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CHAPTER 2 

Literature Review 

2.1 Ferroelectric materials in general 

Ferroelectric materials are a special example of polar materials which can show an 

electric phenomenon called the ferroelectric effect or ferroelectricity, that is, it exhibits 

a spontaneous electric dipole moment (this is similar to ferromagneticshowing a 

permanent magnetic moment). Moreover, its spontaneous electric polarization Ps 

(electric dipole moment per unit volume) can be reversed or oriented in direction by a 

suitably strong applied electric field [6]. Typically, ferroelectric materials show a 

succession of phase transitions from high-temperature high-structural-symmetry 

paraelectric phase into low-temperature low-structural-symmetry ferroelectric phase. A 

more familiar example of ferroelectric materials is barium titanate, BaTiO3. It can 

undergo several phase transitions into successive ferroelectric phases. A certain phase 

transition temperature is called the Curie temperature TC. Above this phase transition 

temperature, the electric polarization P can arise only when an external electric field E 

is imposed. Materials are in a paraelectric phase. Below this temperature, the centroids 

of the positive charges and the negative charges do not coincide, so there is a net 

electric polarization even in the absence of an external electric field. They are in a 

ferroelectric phase. 

A ferroelectric material that transforms from a paraelectric cubic into a ferroelectric 

tetragonal phase is shown in Figure 2.1. This phase transition is accompanied by 

changes in the dimensions of the crystal unit cell. These changes are called the 

spontaneous strain xs which is the relative difference in dimensions of the ferroelectric 

unit cell (aT and cT) and paraelectric unit cell (aC). Moreover, some ferroelectric 

materials, like barium titanate, can undergo several phase transitions into successive 

ferroelectric phase. 
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Figure 2.1 A succession of phase transition of a ferroelectric material [6]. 

Ferroelectric materials have tiny regions with a uniform electric polarization called 

ferroelectric domains. All electric dipoles of each domain align in the same direction. 

Ferroelectric materials can exhibit a hysteresis loop as shown in as shown in Figure 2.2. 

There is a residual polarization when an applied electric field is removed, it is called the 

remnant polarization, +Pr or Pr. To reverse the direction of polarization, we need to 

apply an electric field called a coercive electric field, +Ec or Ec, (a minimum electric 

field for switching the polarization). 

 

 

Figure 2.2 A hysteresis ferroelectric loop. 
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The polarization-electric field (P-E) hysteresis loop is an important property of 

ferroelectric materials. It has become an interesting of intensive studies due to potential 

applications of ferroelectric thin films in nonvolatile memories. Since the data in 

ferroelectric memories are stored in term of positive or negative remnant polarization 

state and this state can be controlled by reversing the polarization’s direction from up 

(+1) to down (1) or vice versa as a function of applied electric field, the most studies 

have focused on particular applications such as the difference between the positive and 

negative remnant polarization, Pr – (Pr), the dependence of the coercive electric field 

Ec on sample thickness l, or so on. Moreover, most electronic devices rely on various 

important properties of ferroelectric materials as shown in Figure 2.3. 

 

Figure 2.3 Ferroelectric thin films and applications. 

A Hysteresis loop can be characterized by a history-independent path. It naturally 

occurs in many physical systems under some circumstances such as the application and 

the removal of an external electric field, an external magnetic field, or a stress field. It 

also exhibits the non-linearity properties and phase transitions of physical systems. A 

time-dependent electric polarization is found to be lag behind a time-dependent external 

electric field, and a polarization-electric field (P-E) hysteresis loop occurs. Moreover, a 

phase transition is also accompanied by changes in a unit cell. The associated changes 

are called the spontaneous strain s. Therefore, the polarization switching by a time-

dependent oscillatory external electric field in ferroelectric materials may lead to a 
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strain-electric field ( -E) hysteresis loop even in with or without a mechanical stress 

field . This hysteresis loop, which is similar to a butterfly shape, is called a butterfly 

loop. 

2.2 Ferroelectric hysteresis area 

It is usually found that the ferroelectric hysteresis properties depend on the external 

perturbations, such as the field frequency f, field amplitude E0, and temperature T. The 

period average polarization Q are generally investigated and the dynamic phase 

transition diagram can be obtained. In general, in order to empirically obtain how 

hysteresis loop area A relates to these perturbations, the power-law scaling is usually 

performed in many experimental and theoretical studies of ferroelectric materials [23-

29]. For instance, a hysteresis loop area can be written as   

 0A f E T      (2.1) 

where α,  , and  are exponents to the scaling. Then, the exponents can be estimated, 

and the power-law dependency on external perturbations of the hysteresis loop area. 

However, the obtained exponents depend on the considered parameter range. For 

example, in BaTiO3 ceramics, above and under the coercive field EC the hysteresis loop 

area scaling is in the forms of 0.23 0.87

0A f E and 0.36 3.64

0A f E respectively [30]. 

Moreover, the exponents cannot be predicted in the region close to the turning point 

(where the scaling function has to change from power-law growth to power-law decay). 

Consequently, some important hysteresis behaviors cannot be predicted by power-law 

scaling. Fourier analysis is another method that can be used to find the relations 

between the hysteresis loop area and field parameters of ferroelectric materials [31]. 

In microscopic view, fundamental analysis, such as the spin model, the mean-field 

approach and Monte Carlo simulation, is proposed to study the dynamic ferroelectric 

behaviors in details (this analysis seeks for the understanding of nature from 

microscopically inside out), and data processing analysis, such as the artificial neural 

network (ANN) and Fourier analysis, is used to link experimental results with external 

perturbations empirically. In general, data processing analysis is used to find a 

connection between the macroscopic phenomena and experimental conditions. 
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2.3 Spin models 

A spin model is a mathematical model used widely in studying the dynamic properties 

of magnetic materials at the microscopic scale.  The considered magnetic material 

consists of many magnetic dipole moments called spins. Under a time-dependent 

external magnetic field, the Hamiltonian of spin system is given as [32]: 

 
  

2

3 5
( ) ( )

i ij j iji j

ij i j ij i i i

ij ij i iij ij

s r s rs s
H J s s K D s h t s

r r

  
         

  
   

r r r rr r
rrr r r r

  (2.2) 

where Jij represents the exchange interaction between spin vector 
is

r
 and js

r
, iD

r
  

denotes the anisotropic interaction, Kij refers to dipolar interaction strength, and h(t) is a 

time-dependent oscillating external magnetic field. The symbol <ij> indicates that sum 

takes only the first neighbor pairs. By absorbing the unit of si into Jij, Kij, Di and h(t), 

therefore, Jij, Kij, Di and h(t) can be used as a unit of energy. Further, the spin models 

can be classified into two subgroupsdiscrete and continuous spin models. The 

examples of well-known discrete spin models are the Ising model and the Potts model 

as well as the DIFFOUR model, while the two most widely studied models of 

continuous spin models are the XY model and the Heisenberg model [33]. 

Starting with the simplest spin model, i.e. the Ising model, each Ising spin is allowed to 

have only 2 possible directions on one axis e.g. the z-axis. Therefore, ˆ ˆ1i is s z z  
r

as si 

can be only ±1. Typically, the z-direction is chosen to be the easy axis direction or the 

applied external field direction. If the field is periodic in time and on the z-direction, it 

is possible to choose 
0

ˆ( ) sin( )h t h t z
r

where h0 and  are the field amplitude and field 

frequency, respectively. For an isotropic case and consider only the strongest 

interaction, it is possible to choose Kij =  Di = 0 and Jij = J where J is the ferromagnetic 

(J > 0) and antiferromagnetic exchange interaction (J < 0), respectively. Therefore, from 

Equation (2.2), the Ising Hamiltonian can be written as 

 ( )i j i

ij i

H J s s h t s
 

      (2.3) 

where 0( ) sin( )h t h t . On the other hand, the Potts model is another discrete spin 
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model, but its spin can take more discrete values, that is, si = 1, 2, 3, …, q where q is the 

maximum state a spin can have. Note that the Potts model is equivalent to the Ising 

model when q = 2 [33]. Additionally, an improved version of the Potts model is the 

DIFFOUR model which is usually used to study the ferroelectric dynamics behaviors. 

Unlike the discrete-spin models, e.g. the Ising or the Potts model, the XY model 

provides spin as two-component vector of unit length and can point to any directions on 

a two-dimensional plane, that is,  cos ,sini i is  
r

. Therefore, i js s
r r

can be replaced by 

cos ij , where ij is an angle between the two spins. It should be noted that although XY 

spins are two-dimensional vector, but they can be also used in the three-dimensional 

spatial-system. The Heisenberg model has a same concept as the XY model, but the 

spins are three-dimensional unit vector, and can be represented by two angles of 

spherical coordinate and  i.e.,  sin cos ,sin sin ,cosi i i i i is     
r

 [33]. 

Apart from the ferromagnetic subject, the basic idea of spin models can also be applied 

to study the dynamic hysteresis behaviors of ferroelectric materials. In ferroelectric spin 

systems, P-E loops can be obtained using Monte Carlo simulation on the DIFFOUR 

model. In many previous works, the DIFFOUR model was successfully used to 

investigate the dynamic ferroelectric hysteresis [34-36]. For example, ferroelectric 

hysteresis properties in thin films were investigated using the DIFFOUR model with the 

Metropolis algorithm. It was found that their hysteresis properties, such as the hysteresis 

area, remnant polarization and coercivity field, depend on the film-thickness, frequency 

and amplitude of the field. Moreover, the DIFFOUR model can be considered in a 

special material, such as acceptor-doped ferroelectric material [37]. The obtained 

hysteresis profiles agreed well with experimental results. The concepts of the DIFFOUR 

model can be described as the following. Based on the DIFFOUR model, the 

Hamiltonian can be written as [36, 38] 

 
2

2 40 ( )
2 2 2

i i ij i j i

i ij i

P a b
H u u U u u E t u

m  

 
       

 
  

rr r r
  (2.4) 

where 
2

0 / 2P m  is the kinetic energy, iu
r

  is the ferroelectric dipole (polarization) at site 

i, a and b are the double-well potential parameters, <ij> means that only nearest 
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neighbors pairs are taken into the sum, Uij refers to the ferroelectric interaction and 

0
ˆ( ) sin(2 )E t E ft z

r
 is the time-dependent electric-field along one axis, e.g. the z-axis. 

In Equation (2.4), the first summation is the Landau free energy, the second summation 

represents the electrical dipole-dipole energy, and the last summation is the external 

electric field energy. In many previous works, a and b were set as constants with the 

condition / 1a b  , such as / 0.1a b   [35, 39] or / 0.5a b   [40, 41]. This is to satisfy 

the Landau phase transition between ferroelectric and paraelectric phase. In the Landau 

theory, a is proportional to temperature away from the critical point, that is, 

( )ca T T   . Therefore, close the critical point, or  / 1a b = , the Landau theory gives 

a solution of  
2 /iu a b  under the absence of external electric field which is found to 

agree with mean field solutions  [42]. As a result, although the ratio a/b changes, but as 

long it is small enough, the qualitative ferroelectric behavior  close to the critical point 

should remain the same. Spin models can be discussed through the mean-field approach 

and Monte Carlo method. 

2.4 Mean-field theory 

In mean-field theory, each local electric polarization, P, aligning in an effective electric 

field can be calculated from all surrounding electric dipole moments where fluctuations 

can be neglected, that is,  

 
1

,
N

i

i

P u
N

    (2.5) 

where ui is the electric dipole moment and N denotes the number of electric dipole 

moment. Within the mean-field framework and ferroelectric system, the equation of 

motion for the average polarization P(t) is given by [43]: 

 
( )

( ) tanh ( ) ( ) ,i

i

dP t
P t E t J P t

dt
 

 
    

 
   (2.6) 

where ui is the microscopic relaxation time. From this approach, we can extract electric 

polarization under time-dependent electric field, or predict phase transition and explain 

behaviors of materials near the critical temperatures. 
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However, the mean-field method overestimates Tc and reports critical-exponent values 

do not depend on system dimensionality [44]. These are the weak points of the mean-

field method caused by neglecting important fluctuation near the phase transition. On 

the other hand, Monte Carlo method is one of powerful tools in studying statistical 

physical problems, including phase transition and critical phenomena topics. 

2.5 Monte Carlo method 

The basic concept behind Monte Carlo simulation is to use stochastic process to take the 

system form one state into another possible state. The system can then pass through 

series of states with well-defined set of probabilities at a given time. 

2.5.1 Probability theory 

Consider an elementary event Q, such as a coin is tossed three times, with a countable 

set of all possible random outcomes, 
1 2, ,..., kQ Q Q . If this event Q and the outcome 

kQ  

occur N and 
kN  times repeatedly, the probabilities 

kp  for the outcome 
kQ  is 

 lim( / ),k k
N

p N N


   (2.7) 

where 1kk
p  . In general the outcomes are also random variables. We define the 

expectation value of this random variable as follows: 

 .k k

k

Q p Q   (2.8) 

The nth moment of Q can be given by 

 ,n n

k k

k

Q p Q   (2.9) 

and we define the so-called cumulants 

     .
n n

k

k

Q Q p Q Q     (2.10) 

For 2n  , we obtain a well-known quantity called the variance or fluctuation, 2 , i.e. 
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  
2 22 2Q Q Q Q       (2.11) 

The square root of the variance is called the standard deviation, , that is, we have 

 
22Q Q     (2.12) 

We define the statistical error as follows: 

 statistical error
N


   (2.13) 

2.5.2 The estimator and important sampling 

In statistical physics, we deal with systems with many degrees of freedom. One task is 

to compute the average or expectation of macroscopic observables from the total energy 

or Hamiltonian  for a thermal equilibrium system. For example, we may explain a 

magnetic system by the Ising model with uniaxial anisotropic spins as 

 
Ising ,z z z

ij i j i

ij i

J S S H S
 

   H   (2.14) 

where 
z

iS  means the spin pointing up (+1) or down (1) along the z-axis or easy axis at 

site i on the lattice, ijJ  is the exchange interaction between spin 
z

iS  and z

jS , [...]
ij   

refers to the sum over all pairs of nearest neighbor spins, and H is a magnetic field. 

However, if each spin can lie only in the xy plane or is fully isotropic, we may describe 

our magnetic systems by the XY model or Heisenberg model [45]: 

 2 2( ) , ( ) ( ) 1,x x y y x x y

XY ij i j i j x i i i

ij i

J S S S S H S S S
 

      H   (2.15) 

 2 2 2

Heisenberg ( ) , ( ) ( ) ( ) 1.z x y z

ij i j z i i i i

ij i

J H S S S S
 

       S SH   (2.16) 

Consider a thermal equilibrium system in contact with a reservoir at an absolute 

temperature T, the probability that system is in a microstate  is determined by the 

normalized Boltzmann factor, i.e. 
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 ,
k

k

e
p

Z




H

  (2.17) 

where 1/ ;Bk T  kB is the Boltzmann constant, 
kH  is the Hamiltonian of system in a 

given microstate k, and Z refers to a normalized constant called the partition function. 

The partition function includes all essential information about the system. For a 

classical system, the general form of the partition function, Z, is 

 .k

k

Z e



H

  (2.18) 

By replacing the probability
kp into Equation (2.8), we obtain the average of any 

observable Q for this system: 

 
1

.k

k

k

Q Q e
Z


 

H
  (2.19) 

Equation (2.19) is suitable for the small systems. However, in larger systems, the 

number of possible different microstates is very large. We may choose only n 

independent states at random from some probability
kp . Equation (2.19) becomes 

 

1

1

1

1

,

n

n n

Q p e
Q Q

p e







 













 




H

H
  (2.20) 

where nQ  is called the estimator of Q. The estimator becomes a more accurate estimate 

when n ; we have nQ Q . In general, we choose
 

p  to have a simple and most 

natural form, that is, p e 






H
, then the Boltzmann factor cancels out, top and bottom. 

Then Equation (2.20) reduces to a simple arithmetic expression: 

 
1

1
,

n

nQ Q
n





    (2.21) 

A basic idea behind thermal Monte Carlo method is to pick out the important states 

from the very large number of probabilities. This process is called important sampling. 

Consequently, a good estimate can be obtained by choosing the sample of important n 

states and ignoring all the others. A sample of the state of the system will be picked 
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with its probabilities proportional to its Boltzmann factor. Then the estimator becomes a 

simple expression as Equation (2.21). Additionally, to choose each state with its correct 

Boltzmann probability, we perform a technique called a Markov process as described 

later. 

2.5.3 Observables and fluctuation 

We can write all thermodynamic quantities or observables in terms of the partition 

function. For example, from Equation (2.19), the internal energy U or the expectation 

value of the energy, H , is given by 

 
1 1 ln

.k

k

k

Z Z
U e

Z Z



 

  
    

 


H
H H   (2.22) 

Then, the specific heat C can be calculated from the internal energy, i.e. 

 
2

2 2

2

ln
.B B

U U Z
C k k

T
 

 

  
   
  

  (2.23) 

In addition, the (Helmholtz) free energy F of system can be also written in the terms of 

partition function, that is, 

 ln .BF k T Z    (2.24) 

The expectation of the magnetization, M and the magnetic susceptibility,  , can be 

obtained from the free energy F, that is,  

 
1 1 ln

,
z F

M M e
Z B





  

  
   

 


H
  (2.25) 

 
2

2
,

F
M

B B


 
  
 

  (2.26) 

where (1/ ) .B M H   

In practice, some observables such as the specific heat capacity and magnetic 

susceptibility can be written in terms of fluctuations, that is, 
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  22 2 ,BC k U U    (2.27) 

  22 .M M     (2.28) 

2.5.4 Markov process 

The Markov process is a discrete stochastic method with three basic properties: (1) the 

number of possible states is finite, (2) any stage depends only on previous or current 

state and (3) the probabilities are constant over time. These are called Markov 

property. A Markov process starts from a configuration   at time t and generate a new 

one   at time t t . The evolution from state   to state   is governed by transition 

probability ( ).R    We further require that 

 ( ) 0, ( ) 1.R R


         (2.29) 

Each transition depends only on the current state of the system and not on the previous 

history. Normally, we assume that the transition probability is time-independent. 

Let ( )p t  be the probability that the system will be in state   at time t. The probability 

( )p t   must also satisfy this relation: 

 ( ) 1.p t



   (2.30) 

We can write the master equation for the evolution of ( )p t  as [33] 

 
( )

( ) ( ) ( ) ( ) .
dp t

p t R p t R
dt



 



           (2.31) 

In a Monte Carlo simulation, the Markov process will generate a succession of states 

with the Boltzmann probabilities. In addition to the condition as Equation (2.30), we 

need  two further conditions for our Markov process: ergodicity and detailed balance. 
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2.5.5 Ergodicity and detailed balance 

Ergodicity is an important condition for our Markov process. The ergodicity condition 

tells us that all possible configurations of the system should be accessible, if we run the 

process for long enough: although some other state may have zero transition probability, 

but there should exist at least a path of non-zero transition probabilities connecting two 

arbitrary states   and  , that is, ...       . Any algorithm created in the 

Monte Carlo simulation should satisfy the ergodicity condition, such as the Metropolis 

or Wolff algorithm. 

Detailed balance is another condition required in our Markov process. This condition 

makes us ensure when the system is in equilibrium, we should create the Boltzmann 

probability distribution rather than any other distribution. As the system is in 

equilibrium, we obtain ( ) / 0,dp t dt  then Equation (2.31) becomes 

 ( ) ( ).p R p R         (2.32) 

This is the detailed balance condition which says that the probability of system moving 

from a state  to another one is equal to that of system moving a state to another 

one . However, if we choose p to be the equilibrium distribution or Boltzmann 

distribution, we can obtain the detailed balance condition as 

 
( )( )

.
( )

E EpR
e

R p

 



 

 

 
 


  (2.33) 

Equation (2.33) tell us that, at thermal equilibrium, the ratio of transition probabilities 

for moving state   to state   and its inverse depends only on the energy difference 

between new state and old state, e.g. E E  . Therefore, we need these conditions: 

ergodicity and detailed balance conditions, to make the probability distribution in our 

Markov process be the Boltzmann distribution as desired. 

2.5.6 The Metropolis algorithm 

The normalization condition  ( ) 1R


    in Equation (2.29) includes the 

transition probability ( )R   , which means the absence of transition. We find that 
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when   , Equation (2.32) gives 1 = 1, that is, the detailed balance is always valid for 

any ( )R   . Thus we can set the transition probability to any values as desired. In 

general, we split the transition probability as follows: 

 ( ) ( ) ( ),R g A           (2.34) 

where ( )g    and ( )A   are the selection probability and acceptance ratio, 

respectively. 

The selection probability says in our algorithm which state can be generated from a 

given old state. Suppose there are N spins in our Ising model with single spin flip 

update, we can generate a new state by choosing a spin at random out of N different 

spins. In this case the selection probability is 

 
1

( ) .g
N

     (2.35) 

This equation is always valid for its inverse. From Equations (2.34) and (2.35), the 

detailed balance condition becomes 

 
( )( ) ( ) ( ) ( )

.
( ) ( ) ( ) ( )

E ER g A A
e

R g A A

        

       

    
  

   
  (2.36) 

The acceptance ratio is the fraction of times that the actual transition takes place. Thus 

if E E  , we can set ( )A    to be one (the actual transition exists with the largest 

possible value). To satisfy Equation (2.36), we choose the following acceptance ratio:  

 

( )
; if 

( ) .
1 ;  otherwise

E E
e E E

A
 

  

  
  



  (2.37) 

Equation (2.37) says we always accept the transition to a new state if it has energy 

lower than or equal to the old one. However if it has a higher energy, we can accept the 

transition with the acceptance ratio as Equation (2.37). 
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2.5.7 Equilibrium and measurement 

In general, when we choose an initial state at random, our system may take a long time 

before it has come to equilibrium at a temperature interested. This time is called the 

equilibration time eq . To find eq , we plot some physical quantities interested as a 

function of time. When thermal equilibrium reaches, these quantities begin to fluctuate 

around a steady average value. The question is “How long does a system come to 

equilibrium?” Firstly, we need to define the unit of time. Time is measured in Monte 

Carlo step per lattice site (MCS).  For our system with the total number of spins N on 

the lattice, one MCS refers to one sweep lattice (in other words, N steps altogether) in 

the Metropolis algorithm or one single cluster-flip in the Wolff algorithm. To make sure 

our system  has come to equilibrium,  at least we choose the equilibration time to be the 

total number of spins on the lattice, that is, eq N  [33]. 

Once our system has reached equilibrium, we need to measure the observables 

interested, such as the energy and the magnetization. In the Metropolis algorithm, if we 

know the current energy ,E we can find the new energy E when we flip a spin: 

 ,E E E     (2.38) 

where E is the energy difference in moving from state   to state . To calculate 

efficiently, we should find the energy of system at the beginning of simulation and 

calculate the new energy every time we flip a spin from Equation (2.38). 

2.6 Data processing analysis 

Fundamental analysis is an appropriate method used to investigate the nature behaviors 

of materials. However, due to the complexity of materials, it is too difficult to this 

approach. Data processing analysis is a very direct way to set up the relationship 

between input and output parameters without the need to get the fundamental 

knowledge. Mostly data processing analysis is used for designing extensive database for 

specific ranges of input for easy and quick prediction of the output. The examples of 

this analysis are Artificial Neural Network and Fourier transformation. 
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2.6.1 Artificial Neural Network 

The Artificial Neural Network (ANN) is a computer model consisting of a number of 

processing element or ‘artificial neurons’ inspired by the real human neurons in the 

brain. In the human brain, when a neuron receives a strong enough signal, it is activated 

and emits the signal to adjacent neurons, and the signal is linked to a recognized 

perception taken from pool of experiences. In the same manner, each artificial neuron 

behaves as a processing unit which receives inputs (usually more than one) and 

transform to input-weighted-sum 
all inputs

i ia x w  , where xi is an input signal and wi is 

signal weight. To compute the output, an activation function f is applied on a, then the 

output f(a) is obtained as illustrated in Figure 2.4. 

 

Figure 2.4 Input signals, an input-weighted-sum and an output signal of a neuron [46]. 

One of the most commonly used activation functions is 

 
1

( ) ,
1 cx

f x
e




  (2.39) 

where x = a and c is a positive scaling constant. In performing ANN modeling, artificial 

neurons are organized in layers as shown in Figure 2.5 [46], where the first layer on the 

left hand side is the input layer. Input data are fed to the network through this layer. 

Outputs from ANN are obtained from the output layer on the right hand side. The layers 

between input and output are called the hidden layers. There may be one or more hidden 

layers between an input and output layers. Neurons in each layer are connected together 

(indicated by lines connecting between neurons). The strength of the connection is 

indicated by signal weight (wi). In Figure 2.5, the field frequency, field amplitude, or 

temperatures are provided in the input layer and the corresponding hysteresis area is 

obtained from the output layer. However, if preferred, there could be more than one 
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output in the output layer, such as hysteresis area, remnant magnetization, coercive 

field, and etc. 

During the ANN processing, the signal weights wi are adjusted to minimize the error 

between the network outputs and desired outputs.  The weight adjustment process is 

called ‘training’ which is governed by the learning algorithm. One of most well-known 

learning algorithms is the Back Propagation (BP) algorithm [47, 48]. The idea of the BP 

algorithm can be described as the following. The training begins with assigning small 

random number to all signal weights. Then two stages calculation is performed.  Firstly, 

in the ‘forward pass’ input data are presented to the network, and then output from each 

neurons are calculated using input-weighted-sum a and Equation (2.39) to obtain the 

final outputs in the output layer. These outputs are then compared with actual output, 

and the deviation or error are determined. Secondly, the ‘backward pass’ is performed 

by adjusting all signal weights in order to minimize the error. These two stages 

calculation are repeated with the new set of input-output examples until the stopping 

criterion is met, and the weights are kept for ANN prediction. 

 

Figure 2.5 An example of schematic diagram for ANN modeling of ferroelectric 

hysteresis area [46]. 

The ANN model has been efficiently applied to many works in physics and materials 

science [47, 49-52], manufacturing [53, 54] and business [55, 56]. For example, an 

ANN model was used in modeling ceramics-powder preparation in obtaining the pure 

perovskite phase [50]. It was also used to find the complex relation between 

ferroelectric hysteresis properties and external electric field parameters [52], Example 
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of how accurate the ANN is in hysteresis modeling can be found in Ref. [57], where the 

predicted and the real hysteresis areas were found to agree well over the considered 

parameter ranges. As can be seen, this truly reflect advantages of using ANN modeling 

as  dynamic hysteresis behavior can be illustrated without the comprehension of how 

dynamic hysteresis behaviors depend on the applied perturbation and complex internal 

interaction in the system. 

2.6.2 Fourier transformation 

In Fourier transformation, any periodic function in time domain f(t) can be expressed as 

the sum of sine and cosine series, that is, 

 
0

1
( ) cos( ) sin( ); 1, 2, 3, ...

2
i i i i

i i

f t a a t b t i        (2.40) 

where a0, ai and bi are Fourier coefficients, i is the ith-order frequency, and t is time. 

Fourier transformation is an alternative method that can be used to model the dynamic 

hysteresis behaviors. However, since hysteresis data are discretely measured at a time 

interval t, the time domain parameter t has to be represented by the data-point domain 

n. For instance, by taking hysteresis loop of BaTiO3 bulk ceramics as an application 

[31], we can show the electric field and polarization as a function of data-point and the 

original field dependence of polarization, or P-E hysteresis loop [57]. In order to change 

the data from data-point domain n to the frequency domain k, Fourier transformation is 

given as [31, 58, 59] 
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



   (2.41) 

which can be written as 
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 

 

       (2.42) 

where N is the number of data points in one field period, ak and bk are the Fourier 

coefficients or the amplitudes of kth  harmonic of real and imaginary part, respectively. 

Then, by applying Equation (2.42) to ferroelectric hysteresis of BaTiO3 bulk ceramics, 
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kth harmonic amplitudes of real and part imaginary parts of the polarization signal can 

be shown as a previous work [31]. As can be seen, all even harmonics are small due to 

the almost symmetric behavior of the hysteresis loop. Therefore even harmonics can be 

ignored, while odd harmonics become more pronounced, As a result, the hysteresis area 

can be calculated from  

 0 1

2
,A E a

N


    (2.43) 

where a1 is the first-harmonic Fourier coefficient of real part and E0 represents the field 

amplitude. It was also found that the positive and negative remnant polarizations depend 

on all odd harmonic of real parts as 

 
/2

1

2
.

N

r n

n

p a
N





 m   (2.44) 

In addition, the positive and negative coercive field can be computed from the first 

harmonic amplitude of real and imaginary parts 

 1

0 1 1sin[tan ( / )].cE E a b     (2.45) 

To confirm their validities, the hysteresis area from Equation (2.43), the remnant 

polarizations from Equation (2.44) and coercive field from Equation (2.45) were 

compared those measured from the experiment, and were found to agree very well as 

shown in Table 2.1 [31, 46]. 

In fact, these hysteresis properties can be directly extracted from the original hysteresis. 

For instance, the hysteresis area can be calculated by performing the numerical 

integration methods e.g. trapezoidal or Simpsons methods. However, due to the 

electronic noise or poor experimental set up, the P-E loop obtained from the experiment 

may be distorted, asymmetric, or unexpectedly shifted along P-axis or E-axis. These 

random or unwanted noises distort the hysteresis loop from its ideal shape. 

Consequently, this may concealed some important fundamental phenomena and may 

prohibit unbiased link between the true hysteresis properties and the external 

perturbation. Therefore, the Fourier transformation can be used to ease these problems.  
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Table 2.1 Comparison of ferroelectric hysteresis properties obtained from the Fourier 

prediction and real measurement [31, 46]. 

Observables Fourier prediction Real measurement 

A (mCV/cm3) 133.6468 133.5459 

2

2
( C/ cm )r rp p


 
  8.1887 8.1887 

2

2
(kV / cm )c cE E 

 3.4367 3.4594 

 

 


