
CHAPTER 2

Preliminaries

In this chapter, we give some basic definitions, notations, lemmas and results which

will be used in the later chapters.

2.1 Notations

The following notations that will be used in this thesis :

Rn − the n dimensional Euclidean space,

Rn×n − the set of all n× n real matrices,

∥x∥ − the Euclidean norm of vector x,

diag{·} − the block diagonal matrix,

I − the identity matrix,

AT − the transpose of matrix A,

A−1 − the inverse of matrix A,

A > 0, A ≥ 0, A < 0, A ≤ 0− means that A is symmetric positive definite,

positive semi-definite, negative definite and negative semi-definite; respectively,

λ(A)− the set of all eigenvalues of matrix A,

λmax(A)− maximum eigenvalue of matrix A,

λmin(A)− minimum eigenvalue of matrix A,

Ch = C([−h, 0], Rn), h > 0− denotes the Banach space of continuous functions,

mapping the interval [−h, 0] into Rn ,with the topology of uniform convergence,

∥xt∥ ∈ Ch defined xt = x(t+ θ),−h ≤ θ ≤ 0 and ∥xt∥Ch
= sup

−h≤θ≤0
∥x(t+ θ)∥,A B

∗ C

− ∗ represents the symmetric form of matrix, namely ∗ = BT .
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2.2 Lyapunov Function

Consider the system described by

ẋ = f(t, x), x(t0) = x0, (2.1)

where x ∈ Rn, xi = xi(t), f = (f1, f2, ..., fn) and fi = fi(t, x1, x2, ..., xn) for i = 1, 2, ..., n

Definition 2.2.1 (Lyapunov Function [1]) Let D be a domain Rn such that 0̄ ∈ D

V : D ⊆ Rn → R, We say that V (x) is a Lyapunov function of system (2.1) if the following

conditions hold :

1. V (x) is continuous on D ⊆ Rn.

2. V (x) is positive definite such that V (0̄) = 0 and V (x) > 0 for x ̸= 0̄.

3. the derivative of V with respect to (2.1) is negative semidefinite (i.e. V̇ (0) = 0, and

for all x in ∥x∥ ≤ k, V̇ (x) ≤ 0).

2.3 Stability

Definition 2.3.1 [8] A point x̄ is called an equilibrium point of equation (2.1) if

f(t, x̄) = 0 for all t ≥ t0. For all purposes of the stability theory we can assume that 0̄ is

an equilibrium of (2.1).

Definition 2.3.2 [8] The equilibrium point x̄ of equation (2.1) is called stable if, for each

ϵ > 0, there is δ = δ(ϵ, t0) > 0 such that ∥x(t0)∥ < δ implies ∥x(t)∥ < ϵ for all t ≥ t0 ≥ 0.

Definition 2.3.3 [8] The equilibrium point x̄ of equation (2.1) is called unstable if it is

not stable.

Definition 2.3.4 [8] The equilibrium point x̄ of equation (2.1) is called asymptotically

stable (denoted A.S.) if it is stable and ∥x(t)∥ → 0 as t→ ∞.

Definition 2.3.5 [8] The equilibrium point x̄ of equation (2.1) is called uniformly asymp-

totically stable if, for each ϵ > 0, there is δ = δ(ϵ) > 0 such that ∥x(t0)∥ < δ implies

∥x(t)∥ < ϵ and ∥x(t)∥ → 0 as t→ ∞ for all t ≥ t0 ≥ 0.

Theorem 2.3.1 [1] The equilibrium point x̄ of equation (2.1) is stable if there exists a

Lyapunov function for system (2.1). Moreover, if there exists a Lyapunov function whose

derivative is negative definite, then the equilibrium point x̄ is A.S.
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Definition 2.3.6 [7] The operator D is said to be stable if solution x̄ = 0 of the homo-

geneous difference equation D(xt) = 0, t ≥ 0 is stable where D : Ch → Rn.

Definition 2.3.7 [7] Suppose f : Ch → Rn, D : Ch → Rn are given continuous functions.

The relation

d

dt
D(t, xt) = f(t, xt),

is called the neutral differential equation. The function D will be called the operator for

the neutral differential equation.

Theorem 2.3.2 [7] Suppose D is stable, f : Ch → Rn and suppose u(s), v(s) and

w(s) are continuous, nonnegative and nondecreasing with u(s), v(s) > 0 for s ̸= 0 and

u(0) = v(0) = 0. If there is a continuous function V : Ch → Rn such that

u(∥D(xt)∥) ≤ V (xt) ≤ v(∥xt∥Ch
),

V̇ (xt) ≤ −w(∥D(xt)∥).

If w(s) > 0 for s > 0, then the solution x = 0 of the neutral differential equation is

uniformly asymptotically stable. The same conclusion holds if the upper bound on V̇ (xt)

is given by −w(∥x(t)∥).

Definition 2.3.8 [5] The equilibrium point x̄ of equation (2.1) is called exponentially

stable if ∥x̄(t, ϕ)∥ ≤ γe−αt∥ϕ∥,∀t ≥ 0, γ > 0 is a convergence coefficient and α > 0 is a

convergence rate .

Lemma 2.3.1 (Schur Complement [3]) Given constant symmetric matrices Q, S

and R ∈ Rn×n where R(x) < 0, Q(x) = QT (x) and R(x) = RT (x) we have Q(x) S(x)

ST (x) R(x)

 < 0 ⇔ Q(x)− S(x)R−1(x)ST (x) < 0.

Lemma 2.3.2 [7] Suppose λmin(Q) is the minimum eigenvalue of matrix Q and λmax(Q)

is the maximum eigenvalue of matrix Q. The following inequalities hold:

λmin(Q)xTx ≤ xTQx ≤ λmax(Q)xTx,

for symmetric matrix Q ∈ Rn×n for all x ∈ Rn.

Lemma 2.3.3 [8] For any symmetric positive definite matrix M > 0, scalar γ > 0 and
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vector function ω : [0, γ] → Rn such that the concerned integration are well defined. Then

the following inequality holds

(

∫ γ

0
ω(s)ds)TM(

∫ γ

0
ω(s)ds) ≤ γ(

∫ γ

0
ωT (s)Mω(s)ds).

Lemma 2.3.4 (Cauchy Inequality [8]) For any symmetric positive definite matrix

N ∈ Rn×n and x, y ∈ Rn, the following inequalities hold

±2xT y ≤ xTNx+ yTN−1y.

2.4 Types of Matrix

Definition 2.4.1 (Symmetric Matrix [3]) A real n× n matrix A is called sym-

metric if

AT = A.

Definition 2.4.2 (Positive Definite Matrix [3])A real n×n matrix A is called positive

definite if

xTAx > 0

for all nonzero vectors x ∈ Rn. It is called positive semidefinite if

xTAx ≥ 0.

Definition 2.4.3 (Negative Definite Matrix [3]) A real n × n matrix A is called

negative definite if

xTAx < 0

for all nonzero vectors x ∈ Rn. It is called negative semidefinite if

xTAx ≤ 0.

The follows result are well known

Lemma 2.4.1 [3] A symmetric matrix is positive semidefinite (definite) matrix if all of

its eigenvalues are nonnegative (positive).

Lemma 2.4.2 [3] A symmetric matrix is negative semidefinite (definite) matrix if all of

its eigenvalues are nonpositive (negative).
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