
CHAPTER 1

Introduction

The time-delay phenomenon are frequently encountered in various areas, such as

biological modeling, chemical engineering systems, neural network, physical networks,

economics, nuclear reactor, and many others, see [7], [8] and [10].

It is well known that the existence of time delay in a system may cause instability

and oscillations systems, for examples, in [7], [8] and [10].

Besides, many practical systems always involve time-varying delays. So the stability

analysis of time-delay systems have received considerable attention for the last few years.

But most of the works of the systems are required the restriction on the derivative of the

delay, namely ḣ(t) < 1. Besides, time-delays are time-varying continuous functions which

vary from 0 to given upper bound. This condition can lead to conservativeness.

In practice, systems with neutral-type delay (the delay is in derivatives of states of

systems) can be found in many fields, such as heat exchanges, population ecology and

distributed networks containing lossless transmission lines. Hence, many researchers have

studied neutral systems and sufficient conditions of such systems have been provided to

guarantee the stability of neutral systems, for examples, in [5], [11], [13], [15], [16] and

[19].

A neural network is a computational or mathematical model inspired by the struc-

tural and functional aspects of the network of neurons in the human brain , see [12].

In the past few decades, there has been a great interest in neutral-type neural net-

works because of their wide range of applications in the real world processes, such as

pattern recognition, signal processing, associative memory, and combinatorial optimiza-

tion. Therefore, the stability of neutral-type neural networks has been investigated by

several researchers, see [13, 19].

Another important type of time delay is distributed delayed where stability analysis

of neural network with distributed delayed has been paid attention extensively recently ,

see [12].

In 2011, T. Botmart, P. Niamsup, and V.N. Phat [2] studied the delay-dependent

exponential stabilization for uncertain linear systems with interval non-differentiable time-
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varying delays described by

ẋ(t) = [A+∆A(t)]x(t) + [D +∆D(t)]x(t− h(t)) + [B +∆B(t)]u(t),

x(t) = ϕ(t), t ∈ [−h2, 0], (1.1)

where x(t) ∈ Rn is the state vector; A,D ∈ Rn×n and B ∈ Rn×m are constant matrices;

∆A(t),∆D(t) and ∆B(t) are unknown real matrices of appropriate dimensions and satisfy

∆A(t) = E1F1H1, ∆D(t) = E2F2H2, ∆B(t) = E3F3H3, (1.2)

where Ei, Hi, i = 1, 2, 3 are known real constant matrices of appropriate dimensions

and Fi(t), i = 1, 2, 3 are unknown matrices function with Lebesgue measurable elements

satisfying

F T
i (t)Fi(t) ≤ I, i = 1, 2, 3 ∀t ≥ 0. (1.3)

ϕ(t) is the initial condition of system (1.1). h(t) is a continuous time-varying delay function

satisfying

0 ≤ h1 ≤ h(t) ≤ h2, (1.4)

where h1 and h2 are two constants. The following theorem is the main result in [2].

Theorem 1.1 [2]Given α > 0. The system (1.1) is α−exponentially stabilizable if there

exist symmetric positive definite matrices P,Q,R,U and ϵi > 0, i = 1, 2, ..., 6 such that the

following LMI holds

M1 =M −
[
0 0 0 −I I

]T
× e−2αh2U

[
0 0 0 −I I

]
< 0, (1.5)

M2 =M −
[
0 0 I 0 −I

]T
× e−2αh2U

[
0 0 I 0 −I

]
< 0, (1.6)

M3 =



M11 PHT
1 PHT

1
BHT

3
2

BHT
3

2

∗ −ϵ1I 0 0 0

∗ ∗ −ϵ2I 0 0

∗ ∗ ∗ −ϵ5I
2 0

∗ ∗ ∗ ∗ −ϵ6I
2


< 0, (1.7)

M4 =


M11 PHT

2 PHT
2

∗ −ϵ3I 0

∗ ∗ −ϵ4I

 < 0. (1.8)
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In 2012, G. Liu, S.X. Yang and W. Fu [13] studied the robust stability of uncertain

neutral-type neural networks with discrete interval and distributed time -varying delays

given by

ẋ(t) =− [A+∆A(t)]x(t) + [W1 +∆W1(t)]f(x(t)) + [W2 +∆W2(t)]f(x(t− τ(t))),

+ [W3 +∆W3(t)]ẋ(t− h(t)) + [W4 +∆W4(t)]

∫ t

t−r(t)
f(x(s)) ds,

x(t) =ϕ(t), t ∈ [−δ, 0], δ = max{τ2, h, r}, (1.9)

where x(t) ∈ Rn is the state vector; A,W1,W2,W3 and W4 ∈ Rn×n are constant matrices;

∆A(t),∆W1(t),∆W2(t),∆W3(t) and ∆W4(t) are unknown real matrices of appropriate

dimensions and satisfy

∆A(t) = HF (t)B1, ∆W1(t) = HF (t)B2,

∆W2(t) = HF (t)B3, ∆W3(t) = HF (t)B4,

∆W4(t) = HF (t)B5, (1.10)

where H, Bi, i = 1, 2, 3, 4, 5 are known real constant matrices of appropriate dimensions

and F (t) is unknown matrix function with Lebesgue measurable elements satisfying

F T (t)F (t) ≤ I, ∀t ≥ 0, (1.11)

ϕ(t) is the initial condition of system (1.9). The time-varying delay functions τ(t), r(t), h(t)

satisfy the conditions

0 < τ1 ≤ τ(t) ≤ τ2, τ̇(t) ≤ τd, (1.12)

0 ≤ r(t) ≤ r, (1.13)

0 < h(t) ≤ h, ḣ(t) ≤ hd < 1, (1.14)

where τ1, τ2, r, h, τd, hd are constants. The following theorem is the main result of [13].

Theorem 1.2 [13]The system (1.9) is globally robustly stable if there exist symmetric posi-

tive definite matrices P, C, Qi, i = 1, 2, ..., 6, Ri, i = 1, 2, 3, matrices Ui, Mi, Ni, Si, i =

1, 2, ..., 10 of appropriate dimension, diagonal matrices K, Ti, i = 1, 2 and ϵ > 0 such that
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the following LMI holds 

ψ̃ U M N Γ

∗ ψ2 0 0 0

∗ ∗ ψ3 0 0

∗ ∗ ∗ ψ4 0

∗ ∗ ∗ ∗ −ϵI


< 0. (1.15)

In 2012, W. Weera and P. Niamsup [19] studied the novel delay-dependent exponen-

tial stability criteria for neutral-type neural networks with non-differentiable time-varying

discrete and neutral delays, described by

ẋ(t) = A0x(t) +A1x(t− h(t)) +A2ẋ(t− η(t)) + f0(t, x(t)) + f1(t, x(t− h(t))),

+ f2(t, ẋ(t− η(t)))

x(t) = ϕ(t), t ∈ [−d, 0], d = max{h2, η2}, (1.16)

where x(t) ∈ Rn is the state vector, η(t) is the neutral delay, h(t) is time-varying contin-

uous function which satisfy

0 ≤ η1 ≤ η(t) ≤ η2, (1.17)

0 ≤ h1 ≤ h(t) ≤ h2, (1.18)

where h1, h2, η1, η2 are constants. ϕ(t), φ(t) are the initial functions that are continu-

ously differentiable on [−d, 0]. f0(x(t), t), f1(t, x(t − h(t))), f2(t, ẋ(t − η(t))) are unknown

nonlinear perturbations satisfying f0(0, t) = 0, f1(0, t) = 0, f2(0, t) = 0, and

fT0 (x(t), t)f0(x(t), t) ≤ β20x
T (t)x(t),

fT1 (x(t− h(t)), t)f1(x(t− h(t)), t) ≤ β21x
T (t− h(t))x(t− h(t)),

fT2 (x(t− η(t)), t)f2(x(t− η(t)), t) ≤ β22x
T (t− η(t))x(t− η(t)), (1.19)

where β0 ≥ 0, β1 ≥ 0 and β2 ≥ 0 are given constants. The following theorem is the

main result in [19].

Theorem 1.3 [19]Given α > 0. The system (1.16) is α−exponentially stabilizable if

there exist symmetric positive definite matrices P1, S,D,Q,R,U, T,M,N,matricesPi,

i = 2, 3, ..., 27 of aproppriate dimension and ϵ0, ϵ1, ϵ2 > 0 such that the following LMI

holds
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ω1 =ω −
[
0 0 0 0 I 0 −I 0 0 0 0 0 0

]T
× e−2αh2U

[
0 0 0 0 I 0 −I 0 0 0 0 0 0

]
< 0, (1.20)

ω2 =ω −
[
0 0 0 −I 0 0 I 0 0 0 0 0 0

]T
× e−2αh2U

[
0 0 0 −I 0 0 I 0 0 0 0 0 0

]
< 0, (1.21)

ω3 =ω −
[
0 0 0 0 0 0 0 −I 0 I 0 0 0

]T
× e−2αη2N

[
0 0 0 0 0 0 0 −I 0 I 0 0 0

]
< 0, (1.22)

ω4 =ω −
[
0 0 0 0 0 0 0 0 I −I 0 0 0

]T
× e−2αη2N

[
0 0 0 0 0 0 0 0 I −I 0 0 0

]
< 0, (1.23)

ω5 =

 −0.1D DT

∗ −S

 < 0. (1.24)

In summary, the sufficient conditions for robust stability of uncertain neutral-type

neural networks with discrete interval and distributed time-varying delays were proposed

in [13] but their activation functions and discrete and neutral delays are too restrictive. In

this thesis, we propose exponential stability criteria of neutral-type neural networks with

interval non-differentiable and distributed time-varying delays and generalized activation

functions by applying technics used in [2,19]. In Chapter 3, we give sufficient conditions for

exponential stability of neutral-type neural networks with interval non-differentiable and

distributed time-varying delays. Numerical examples are illustrated to show the efficiency

of our theoretical results. Conclusion is provided in Chapter 4.
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