

หัวข้อวิทยานิพนธ์

ผู้เขียน

ปริญญา

คณะกรรมการที่ปรึกษา

การควบคุมการเน่าที่เกิดจากเชื้อรา *Fusarium* sp. ของสับปะรดพันธุ์ญี่ปุ่นโดยใช้น้ำที่ผ่านการแยกด้วยกราฟไฟฟ้า และคลื่นความถี่สูง

นางสาวศิรากานต์ ยัณการ

วิทยาศาสตรดุษฎีบัณฑิต (วิทยาการหลังการเก็บเกี่ยว)

พศ. ดร. กานดา หวังชัย

อาจารย์ที่ปรึกษาหลัก

พศ. ดร. จำนงค์ อุทัยบุตร

อาจารย์ที่ปรึกษาร่วม

อ. ดร. สุทธิวัลย์ สีทา

อาจารย์ที่ปรึกษาร่วม

บทคัดย่อ

จากการศึกษาการล้างสับปะรดพันธุ์ญี่ปุ่นโดยใช้คลื่นความถี่สูงร่วมกับน้ำอิเล็กโทรโอลต์ในการควบคุมโรคหลังเก็บเกี่ยวที่เกิดจากเชื้อรา *Fusarium* sp. ซึ่งตรวจพบจากการแยกเชื้อราจากสับปะรดที่เป็นโรคในสภาพธรรมชาติ โดยได้ทดสอบน้ำที่ผ่านการแยกด้วยกราฟไฟฟ้า (ความเข้มข้นของคลอรินอิสระเท่ากับ 100, 200 และ 300 ppm) และ คลื่นความถี่สูงที่ความถี่ 108, 400, 700 KHz และ 1 MHz กับเส้นใยและสปอร์ของเชื้อรา *Fusarium* sp. ในสภาพหลอดทดลอง เป็นเวลา 0, 10, 30 และ 60 นาที และบ่มที่อุณหภูมิ 27 องศาเซลเซียสเป็นเวลา 2 วัน สำหรับสปอร์ และ เป็นเวลา 7 วันสำหรับเส้นใย พบว่า ทั้งน้ำที่ผ่านการแยกด้วยกราฟไฟฟ้าและคลื่นความถี่สูง ทุกความเข้มข้น และทุกความถี่ สามารถยับยั้งการออกของสปอร์ได้ดีกว่าการควบคุมการเจริญของเส้นใย ส่วนการใช้คลื่นความถี่สูง 1 MHz ร่วมกับน้ำที่ผ่านการแยกด้วยกราฟไฟฟ้า เป็นเวลา 60 นาที สามารถยับยั้งการเจริญเติบโตของทั้งเส้นใยและการออกของสปอร์ได้อย่างสมบูรณ์ และเมื่อนำสปอร์ที่ผ่านการทดสอบไปตรวจสอบด้วยกล้องจุลทรรศน์แบบเดนส์ปรกอน พบร้าสปอร์ที่ได้รับน้ำที่ผ่านการแยกด้วยกราฟไฟฟ้าหรือ คลื่นความถี่สูงมีความเสียหายของผนังเซลล์ รวมทั้งพบการออกของสปอร์ที่ผิดปกติ

นอกจากนี้ได้ทำการศึกษาผลของน้ำที่ผ่านการแยกด้วยกราฟไฟฟ้าและ คลื่นความถี่สูง ต่อการควบคุมโรคที่เกิดจากเชื้อราภายหลังการเก็บเกี่ยวและการตอบสนองทางชีวเคมีในผลสับปะรด โดยแบ่งผลสับปะรดที่ผ่านการตัดจูกแล้วออกเป็นสองกลุ่ม กลุ่มแรก ไม่มีการปลูกเชื้อ กลุ่มที่สองมีการปลูกเชื้อด้วยสปอร์เขwen ของเชื้อรา *Fusarium* sp. (1×10^5 spores ml^{-1}) จากนั้นนำไปล้างด้วยน้ำที่ผ่านการแยกด้วยกราฟไฟฟ้าความเข้มข้น 100 ppm และคลื่นอุตสาหกรรมความถี่ 1 MHz แล้วเก็บรักษาไว้ที่อุณหภูมิ 25 องศาเซลเซียส เป็นระยะเวลา 7 วัน และ 13 องศาเซลเซียส เป็นระยะเวลา 20 วัน

จากการทดลองพบว่า การล้างผลสับปะรดด้วยน้ำที่ผ่านการแยกด้วยกระแทกไฟฟ้าร่วมกับ คลื่นความถี่สูง นาน 10 นาที ทุกชุดการทดลองสามารถลดการปนเปื้อนของเชื้อจุลินทรีย์ทั้งหมด ขีสต์ และ ราไได้ดีกว่าชุดควบคุม รวมทั้งสามารถยับยั้งการเกิดโรคบนจุกสับปะรดจากการเข้าทำลายของเชื้อราที่ติดมากับผล ได้ดีที่สุด และในผลสับปะรดที่ผ่านการปลูกเชื้อ *Fusarium sp.* และได้รับการล้างด้วยคลื่นความถี่สูง และ น้ำที่ผ่านการแยกด้วยกระแทกไฟฟ้า หรือ ผลร่วมของน้ำที่ผ่านการแยกด้วยกระแทกไฟฟ้า และคลื่นความถี่สูง สามารถควบคุมการเกิดโรคได้ ซึ่งสามารถลดอัตราการเกิดโรคได้ 6.15, 84.62 และ 100 เปอร์เซ็นต์ตามลำดับ ภายหลังการเก็บรักษาที่ 25 องศาเซลเซียสเป็นระยะเวลา 3 วัน ส่วนชุดที่เก็บรักษาที่ 13 องศาเซลเซียส เป็นระยะเวลา 10 วัน ชุดการทดลองที่ผ่านการล้างด้วยน้ำที่ผ่านการแยกด้วยกระแทกไฟฟ้าร่วมกับคลื่นความถี่สูง สามารถลดอัตราการเกิดโรคได้ 45.45 เปอร์เซ็นต์ ส่วนชุดการทดลองที่ผ่านการล้างด้วยคลื่นความถี่สูง และ น้ำที่ผ่านการแยกด้วยกระแทกไฟฟ้าเพียงอย่างเดียว สามารถลดอัตราการเกิดโรคได้ 36.41 และ 27.35 เปอร์เซ็นต์ ตามลำดับ นอกจากนี้จากการตรวจสอบด้วยกล้องจุลทรรศน์อิเล็กตรอน ได้ขึ้นยันว่าผลสับปะรดที่ผ่านการล้างด้วยน้ำอิเล็กโทร ໄลต์ร่วมกับคลื่นความถี่สูง สามารถยับยั้งการเจริญของเส้นใยเชื้อราบนจุกสับปะรด ได้ 72 ชั่วโมง ขณะที่ในชุดควบคุมพบรากภูของเส้นใยเชื้อราตั้งแต่ 24 ชั่วโมงหลังการเก็บรักษาที่ 25 องศาเซลเซียส

ส่วนการศึกษาผลของน้ำที่ผ่านการแยกด้วยกระแทกไฟฟ้าและ คลื่นความถี่สูง ต่อการตอบสนองทางชีวเคมีของจุกสับปะรด พบว่าการล้างผลสับปะรดด้วยน้ำที่ผ่านการแยกด้วยกระแทกไฟฟ้าและ คลื่นความถี่สูงสามารถกระตุ้นกิจกรรมของเอนไซม์ chitinase, β -1,3-glucanase, phenylalanine ammonia lyase (PAL), polyphenol oxidase (PPO) และ peroxidase (POD) กิจกรรมของเอนไซม์สูงขึ้นเมื่อเทียบกับชุดควบคุม กิจกรรมของเอนไซม์ที่สูงขึ้น ที่พบในการทดลองครั้งนี้อาจเป็นผลมาจากการตอบสนองด้านการป้องกันตัวของผลจุกสับปะรดต่อการถูกออกซิไดส์ด้วยน้ำที่ผ่านการแยกด้วยกระแทกไฟฟ้าและ คลื่นความถี่สูง โดยความสามารถในการเพิ่มค่ากิจกรรมของเอนไซม์ให้สูงมีบทบาทสำคัญเช่นเดียวกับกลไกการป้องกันตัวเองต่อความเครียดที่เกิดจากการได้รับเชื้อโรค นอกจากนี้ยังพบว่าคุณภาพของผลสับปะรดทั้งในด้านค่าการสูญเสียน้ำหนัก ค่าความแน่นเนื้อ ค่าสีของเปลือกผล ปริมาณของแข็งที่ละลาย ได้ในน้ำ ปริมาณกรดที่ไทยเท่าที่ ปริมาณกรดแอกซ์อร์บิก รวมทั้งคะแนนประเมินด้านการบริโภคผลสับปะรดในทุกกรรมวิธีการทดลอง ไม่มีความแตกต่างอย่างมีนัยสำคัญจากน้ำที่ผ่านการแยกด้วยกระแทกไฟฟ้าและ คลื่นความถี่สูง

Thesis Title	Control of <i>Fusarium</i> sp. Decay in Pineapple cv. Phu Lae Using Electrolyzed Oxidizing Water and Ultrasonic Wave		
Author	Miss Sirakan Khayankarn		
Degree	Doctor of Philosophy (Postharvest Technology)		
Advisory Committee	Asst. Prof. Dr. Kanda Whangchai	Advisor	
	Asst. Prof. Dr. Jamnong Uthaibuttra	Co-advisor	
	Lect. Dr. Sutthiwal Setha	Co-advisor	

ABSTRACT

The effect of ultrasonic wave (US) and electrolyzed oxidizing (EO) water on postharvest decay of pineapple cv. Phu lae was investigated using *Fusarium* sp. isolated from pineapple fruits. Both an *in vitro* and *in vivo* approach was pursued. In a first approach, the effect of EO water and US irradiation on *in vitro* growth inhibition of *Fusarium* sp. was studies. Spore suspensions containing 10^5 conidia ml⁻¹ and 1 cm mycelium discs of *Fusarium* sp. were treated EO water with free chlorine at 100, 200 and 300 ppm and different frequencies of 108, 400, 700 KHz and 1 MHz US irradiation for 0, 10, 30 and 60 min. and incubated at 27 °C for 48 hr of spore suspension or 7 days of mycelium discs. The study showed that all treatments of EO water totally inhibited the spore germination of the fungus. Additionally, US irradiation of 1 MHz for 60 min. was the most effective to suppress the spore germination when compared with the control and transmitted light microscopy confirm that cell wall have been damage after treated and also abnormal germination of those spores. Secondly, the effectiveness of EO water, ultrasound (US), individually or combined on the postharvest control of *Fusarium* sp. decay and some biochemical responses in de-crowned pineapple fruit during storage were examined. The de-crowned pineapple fruits were divided into 2 groups, non-inoculated and inoculated with *Fusarium* sp. (1×10^5 spores ml⁻¹) and then

washed with EO water(100 ppm), US wave (1 MHz) or their combinations for 10 min and stored at 25°C for 7 days or 13°C for 20 days. The populations of microorganism on the de-crowned pineapple fruit were investigated after treatments in non-inoculated groups. When compared to the untreated control, combined treatment most effectively reduced the numbers of total bacteria, yeast and mold and also natural decay, followed by EO water and US wave individually. Combined treatment of EO water with US wave showed higher percentage of disease inhibition ($P < 0.05$) than other treatments of fruits subjected to artificial inoculation with *Fusarium* sp. After treated with tap water, US wave or EO water then storage at 25 °C for 3 days, fruits had disease incidence of 81.25, 76.25 and 12.50% respectively, while the combined treatments was not found any sign of disease. Treatments stored at 13°C for 10 days, the combined treatments was able to reduce disease incidence for 45.45%, while US wave and EO water treated alone were able to reduce disease incidence for 36.41 and 27.35 %, respectively.

Scanning electron microscopy (SEM) showed that growth of the fungus was restricted on de-crowned pineapple fruit after the combined treatments. Furthermore, the combined treatments enhanced the activities of β -1, 3-glucanase, PAL and POD, which play important roles in plant defense responses. The increased activities of the enzymes were probable because the defense response to wide array of stresses including wounding and inoculating with *Fusarium* sp. and treatment with EO water and US wave. The treatments had no effect on fruits quality (weight loss percentage, total soluble solids, titratable acidity, pH and ascorbic acid). The potential for EO water in combination with US in pineapple handling systems is high, due to marked synergistic effects against fungal decay of de-crowned pineapple fruit during storage.