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CHAPTER 4 

Results and Discussions 

4.1 The hysteresis behaviors of ferroelectric thin films with partial non-

polarizable structure 

In our study, we use the DIFFOUR model as explained in section 3.1 and Hamiltonian 

for this model is suggested in Equation (3.1). We vary the ideal-film thickness l to be 1, 

2, 4, 6 and 8. To preserve the film geometry, the linear size L should be more than film 

thickness. Therefore, we let L = 100 where results from larger size were not 

significantly different. Firstly, we perform on 2-layer thin films without defect 

concentration (c = 0) under varying frequencies f, a given temperature T = 0.5 U/kB and 

a fixed field amplitude E0 = 4.0 U, as shown in Figure 4.1 

 

Figure 4.1 The P-E hysteresis loops without defect concentration under varying 

frequency f simulated at l = 2, T = 0.5 U/kB [66]. 
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It shows that at low frequency region (or large period), the hysteresis shape looks like a 

thin rhombic pattern or s-shape loop, as at high frequency region (or less period), the 

hysteresis loops reduce along polarization axis since the phase-lag is large, the dipoles 

have less time to respond the change in applied external electric field. On the other 

hand, our systems take less energy to switch the dipoles. These results may effect on the 

ability to store data of ferroelectric memory devices. 

Next, we perform on 2-layer thin films with defect concentration c = 20% under same 

circumstances. It shows that the hysteresis loops are slimmer compared to the hysteresis 

loops of ferroelectric materials with the ideal or perfect structure (c = 0), as illustrated in 

Figure 4.2, and so does hysteresis area since the ferroelectric interaction decreases on 

the average due to the absences of some dipoles. Our systems take less energy to switch 

these dipoles. These results may be useful for any decisions to choose appropriate 

processes for preparing materials considered since some processes used for preparing 

materials may cause our devices with imperfect structure. 

 

Figure 4.2 The P-E The hysteresis loops with c = 20% under varying frequency f  

simulated at l = 2, T = 0.5 U/kB [66]. 
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Later, we have investigated the thickness dependence of hysteresis loops of ferroelectric 

materials without defect concentration under a fixed frequency f = 0.0250 mcs1 and a 

field amplitude E0 = 4.0 U, as shown in Figure 4.3. The results show that the hysteresis 

shapes look like a slim s-shape. However, the hysteresis loops are similar to oval-shape 

loops for l  2 due to the stronger ferroelectric interaction. Consequently, in enhancing 

the phase-lag, the energy dissipated in switching the dipole’s direction is larger. 

 

Figure 4.3 The thickness dependence of P-E hysteresis loops without defect 

concentration under varying the film’s thickness l simulated at a fixed field frequency f 

= 0.0250 mcs1 [66]. 

Moreover, we also have investigated the thickness dependence of hysteresis loops of 

ferroelectric materials with partial non-polarizable structure (c = 20%) under same 

circumstances, as depicted in Figure 4.4. The results obtained are similar to ferroelectric 

materials with perfect structure (Figure 4.3), but the hysteresis areas are smaller due to 

the weaker ferroelectric interaction. Thus, ferroelectric system take less energy to 

switch the dipole’s direction.  These results may useful for finding out the limit to add 

the number of layers of ferroelectric thin film with imperfect structure because this may 

reduce the ability to store data of memory devices. 
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Figure 4.4 The thickness dependence of P-E hysteresis loops with defect concentration 

c = 20% under varying the film’s thickness simulated at a fixed field frequency f = 

0.0250 mcs1 [66]. 

After that, we have investigated how hysteresis area of ferroelectric materials both with 

and without partial non-polarizable structure respond to the field frequency f and the 

film’s thickness l. We start from calculating the hysteresis A of ferroelectric materials 

without defect concentration c under varying film’s thickness l and field frequency f. 

Then, the hysteresis area A as a function of field frequency f, film’s thickness l and 

defect concentration c can be generated as shown in Figure 4.5. From these results, we 

find that, at low frequency region (f < 0.1 mcs1), the thicker films l, the larger 

hysteresis area A due to the stronger ferroelectric interaction. However, the hysteresis 

are A at high frequency region (f > 0.1 mcs1) becomes less dependent of film’s 

thickness l because our ferroelectric systems take less time (less period) to switch the 

dipoles’ direction. Consequently, the higher field frequency f, the lower hysteresis area 

A. On the other hand, our ferroelectric systems take less energy to switch the dipoles’ 

direction at high frequency region f. These results are consistent with the hysteresis 

behaviors as shown in Figure 4.1 and Figure 4.3. 
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Figure 4.5 The thickness dependence of hysteresis area A without defect concentration 

under varying film’s thickness l and field frequency f [66]. 

The hysteresis area profiles for ferroelectric materials with partial non-polarizable 

structure are also shown in Figure 4.6. They are similar to hysteresis area profiles of 

ferroelectric materials without defect concentration (Figure 4.5), that is, at low field 

frequency region, hysteresis area A increases with increasing film’s thickness l and, at 

high field frequency region, hysteresis area A are less dependent of film’s thickness. 

These hysteresis area profiles are consistent with the hysteresis behaviors as illustrated 

in Figure 4.2 and Figure 4.4. Moreover, we find that, at high field frequency region, 

hysteresis area A calculated are less different for ferroelectric materials with or without 

partial non-polarizable structure. Therefore, we may assume that, at high field frequency 

region, hysteresis area A are less dependent of film’s thickness l and defect 

concentration c. These results may be useful for finding out the limit of defect 

concentration c that can be allowable in our materials to avoid reducing the efficiency of 

memory devices.  

 

 



 

42 

 

 

 

Figure 4.6 The thickness dependence of hysteresis area with partial non-polarizable 

structure under varying film’s thickness l and field frequency f [66]. 

Finally, we have investigated how hysteresis area A respond to field frequency f, film’s 

thickness l, and defect concentration c. We start from the relations between hysteresis 

area A and these parameters with their exponents, i.e. (1 ) ,A f l c     where α,  and 

 are the exponents of field frequency f, film’s thickness l and defect concentration c, 

respectively. These exponents will help us to know that hysteresis area A respond to 

field frequency f, film’s thickness l and defect concentration c. Therefore, in order to 

obtain these exponents, we consider only high field frequency region (f > 01.000 mcs1) 

because, at lower field frequency region, there are too less data to scale to find out the 

exponents. After scaling the exponents as described in section 3.3, we get these 

exponents as followings:  = 0.979,  = 0.082 and  = 0.114. We plot also the 

results obtained and their good R2 (close to 1) to show the goodness-of-fit statistics, as 

shown in Figure 4.7. 

According to the previous work [34], without non-polarizable structure in considered 

system, the scaled exponents of field frequency f and film’s thickness l were 0.969 and 

0.028, respectively. These results show that the hysteresis area decreases with 
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increasing field frequency f and film’s thickness l. Moreover, as the external electric 

field drops to zero the system retains a nonzero polarization or remnant polarization 

since it does not relax back to zero polarization because dipoles require more time to 

response the change in field (this is useful for a memory device). To switch the 

polarization back to zero, the coercive field is required. Both the remnant polarization 

and the coercive field can be negative and positive values. In addition, the remnant 

polarization increases with increasing the film’s thickness and so does coercive field 

due to the larger number of dipoles and stronger ferroelectric interaction. Therefore, the 

imposed electric field have to be increased to switch the polarization to zero. 

 

 

Figure 4.7 The regression line fitted by the scaled exponents  = 0.979,  = 0.082 

and  = 0.114, simulated at higher field frequency (f > 0.1000 mcs1) [66]. 
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4.2 Ferroelectric-phase transition of partial non-polarizable ultra-thin films 

In this section, we study the ferroelectric phase-transition of 2D partial non-polarizable 

ultra-thin films using the modified Heisenberg model with DIFFOUR type interaction 

as explained in section 2.3. For ultra-thin films, we use a monolayer thin film (l = 1) and 

the linear system size L = 100. We vary the defect concentration c = 0, 2, 4, 6, 8 and 

10% to our ferroelectric thin film with periodic boundary condition. In order to obtain 

the hysteresis characteristics including hysteresis area and dynamic order parameter 

profiles. We start from our ferroelectric ultra-thin films simulated at a fixed field 

amplitude E0 = 0.5 U, a fixed simulation temperature T = 0.5 U/kB and a fixed field 

frequency f = 0.001 mcs1. The results show that the higher the defect concentration c, 

the slimmer the hysteresis area A, as shown in Figure 4.8, since the absence of some 

dipoles ceases ferroelectric interaction. The energy dissipation associated to dipole 

switching also decreases. 

 

Figure 4.8 The P-E hysteresis loops of ferroelectric ultra-thin films with varying c under 

E0 = 0.50 U,  f = 0.001 mcs1, and T = 0.5 U/kB [67]. 

 



 

45 

 

 

Moreover, we investigate also the effects of field amplitude E0 on the P-E hysteresis 

shapes under same circumstances as Figure 4.8, but field amplitude E0 = 1.00 U. We 

find that the results obtained are similar to those of field amplitude E0 = 0.50 U, as 

shown in Figure 4.9, that is, hysteresis area A decreases with increasing defect 

concentration c, however, for a given defect concentration, the higher the field 

amplitude E0, the slimmer the P-E hysteresis loops. On the other hand, the higher the 

field amplitude, the fewer the energy dissipated to switch the dipoles’ direction. These 

results may be useful for applying memory devices under external field with appropriate 

field amplitudes because they may effect on memory devices’ efficiency. 

 

Figure 4.9 The P-E hysteresis loops of ferroelectric ultra-thin films with varying c under 

E0 = 1.00 U, f = 0.001 mcs1, and T = 0.5 U/kB [67]. 

Additionally, we show the frequency dependence of hysteresis area A with varying 

defect concentration c simulated at two field amplitudes E0 = 0.5 U and E0 = 1.5 U. The 

results are displayed by log-log graph, as shown in Figure 4.10. We find, at low field 

frequencies (i.e. the field frequencies are smaller than the one that yields the highest 

hysteresis area), the higher the defect concentration, the smaller the hysteresis loop area 
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due to weaker ferroelectric interaction and smaller phase-lag. On the other hand, higher 

field periods allow more time for dipole switching with an external electric field. 

However, for high field frequencies, the higher the defect concentration, the larger the 

hysteresis area due to high field frequency induces high phase-lagging between electric 

polarization and field signals. Hence, the hysteresis loops become asymmetric (not 

shown) and the hysteresis area ceases. Nevertheless, higher defect concentration will 

cease ferroelectric interaction and reduce the overall phase-lag, so the hysteresis loop 

shapes become more symmetric and the hysteresis area increases. 

 

Figure 4.10 The frequency dependence of hysteresis area A with varying defect 

concentration c [67]. 

We have also investigated the effects of defect concentration c on the dynamic order 

parameter Q. The dynamic order parameter is a quantity which is used to investigate the 

dynamic phase transition, that is, Q  0 for dynamic ferroelectric phase and Q = 0 for 

dynamic paraelectric phase. Therefore, we use Equation (3.6) to calculate its values. 

Our systems with or without partial non-polarizable structure are simulated at a fixed 
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field frequency f = 0.01 mcs1 and a fixed field amplitude E0 = 1.0 U. The results show 

that the phase transition temperature from dynamic ferroelectric phase (Q  0) into 

dynamic paraelectric phase (Q = 0) decreases with increasing defect concentration, as 

shown in Figure 4.11, since our systems that have weaker ferroelectric interaction need 

less temperature for dynamic phase transition. These results may be essential for finding 

out the critical temperature of our memory devices with partial non-polarizable structure 

because, for better materials’ efficiency, we may need to keep the dynamic ferroelectric 

phase in some circumstances. 

 

Figure 4.11 The temperature dependence of dynamic order parameter simulated at 

frequency f = 0.01 mcs1 and E0 = 1.0 U [67]. 

4.3 Ferroelectric ultra-thin films with partial non-polarizable structure under 

external electric and stress fields 

In this section, we study ferroelectric ultra-thin films with partial non-polarizable 

structure under applied external electric and stress fields using the Pott model as 

described in section 3.1. We start from the Hamiltonian of this ferroelectric material 

suggested in Equation (3.18). Then, we assume that the orientation of dipoles and the 
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distribution of non-polarizable sites are uniform and isotropic. Moreover the dipole-

coupling coefficient J is also isotropic [63]. 

We study the hysteresis behaviors of our systems under applied external factors as 

followings: (1) a periodic external field and a free stress field, (2) a periodic external 

field and a static stress field, and (3) a combination of periodic external electric and 

stress fields. To do this, we use the following parameters: Nx = 200, Nz = 80, E0 = 1.2, 

0 = 0.5, PS = 1.0, 0 = 0.5, f = 0.0025,
1 5.0V H ,

2 2.0V H , Y = 2.0,  = 0.3, J = 1, α = 

0.8, pT = pL = pB = pR = 0.5 and T = 1.0. 

Firstly, in during simulating, we calculate the macroscopic polarization along to the z-

direction or Pz to generate the Pz-Ez hysteresis loops with varying defect concentration c 

under a free stress field (z = 0), as shown in Figure 12. We find that the higher the 

defect concentration c, the smaller the Pz-Ez hysteresis shapes due to the reduction of 

the number of dipoles in the z-direction. Consequently, the longitudinal polarization Pz 

decreases also. On the other hand, the number of dipoles in the x-direction increases 

with increasing defect concentration c. Moreover, both the coercive field and remnant 

longitudinal polarization reduce with increasing defect concentration. 

 

Figure 4.12 The Pz-Ez hysteresis loops with varying defect concentration c under a free 

stress field [68]. 

Increasing c 
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Next, we investigate also our systems under two static stress fields: a longitudinal 

tensile stress field (z = 0.5) and a longitudinal compressive stress field (z = 0.5), as 

shown in Figure 4.13 and Figure 4.14, respectively. In general, the results are similar to 

our system under a free stress field, that is, the higher the defect concentration c, the 

smaller the Pz-Ez hysteresis loops due to the reduction of the number of dipoles in the z-

direction. However, our systems under a longitudinal tensile stress field yields the larger 

Pz-Ez hysteresis shapes compared to those without a static stress field because, under a 

longitudinal tensile stress field, most dipoles are forced to align in the z-direction. 

Consequently, our systems need more energy to switch the dipoles’ direction. Under a 

longitudinal compressive stress field, the dipoles in the z-direction are forced to switch 

into the x-direction, the number of dipoles in the z-direction reduces. Consequently, our 

systems require less energy to switch the dipoles’ direction. Therefore, the Pz-Ez 

hysteresis loops are smaller than those under a free stress field. In summary, under a 

longitudinal tensile stress field, the dipoles aligning in the z-direction are enhanced by 

the existence of a longitudinal tensile stress field, compared to free or longitudinal 

compressive stress fields. 

 

Figure 4.13 The Pz-Ez hysteresis loops with varying defect concentration c under a 

longitudinal tensile stress field [68]. 

Increasing c 
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Figure 4.14 The Pz-Ez hysteresis loops with varying defect concentration c under a 

longitudinal compressive stress field [69]. 

Later, our systems under a periodic stress field have been also studied. We find that the 

Pz-Ez hysteresis shapes are identical to those under a free stress field, as shown in Figure 

4.15, because a periodic stress field has a longitudinal tensile stress field and a 

longitudinal compressive stress field. Therefore, our systems are under a longitudinal 

tensile stress field over a half cycle and a longitudinal compressive stress field over 

another half cycle. Thus, all average stress field over a cycle vanishes, the obtained 

results are similar to those under a free stress field, which are consistent with the 

previous work [69].  

Then we calculate the Pz-Ez hysteresis area which refers to the energy dissipated in 

switching the dipoles’ direction. The hysteresis area profiles obtained are consistent 

with the mentioned explanations, as illustrated in Figure 4.16, that is, the higher the 

number of dipoles in the z-direction (due to a longitudinal stress field), the larger the 

energy required to switch the dipoles’ direction.  

Increasing c 
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Figure 4.15 The Pz-Ez hysteresis loops with varying defect concentration c under a 

periodic stress field [68]. 

 

Figure 4.16 The hysteresis area A versus defect concentration c simulated at z = 0.0, 

0.5, 0.5 and 
0 sin(2 )ft  [68]. 

Increasing c 

 

Defect concentration c 
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In general, a normal stress (a force perpendicular to planes or cross-sectional area of the 

object) causes changes in length or volume. The ratio of change produced in the 

dimension of a body to its original dimension is called normal strain. Therefore, a 

longitudinal strain is the relative change in length of a crystal unit cell in the z-direction. 

Like the longitudinal polarization versus electric field loops, we can generate the strain-

electric field hysteresis loops or butterfly loops by calculating both longitudinal and 

transverse strains driven by an external periodic electric field.  

Firstly, we create the longitudinal strain-electric field (z-Ez) hysteresis loops with 

partial non-polarizable structure under a free stress field. We find that an applied 

periodic electric field can cause the longitudinal strain although our systems are under a 

free stress field. This results from an external periodic electric field applied in the z-

direction. Consequently, most dipoles prefer to align in the z-direction. The reduction of 

dipoles may effect on the relative changes in length of our unit cell, that is, under a 

periodic electric field in the z-direction, the longitudinal strains decrease with increasing 

defect concentration c, as shown in Figure 4.17, due to the dipoles aligning in the z-

direction are missed. The same results go for the transverse strains (not shown). 

 

Figure 4.17 The z-Ez hysteresis loops with varying defect concentration c under a free 

stress field [68]. 

Increasing c 
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Secondly, we create the longitudinal strain-electric field (z-Ez) hysteresis loops with 

partial non-polarizable structure under a longitudinal tensile stress field. We find that 

the longitudinal strains decrease with increasing defect concentration c and are larger 

than those under a free stress field, as shown in Figure 4.18, because most dipoles are 

forced to lay in the z-direction. This results from both a longitudinal tensile stress field 

and a periodic electric field applied in the z-direction. 

 

Figure 4.18 The z-Ez hysteresis loops with varying defect concentration c under a 

longitudinal tensile stress field [68]. 

Next, we investigate also our systems under a longitudinal compressive stress field.  We 

find that the longitudinal strains decrease with increasing defect concentration c, as 

shown in Figure 4.19. These results seem to be similar to those in Figure 4.17 and 

Figure 4.18, but the longitudinal strains are lower because most dipoles prefer to align 

in the x-direction under this stress field. Consequently, the number of dipoles aligning in 

the z-direction is less than those under a free or longitudinal tensile stress fields. 

Moreover, we find that the strain-electric field hysteresis loops are symmetrical shapes 

under a free or static stress fields.  

 

Increasing c 
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Figure 4.19 The z-Ez hysteresis loops with varying defect concentration c under a 

longitudinal compressive stress field [68]. 

Finally, we apply a periodic stress field aligned in the z-direction on our systems to 

investigate the behaviors of the strain-electric field hysteresis loops. We find that, 

unlike our systems under a free or two static stress fields, the strain-electric field 

hysteresis loops are unsymmetrical shapes, as shown in Figure 4.20, because a periodic 

stress field aligned in the z-direction has both longitudinal tensile and longitudinal 

compressive stress fields. Therefore our systems are under two longitudinal stress fields, 

that is, our systems are under the longitudinal tensile stress fields on the range Ez = [0, 

E0] and under the longitudinal compressive stress fields on the range Ez = [E0, 0]. 

Consequently, the unsymmetrical hysteresis loops obtained result from a combination of 

two longitudinal stress fields.  

The changes in dimensions of a body are associated with mechanical energy. Some 

devices can convert mechanical energy into electrical energy and vice versa. However, 

our devices with the imperfect structure may occur in preparing materials. Therefore, 

these studies may be useful for piezoelectric applications such as sensors and actuators 

as they can do this efficiently.   

Increasing c 
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Figure 4.20 The z-Ez hysteresis loops with varying defect concentration c under a 

periodic stress field [68]. 

Increasing c 

 


