectric film. DIFFOUR type interaction was used to study the
dipole configuration and ferroelectric behaviors. Vacancy defects were introduced into the
ferroelectric system to observe temperature and field parameters dependent of polarization
characteristic and how defect concentration plays its role on the dynamic phase-transition.

L=100,T=0.5 Uky

0.8 : . ¢ : ;
0.6
0.4
02

-02
-0.4
-0.6
-0.8

-1

log(4)

-1.4

Figure 2. The frequency dependence of hysteresis loop area with various ¢ = 0, 2, 5, 10%.
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Figure 3. The temperature dependence of dynamic order parameter simulated at frequency f = 0.01
mes™and £y = 1.0 L.

2. Methodologies

(discrete vector model) with DIFFOUR type interaction was considered. The Hamiltonian
was written as [10, 11]

Pl a, b, . -
H=Z(ﬂ—§uf+§ui —ZUf‘fRf'ilj_E(”'ZHf,
i (i) i
where P‘ff 2m is the kinetic energy, i; denotes the ferroelectric dipole vector at site i, U
represents the ferroelectric interaction between dipole vectors ii; and i, @ and b are the

In the study of two-dimensional defected ferroelectric film, the modified Heisenberg model

()

double-well potential parameters, <ij> means the summation taking over only the first
neighbor pairs of dipoles and E(r) = E(1); = Egsin(2m f)Z refers to an external electrie

field acting only on the z-component, where Eqy and f are field amplitude and frequency
respectively. Eq. (1) can be simplified by setting P /2m and |ii;| as constants, and Uy = U
as a unit of energy. Therefore [12]

H=-UY i;-i;—E0)_ u

(2)
<= i
where {i; is a unit vector having one of the possible 14 ferroelectric dipole directions (8 from
rhombohedral and 6 tetragonal structures), u;. refers to the z-component dipole at site i. In
this work, the magnitude of each dipole was set to one where its real magnitude was absorbed
into U, and the unitof temperature T and electric field E were Ulkg and U respectively, where
kg is the Boltzmann’s constant. The system was prepared by assigning random available
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directions to all ferroelectric dipoles with a total number of N' = (1 —e)N and N = L x L
sites, where L is the linear system size, and ¢ denotes the defect concentration {non-electric-
sites) of system. L = 100 was chosenand c =0, 2, 4. 5, 6, 8, 10% were included to the system
with periodic boundary condition. In updating the dipole configuration, a random dipole
was chosen and assigned a new direction (from 14 possible directions) with the Metropolis
probability i.e, pay = exp(—AH{(1)/kpT), where AH(f) is the change in energy due to
the update at site i and time r. The unit of time was defined as the Monte Carlo step per
site (mes); 1 mes is equivalent to N trial updates. Then in each simulation, the polarization
per dipole was calculated i.e. p(t) = (1/N")}", u;.(r) to create the hysteresis loops. The
first 1000 loops were discarded for steady state condition, and next 2000 loops were
used to average the hysteresis loop area A = j pd E, and the dynamic order parameter
0= (I,."P}fnp pi)de where P = 1/fis the field-period. O was used to investigate the
dynamic phase transition; (! #£ 0 for dynamic ferroelectric phase and @ = 0 for dynamic
paraelectric phase.

3. Results and Discussions

In this work, since the number of dipole flipping is an integer and the number of data points
recorded pcr hystcrcﬁls loop is 100 points; therefore the allowed frequency has to satisfy the
condition —— Iilo being an integer. From the simulation results, the hysteresis characteristics
which are hysteresis loop area and dynamic order parameter profiles, under defect siructures,
were obtained. From Fig. 1(a) and 1(b), the hysteresis loops were simulated at £, = 0.5 U
and Ey = 1.0 U, T = 0.5 Ufky and f = 0.001 mes™", It is found that at higher defect
concentration ¢, slimmer hysteresis loops are observed since the absence of some dipoles
ceases ferroelectric interaction. The energy dissipation associated to dipole switching also
decreases. Moreover. the frequency dependence of hysteresis loop area for various ¢ was
obtained as shown in Fig. 2. At low frequencies (i.e. frequencies smaller than the one
that yields highest hysteresis area), the higher defect concentration gives smaller hysteresis
loop area due to weaker ferroelectric interaction and smaller phase-lag (as higher period
allows more time for dipole switching with electric field. However, for high frequencies,
the higher defect concentration gives the larger hysteresis loop area due to high frequency
induces high phase-lagging between polarization and field signals. Hence, the hysteresis
loop becomes asymmetric (not shown) and the area ceases, Nevertheless, higher defect
concentration ceases ferroelectric interaction and reduces the overall phase-lag, so the loop
becomes more symmeiric and the area increases. Moreover, effects of defect on dynamic
order parameter were also investigated as illustrated in Fig. 3. It shows that the dynamic
phase transition temperature (where slope is maximum) decreases with increasing defect
concentration.

4. Conclusion

The properties of the two dimensional defected ferroelectric film were investigated through
its hysteresis loop using the modified Heisenberg model with DIFFOUR interaction, Monte
Carlo simulation, and the Metropolis algorithm. The hysteresis loop area and dynamic order
parameters were extracted. This study shows how defect concentrations affect the hysteresis
shape, hysteresis loop area and dynamic order parameters.
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Effects of oxygen vacancies on properties of ferroelectric materials were investigated
through their hysteresis characteristics using Monte Carlo simulation. The purpose of
this work s 1o study the redes of oxygen vacancy in ferroelectrics. The 2D four-state Potts
maodel was considered for dipole switching, Under the application of external electric
and stress fields, for both static and periodic field conditions, the electrical polarization
and strain were numerically calculated with varving stress field and oxygen-vacancy
probability {or concentration ). It was found that, with or withowt an applied siress, the
coercivity, remnant and saturarion of the ferroelectric and elastic properties decrease
with increasing oxvgen vacancies. Moreover, under an applied periodic stress, the
shapes of strain-electric-field butterfly loops were found similar to those obtained from
applving the combination of twa static stresses.

Keywords Oxygen vacancy; Monte Carlo simulation; Potts model; hysteresis loop

1. Introduction

A hysteresis loop can be characterized by a history-independent path. It naturally occurs in
many physical systems under some circumstances such as the application and the removal
of an electric field, a magnetic field, or a stress field. Hysteresis also exhibits the non-
linearity properties of systems. Therefore, to clearly understand the behaviors of systems,
some hysteresis loops that occur in many materials are extensively investigated. To better
understand some physical properties, such as dielectricity, piezoelectricity, or pyroelec-
tricity, ferroelectric materials—one of vital components widely used in electronic devices,
nonvolatile memory media, and tunable dielectrics—are widely investigated through their
hysteresis loops under various conditions [1-7]. Below the transition temperature, ferro-
electrics, in general, can change from high-symmetry structure to low-symmetry structure
with the occurrence of spontaneous polarization and spontaneous strain-lattice distortion
induced by the spontaneous polarization. Additionally, the change in the direction of spon-
taneous polarization under high electromechanical loadings causes the hysteresis loops in
ferroelectrics. Polarization switching should be considered to take full advantage of ferro-
electric materials. Therefore, in this work, the structural effects such as oxygen vacancies
on the properties of ferroelectrics were investigated through their hysteresis loops.
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*Corresponding author; E-mail: yongyut laosiritaworn @ yahoo.com

35

96



36 5. Srinoi et al.

The responses of ferroelectric materials under the electric and siress fields were in-
tensively investigated in previous works with many different conditions, for example, the
combination of periodic electric field and static stress field [8], periodic stress field and
static electric field |9], or periodic electric and stress fields [10], ete. Oxygen vacancy—one
kind of common structural defects in ferroelectrics—can result from many different ox-
idation processes. This vacancy influences the ferroelectric properties [11, 12]. It is thus
important to understand the roles and mechanisms of the oxygen vacancies on ferroelectric
properties.

2. Methodology

It is suitable to use the 2D four-state Potts model in simulating the ferroelectric properties
due to the coexistence of both 907 and 1807 domain wall [13]. Its dipoles have four different
alignments and are mutually perpendicular to each other. Therefore, in this work, a two-
dimensional array of N = N, N; cells on the xz plane was purposed, where N, and N, are the
number of cells along the x- and z-directions, respectively, Each cell can be also represented
by a tetragonal rectangle [9]. A dipole at a cell index i (0 < i =< N). was replaced by a spin
matrix 5;, which takes one of the four possible directions as the followings

S‘, = S'A = (I}] along + z direction (upward), (la)
. K -
§ =38 = | along + x direction (left), (1b)
§=58-= _OI ] along — z direction (downward), (lc)
or
= 8p = _1 along — x direction (right), (1d)

where A, B, C or D represents the four possible states. As the direction of the dipole is
relevant to the orientation of the tetragonal rectangle, the ferroelastic strain state P.,-'“ of acell
can be defined as the following equations [7, 9]

&f = [_;[:Jﬂ} (stateA or C), (2a)
F_ | —fo
8f = [s[,f2] (state B or D), (2b)

where &g is the constant strain of tetragonal cell along the elongated edge.

From a typical 3D tetragonal structure of a perovskite-type ferroelectric material, the
0% ions located at the center of six faces can be represented into a 2D rectangle model
with four faces: top, left, bottom, and right. Therefore, the oxygen vacancies were laid at
one of possible four sides of a tetragonal cell. At a cell i, the presence of an oxygen vacancy
can be represented as the following expressions |14, 15]

Vi = [ g } (non—vacancy), (3a)
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I:’r- = (I):| (vacancy at top side), (3b)
. [0 .

V. = I (vacancy at left side), (3c)
v, = _OI ] (vacancy at bottom side), (3d)
. [0 , .

Vi=|_} | (vacancy atright side), (3e)

By considering the mechanical energy density without the anisotropic switching, a
ferroelectric material is composed of many energy terms i.e.
H = Ho+ 3 HnV'8 = 3 Hva (VTV}H{STS5), )
i <=
where Hy is the Hamiltonian of a spin system without any oxygen vacancies, the symbol
2 -ij- is the summation over the nearest neighbors, Hy, refers to the coupling interaction
between oxygen vacancies and dipoles, Hy, is the coupling strength between the distorted
cells and the neighboring dipoles. X Tis the transpose matrix of X which has the following
X -
Xﬂ |, where X; and X, are the components along to z- (longitudinal) and x-
(transverse) directions, respectively (X = Vor 8). Its unit is absorbed into Hyy or Hya,
and each term in Eq. (4) was also redefined as the energy unit. For the absence of oxygen
vacancies, the system Hamiltonian can be writlen as

Ho=—3 J88; =Py EfS—ad &l'el -3 6'a, (5)

=ij>= ij=

form X =

where J and o are the dipole-coupling coefficient and ferroelastic-strain-coupling coeffi-
cient, respectively, Ps is the magnitude of the dipole moment of a cell, £ and & are the
periodic external eleciric and stress fields. Similarly, J and « are redefined as the energy
unit by absorbing the unit of S and &, respectively. Therefore, the unit of the electric field
was defined as J and temperature as J/kg, where kg is the Boltzmann’s constant. If both
external electric and stress fields are uniform in space, and have only longitudinal forms
(z-direction) and initially in phase, they can be expressed as

& | Eo | | Eosin(2x fet)

b [5]-[e0).
and

6= [gx] _ [dusig(brfnl)} . o

where Ey and e are the electric and stress field amplitudes, for a tensile stress, o, =
oy (g = 0 for a tensile stress and o < 0 for a compressive stress), ¢ is the time which
is scaled in term of number of Monte Carlo steps (mes), fg and f, are the electric and
siress field frequencies, respectively, which have the unit of mes~'. In the simulation, the
numbers of data (or points) per a loop used to generate a hysteresis loop rely on one field
frequency (or one period). Under a static and periodic field, a hysteresis loop can be created
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easily by these points. However, two different field frequencies may lead to their different
numbers of points per a loop. It is not quite suitable to plot a hysteresis loop and compare
using different numbers of points. Therefore, in this work, /i = f, = [ was considered as
suggested in previous works (8, 16]. In Eq. (5), & is the total strain which can be divided
into two parts (without field-induced strain) as,

g =& + &, (8)

where £ is the elastic strain determined by the elastic property of the material. For a small

stress, it was found that
1 1 —v||o.
el _ z
& = ¥ [—u | ] [a,]' ©)

Here, ¥ and v are the Young's modulus and Poisson ratio, respectively.

In preparing the system, each spin was placed at any sites randomly with possible
directions as described previously. Consequently, the system was initially unpoled. The
ferroelastic strain states were also automatically initialized since both spin states and
ferroelastic strain states were associated as Eqgs. (la—1d) and Eqs. (2a-2b). In simulating
the existence of oxygen vacancies, the total number of vacancies Ny = <N, where ¢ is
the oxygen-vacancy probability or vacancy concentration, was defined where, for each
cell, the vacancies randomly distributed on possible positions as mentioned in Eqs.(3a—3¢).
The presence of oxygen vacancy at different sides of a cell is governed by the probability
pr (top), pg (bottom), py (left) and pg (right). These probabilities follow the condition
pr+ pr+ pe+ pr = 1. Moreover, periodic and free boundary conditions were employed
along x- and z-directions, respectively.

After providing the initial configuration of system, a spin was randomly selected for
a trial rotation which is determined by the Metropolis algorithm [17]. The macroscopic
polarization and strain were calculated using the following expressions

PyyA"S,
P = ’T (10}
Sl (6 - #)
;= —————— % . (11)
and
E@T (& — &)
b= (12)

. i . 0 - . . .
whereii = | 0 Jand§ = | i | denote the longitudinal and transverse unit matrix, respectively,

and ﬁ.? is the imitial strain matrix for each cell. Then the ferroelectric hysteresis loops
were oblained to investigate their properties through the hysteresis area as the following
expression:

A= ; PdE, (13)
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3. Results and Discussions

The objective of this work is to study the roles of oxygen vacancies on the ferroelec-
tric properties under the combination of the external electric and stress fields. The ori-
entation of dipoles and the distribution of oxygen vacancies were assumed to be uni-
form and isotropic. Moreover, the coupling coefficient J was treated to be isotropic
[15]. Therefore, the following numerical parameters were purposed: N, = 200, N, = 80,
Ey=12,00=035,Ps=10,80=0.5,=0.0025 Hy; =50, Hy>»=2.0,Y=2.0,0 =03,
J=1.a=08 pr=p.=pp=pr=>025 and temperature T = 1.0. This work studied the
ferroelectric behaviors under external factors as followings: (1) periodic external electric
field and free stress field, (2) periodic external electric field and static stress field, and (3) pe-
riodic external electric and stress fields. To investigate how ferroelectric hysteresis responds
to the vacancy concentration ¢ under these mentioned conditions, the P.-E, hysteresis and
e--E. butierfly loops were evaluated numerically. Under varying vacancy concentration ¢,
the P.-E. hysteresis loops with free (o, = 0), longitudinal tensile (&, = 0.5), longitu-
dinal compressive (7. = —0.5) and periodic siresses (7. = ay sin{2x 7)) were shown in
Figs. 1(a), 1(b), l(c) and 1(d). respectively. They all show that the responses of hysteresis

P

w8ttt

LBRRE.B2RE-

Figure 1. FP.-E. hysteresis loops with ¢ = 0,4, and 10% simulated at (a) . = 0, (b} o, = 0.5, (¢) &
= =0.5 and (d) . = oy sin(2mfi).
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Figure 2. Hysteresis area versus vacancy concentration simulated at o, = 0.0, 0.5, —=0.5, and
y sind 25 f1).

loops are quite similar, that is, both the coercive field and remnant longitudinal polarization
reduces with increasing vacancy concentration. Since the enhancement or reduction of lon-
gitudinal polarization depends on the number of dipoles being in A or C states (z-direction),
dipole switching into A or C states 1s inhibited from increasing of oxygen vacancies either
with or without applied stresses. On the other hand, the number of B or [ states (x-direction)
increases with increasing oxygen vacancies.

Under a longitudinal tensile stress and periodic z-axis electric field, each dipole tends to
align in z-direction. Therefore, A or C states are enhanced by the existence of a longitudinal
tensile stress, compared to free or a longitudinal compressive stress. Moreover, the number
of dipoles oriented in z-direction can be also represented by the P.-E. hysteresis area which
refers to the energy dissipated in switching dipoles. Therefore, the hysteresis area increases
with increasing number of dipoles in z-direction. The previous work showed that the
remnant polarization decreases with a compressive stress [ 18]. Additionally, the mentioned
explanation is confirmed by evidences in Fig. 2. However, the obtained results under a
periodic external stress are similar to those under free stress because average external stress
over a cycle vanishes.

Like the longitudinal polarization versus electric-field curves, both longitudinal and
transverse strains driven by a periodic electric field were evaluated. Then the strain-electric-
field butterfly loops were obtained as shown in Fig. 3, which has the same conditions as
Fig. 1. The results show the saturated longitudinal strains decrease with increasing oxygen
vacancies. The same goes for transverse strain (not shown). It was also found that the
change in longitudinal strain (difference between the lowest and saturated values) over a
cycle is smallest for a longitudinal tensile stress o. = 0.5 (Fig. 3(b)), because most dipoles
are forced to align along the z-direction under this stress. As most dipoles prefer to lay in
x-direction under a longitudinal compressive stress o. = —().5, the change in longitudinal
strain is the largest (Fig. 3(c)). However, under the considered periodic external stress
(Fig.(3d)), it was found that o_ ;, = o9 = —0.5 and o, ;s = o¢ = 0.5, The shapes of
strain-electric-field butterfly loops were found similar to those obtained from applying the
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combination of two static stresses. Specifically, there are two saturation strains: the one in
the range E. = [0, Ey] is equivalent to a static stress o~ = 0.5 and the other in the range F.
= |—Ejp, 0] is consistent with a static stress o, = —0.5.

4. Conclusions

The effects of oxygen vacancies on the ferroelectric materials under the combination of
external electric and stress fields were investigated through their hysteresis loops using a
Monte Carlo method. The 2D four-state Potts model was considered for switching dipoles.
Under a longitudinal tensile stress, the hysteresis area becomes larger while the change in
longitudinal strain becomes smaller than that under a free, longitudinal tensile, longitudinal
compressive, and periodic stresses.
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