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CHAPTER 3 

Methodology 

3.1 Research procedure 

The Monte Carlo method is a power tool used for solving statistical physics problems. 

This way involves the calculation the probabilities of a system composed of very many 

atoms or molecules. Under this system, the equation of motion, which can be expressed 

mathematically, governs their behaviors. The behavior of entire system often obeys 

their equations. However, it is impossible to solve these problems exactly. Therefore, 

we use the Monte Carlo technique to avoid complex mathematics. This chapter devotes 

the principles and models used to simulate the effects of partial non-polarizable 

structure on the ferroelectric hysteresis loops. This chapter describes the research 

procedure in details, that is, various models used in investigating ferroelectric 

behaviors, preparation the ferroelectric system with partial non-polarizable, calculation 

hysteresis loop area. 

In this work, we use spin models including the DIFFOUR model, modified Heisenberg 

model with DIFFOUR interaction, and 2D four-state Potts models to simulate 

ferroelectric thin films with partial non-polarization structure, and then investigate the 

effects of imperfect structure on ferroelectric hysteresis loops. We start with assigning 

the Hamiltonian of the DIFFOUR model with an inclusion of non-electric sites as the 

following equation [36, 38]: 
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where 
2

0 / 2P m  is the kinetic energy, 
iu

r
denotes the a constant-magnitude vector 

represented the ferroelectric dipole at site i, a and b are double-well potential 

parameters, U refers to the ferroelectric interaction, 0
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external electric field directing only on the z-direction of thin-films, where E0 and f are 

field amplitude and field frequency respectively, and <ij> represents the summation  

taking over the nearest neighbors pairs of dipoles. 

If iu
r

 is constant in magnitude (to emphasize effects of domain reorientation), and we 

use the appropriate reference energy, the Hamiltonian in Equation (3.1) can be rewritten 

as  

 
DIF

ˆ ˆ ( ) ,i j iz

ij i

U u u E t u
 

    H   (3.2) 

where ˆ
iu is a unit vector having to one of the possible 14 ferroelectric dipole directions 

(8 from rhombohedral and 6 from tetragonal structures). The magnitude of each dipole 

was absorbed into U, and uiz is the z-component dipole at site i. Moreover, U was used 

as the unit of energy, therefore the unit of temperature T and electric field E were 

redefined as U/kB and U respectively, where kB is the Boltzmann’s constant. 

In preparing the considered system, the ferroelectric dipoles were assumed to reside in 

the unit cells the considered ferroelectric lattice system consisting of N = L × L × l 

dipoles, where L × L denotes a system size and l is the ideal-film thickness (the number 

of monolayer) and N refers to the total ferroelectric dipoles. The Metropolis algorithm 

was considered and periodic condition was used along the xy-plane (in-plane direction). 

Moreover, the number of non-polarizable sites or defect concentration c can vary. 

In updating the dipole configuration, a dipole ˆ
iu  was randomly chosen and assigned a 

new random direction (from possible 14 directions). The new direction was accepted 

with the following Metropolis probability, pDIFF, 
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  (3.3) 

where ( )i tH is the energy difference due to the update at site i and time t. The unit 

time was scaled in unit of Monte Carlo step per sites (mcs), which is equivalent to N 

trial updates. The site ˆ
iu  was updated if 0i H  or random number 

DIFFr p , where 

[0,1)r . These procedures were repeated until the simulation terminates. 
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In measuring the observables, a fixed temperature T was chosen since all considered 

ferroelectric systems are in their ferroelectric phase at this T [34]. Moreover, a given 

fixed field E0 was considered to investigate how the other parameters affect the 

hysteresis behaviors. Therefore, with varying f, and c, the hysteresis loops were drawn 

by calculating the polarization per dipole, ( )p t , at time t, i.e. 

 
1

( ) ( ),iz

i

p t u t
N



   (3.4) 

where (1 )N c N    is  the total number of available dipoles. By varying frequency f, 

the first 1000 hysteresis loops were discarded for the steady state condition, and next 

10000 loops were performed to average the hysteresis area, that is, 

 ,A pdE Ñ   (3.5) 

and the dynamic order parameter 

 
0

1
( ) ,

P

Q p t dt
P

    (3.6) 

where 1 /P f  is the field period. Q was used to investigate the dynamic phase 

transition; 0Q   for dynamic ferroelectric phase and Q = 0 for dynamic paraelectric 

phase. 

Next, we use the 2D four-state Potts model in simulating the ferroelectric properties due 

to the coexistence of both 90° and 180° domain wall [60]. Its dipoles have four different 

alignments and are mutually perpendicular to each other. Therefore, in this work, a two-

dimensional array of N = NxNz cells on the xz plane was purposed, where Nx and Nz are 

the number of cells along the x- and z-directions, respectively. Each cell can be also 

represented by a tetragonal rectangle [61]. A dipole at a cell index i (0 < i  N) was 

replaced by a spin matrix ˆ
iS , which takes one of the four possible directions as the 

followings 

 
1

ˆ ˆ along direction (upward),
0

i AS S z
 

   
 

  (3.7) 
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0

ˆ ˆ along direction (left),
1

i BS S x
 

   
 

  (3.8) 

 
1

ˆ ˆ along direction (downward),
0

i CS S z
 

   
 

  (3.9) 

or 

 
0

ˆ ˆ along direction (right)
1

i DS S x
 

    
  (3.10) 

where A, B, C or D represents the four possible states. As the direction of the dipole is 

relevant to the orientation of the tetragonal rectangle, the ferroelastic strain state of a 

cell can be defined as the following equations [12, 21] 
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  (3.12) 

where 
0  is the constant strain of tetragonal cell along the elongated edge. 

From a typical 3D tetragonal structure of a perovskite-type ferroelectric material, the 

positions located at the center of six faces can be represented into a 2D rectangle model 

with four faces: top, left, bottom, and right. Therefore, the non-polarizable sites were 

laid at one of possible four sides of a tetragonal cell. At a cell i, the presence of a non-

polarizable site can be represented as the following expressions [62, 63] 

 
0

ˆ (polarizable site),
0

iV
 

  
 

  (3.13) 

 
1

ˆ (non-polarizable site at top side),
0

iV
 

  
 

  (3.14) 

 
0

ˆ (non-polarizable site at left side),
1

iV
 

  
 

  (3.15) 
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1

ˆ (non-polarizable site at bottom side),
0

iV
 

  
 

  (3.16) 

 
0

ˆ (non-polarizable site at right side).
1

iV
 

  
 

  (3.17) 

By considering the mechanical energy density without the anisotropic switching, a 

ferroelectric material is composed of many energy terms i.e. 

 
Potts Potts,0 1 2

ˆ ˆ ˆˆ ˆ ˆ{ }{ },T T T

V i i V i j i j

i ij

V S V V S S
 

   H H H H   (3.18) 

where Potts,0H  is the Hamiltonian of a spin system with any polarizable sites, <ij>  is the 

summation over the nearest neighbors, 
1VH  refers to the coupling interaction between 

non-polarizable sites and dipoles, 
2VH  is the coupling strength between the distorted 

cells and the neighboring dipoles.  ˆ TX is the transpose matrix of X̂ which has the 

following form ˆ z

x

X
X

X

 
  
 

, where Xz and Xx are the components along to z- 

(longitudinal) and x- (transverse) directions, respectively ( ˆˆ ˆ  or  X V S ). Its unit is 

absorbed into 
1VH or 

2VH , and each term in Equation (3.18) was also redefined as the 

energy unit. For the presence of polarizable sites, the Hamiltonian of system can be 

written as 

 Potts,0
ˆ ˆ ˆˆ ˆ ˆ ˆˆ ,

TT T F F T

i j S i i i j i

ij i ij i

JS S P E S     
   

       H   (3.19) 

where J and  are the dipole-coupling coefficient and ferroelastic-strain-coupling 

coefficient, respectively, PS is the magnitude of the dipole moment of a cell, Ê  and ̂   

are the periodic external electric and stress fields. Similarly, J and  are redefined as the 

energy unit by absorbing the unit of Ŝ  and ̂ , respectively. Therefore, the unit of the 

electric field was defined as J and temperature as J/kB, where kB is the Boltzmann's 

constant. If both external electric and stress fields are uniform in space, and have only 

longitudinal forms (z-direction) and initially in phase, they can be expressed as 
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and  

 
0 sin(2 )

ˆ ,
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z
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f t  




   
    

  
  (3.21) 

where E0 and 0 are the electric and stress field amplitudes, for a tensile stress, z = 0 

(0 > 0 for a tensile stress and 0 < 0 for a compressive stress), t is the time which is 

scaled in term of number of Monte Carlo steps (mcs), fE and f are the electric and stress 

field frequencies, respectively, which have the unit of mcs-1. In the simulation, the 

numbers of data (or points) per a loop used to generate a hysteresis loop rely on one 

field frequency (or one period). Under a static and periodic field, a hysteresis loop can 

be created easily by these points. However, two different field frequencies may lead to 

their different numbers of points per a loop. This is not quite suitable to plot a hysteresis 

loop and compare using different numbers of points. Therefore, in this work, fE = f  = f 

as previous works [20, 64]. In Equation (3.19), î  is the total strain which can be 

divided into two parts (without field-induced strain) as 

 ˆ ˆ ˆF el

i i i      (3.22) 

where ˆel

i  is the elastic strain determined by the elastic property of the material. For a 

small stress, it was found that 

 
11

ˆ .
1

zel

i

xY






   
      

  (3.23) 

Here, Y and   are the Young's modulus and Poisson ratio, respectively. 

In preparing the system, each spin was placed at any sites randomly with possible 

directions as described previously. Consequently, the system was initially unpoled. The 

ferroelastic strain states were also automatically initialized since both spin states and 

ferroelastic strain states were associated as Equations (3.7) – (3.12) (see Table 3.1).  
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0
ˆ polarizable site
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ˆ
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V
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0

1
ˆ

i
V

 
   

Table 3.1 Possible four directions of a dipole and possible two strain states 

Dipole Direction Strain 

1
ˆ

0
AS

 
  
 

  

                                

0

0

ˆ
/ 2

F





 
  

 
  

1
ˆ

0
CS

 
  
 

 

                                 

0
ˆ

1
BS

 
  
 

 
 

0

0

ˆ
/ 2

F





 
  
 

 

0
ˆ

1
AS

 
  

 
 

 

 

In simulating the existence of non-polarizable sites, the total number of non-polarizable 

sites NV = cN, where c  is the non-polarizable probability or defect concentration, was 

defined where, for each cell, the non-polarizable sites randomly distributed on possible 

positions as mentioned in Equations (3.13) – (3.17) (see Figure 3.1). The presence of 

non-polarizable site at possible four sides of a cell is governed by the probability pT 

(top), pB (bottom), pL (left) and pR (right). These probabilities follow the 

condition 1T L B Rp p p p    . Moreover, periodic and free boundary conditions were 

employed along x- and z-directions, respectively. 

 

 

 

 

 

Figure 3.1 Non-polarizable sites on possible 4 sides of a 2D-tetragonal cell.  
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After providing the initial configuration of system, a spin was randomly selected for a 

trial rotation which is determined by the Metropolis algorithm [65]. The macroscopic 

polarization and strain were calculated using the following expressions: 
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,
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P n S
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   (3.24) 
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and 

 

0ˆ ˆˆ ( )

,

T

i i
i

x

q

N

 



   (3.26) 

where 
1

ˆ
0

n
 

  
 

 and 
0

ˆ
1

q
 

  
 

denote the longitudinal and transverse unit matrix, 

respectively, and 
0

î  is the initial strain matrix for each cell. Then the ferroelectric 

hysteresis loops were obtained to investigate their properties through the hysteresis area 

as Equation (3.5). 

3.2 The single histogram method 

The single histogram method allows us to extrapolate some results to nearby 

temperatures of a single Monte Carlo simulation performed at a given temperature T0.  

The idea of using the single histogram method is to extract some results from a single 

Monte Carlo simulation at a given temperature. The aim of the single histogram method 

is to obtain one function at one temperature from a simulation at another temperature. 

We have shown that the estimator of an observable QM from measurements M can be 

expressed as 
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  (3.27) 

where the energies
i

E are the total energies of the state 
i  and not energies per spin.  
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In most simulations, 
i

p  is the Boltzmann probability for a considered temperature. 

However, for another temperature, we may choose it to be 
0

0
,

E
i

i

e
Z

p
 





 where 

0 01/ .Bk T   Then, we obtain a fundamental equation of the histogram method, that is, 

 

0

0

( )

1

( )

1

.
i

i

j

M E

i
M EM

j

Q e
Q

e





 



 

 



 







  (3.28) 

To avoid using every raw data of 
i

Q and
i

E , we replace them with the two-

dimensional  histogram ( , )N E Q  which is the number of times during the Monte Carlo 

run at a state with the energy E and observable Q (for example, magnetization). Thus 

Equation (3.28) becomes 
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N E Q e

 

 
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 




  (3.29) 

However, it is unworkable to fit the histogram with the extensive observables such as E 

and Q. Therefore, we perform the sums overs Q first and use one-dimensional arrays to 

keep the average Q as a function of E, that is, 
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  (3.30) 

We perform the summation in logarithmic terms instead of the summation of 

exponential function in Equation (3.30) to avoid overflow in computer. To do this, let 

1
 and 

2
 be the logarithms of x1 and x2 and 

1 2 , then 

 

1 2

1 2 1

2 1

1 2

1

ln( ) ln( )

ln[ (1 )]

ln(1 ).

x x e e

e e

e





  

 

  

  (3.31) 

Equation (3.31) can be safety evaluated without overflow because 
2 1 1e


 . (For very 

small x, we can use a function called log1p() in C to evaluate ln(1 ).x ). Thus, we can 

calculate QM in Equation (3.30)  
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ln(numerator ) ln(denominator )numerator

.
denominator

MQ e     (3.32) 

However, we cannot take the logarithms of some observables that may be negative, 

such as energy or magnetization. To avoid this problem, we shift their values with a 

constant value that is large enough to make them positive. 

3.3 Estimation of power-law exponents 

As described in section 2.2, hysteresis area can be written in the power-law terms, that 

is, hysteresis area is a function of some parameters with their exponents. We can 

estimate these exponents to find out how they effect on hysteresis area A. In this section, 

we will show how to estimate the exponents in details. 

Firstly, consider a variable A be a function of three parameters: X, Y and Z. We can 

write it in the power-law terms, that is,  

 A kX Y Z   ,  (3.33) 

where k is a constant, , , and  are the exponents of X, Y, and Z, respectively. Next, 

we take the (base-ten) logarithm of both sides of Equation (3.33) and use the most basic 

property of logarithm. This yields 

 log log log log log .A k X Y Z        (3.34) 

To estimate the exponent , we let Y and Z be two constants, therefore Equation (3.34) 

becomes  

 log log ,A X B   (3.35) 

where 

 log log log .B Y Z k     (3.36) 

If we define logy A , logx X , m   and c = B and substitute them into Equation 

(3.35), we get a linear equation of two variables y and x, that is, y mx c  , where m is 

the slope or gradient of a line and c denotes the y-intercepta point at which a line 

crosses the y-axis. This means if we plot log A  versus log ,X  we should obtain a 
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straight line and can estimate the value of  by calculating the line’s slope in the usual 

way, that is, for  

 2 1

2 1

log log
.

log log

A A

X X






  (3.1) 

We can also find the value of the y-intercept by substituting log 0X   (or X = 1), that 

is, logB A .  

Next, if we choose X and Z be two constants, Equation (3.34) yields 

 log log ,A Y C    (3.38) 

where 

 log log log .C X Z k      (3.39) 

In the same way, if we plot log A  versus log ,Y we can estimate the exponent β by 

calculating the line’s slope, that is, 

 2 1

2 1

log log
,

log log

A A

Y Y






  (3.40) 

and if log 0,Y   we get log .C A  Finally, if X and Y are two constants, we get  

 log log ,A Z D    (3.41) 

where 

 log log log .D X Y k      (3.2) 

We can find the exponent  by plotting log A  versus log ,Z i.e., 

 2 1

2 1

log log
,

log log

A A

Z Z






  (3.43) 

and if log 0,Z   this yields also log .D A   

Now, we can use the exponents , β, and  to fit a model using linear regression 

analysis. However, we need to determine how well the model fits the data. In statistics, 
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we use R-squared or R2 to show a goodness-of-fit statistics. R2 is a statistical measure of 

how close the data are to the fitted regression line. In general, R2 is always between 0 to 

1. The closer to 1 the R2, the better the model fits our data. We can get the R2 from 

many statistical software. 


