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Enhanced Carbon Dioxide Fixation and Bio-Oil
Production of a Microalgal Consortium

In this study, a microalgal consortium was cultivated with different CO, supplements:
ambient air (0.03% CO,), 10 and 30% (v/v) CO.. It was found that the growth rate of the
cultures supplemented with 30% CO, was the highest among the others. The biomass
and lipid productivity for the microalgal consortium with 30% CO, were 21.1 and
4.8mgL "day ' (27.6% of dry weight, dw). The ability of CO, fixation under 30% CO,
supplementation was found to be 0.0271gCO,L™" day™"', which is higher than in the
ambient air supplementation. Then, the microalgal consortium was cultivated with
exhaust gas (19% CO,) from a power generator supplied by biogas from chicken manure.
It was found that the growth of the microalgae supplemented with exhaust gas was
higher than in the ambient air. The biomass and lipid productivity for the microalgal
consortium with exhaust gas were 25.82 and 5.2mgL " day™" (16.96% of dw) and the
most dominant algal species observed were Acutodesmus (Scenedesmus) sp., A. dimorphus
(Turpin) Tsarenko and Scenedesmus obliquus (Turpin) Kiitzing, respectively. Moreover, it
could be revealed that the ability of CO, fixation under supplementations with exhaust
gas increased 1.3-fold compared with ambient air. Therefore, the microalgal
consortium has high potential for both CO, reduction and bic-0il production,

Chemical, Faculty of Science, Chiang

Mai University, Chiang Mai, Thailand simultaneously.
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1 Introduction

Global warming induced by an increase in the concentration of
greenhouse gases in the atmosphere is of great global concern [1].
Carbon dioxide (CO,) is one of the most important contributors in
the increase of the greenhouse effect [2]. Among the various
strategies for mitigating CO- emissions, the biological sequestration
of CO, using photosynthetic microalgae has been receiving
considerable attention, as the microalgae have a higher CO,
fixation ability than terrestrial plants, and they can convert
atmospheric CO, into biomass, fatty acids and lipids [3, 4].
Microalgal biomass contains approximately 50% C dry weight
(dw). All of this carbon is typically derived from carbon dioxide. It
has been estimated that 100 t of algal biomass fixes roughly 183 t of
CO; [5]. Moreover, many researchers have proved that microalgal
lipids could be utilized as a feedstock for biodiesel. The other
benefits of microalgae for biofuel production include the fact that it
does not require a large area for cultivation, it is easy to culture, it is
characterized by rapid growth and it can be grown in water that is
considered unsuitable for human consumption. In other words, it
can be grown anywhere where there is access to sunlight and where

Correspondence: Dr. Y. Peerapornpisal, Department of Biology, Faculty
of Science, Chiang Mai University, Chiang Mai 50200, Thailand
E-mail: yuwadee.p@cmu.ac.th

Abbreviations: Chl-a, chlorophyll a; dw, dry weight
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simple nutrients are available, though its growth rate depends also
on the availability of the addition of certain specific compounds and
appropriate aeration [4, 6].

Usual sources of CO, for microalgae include: (i) atmospheric CO5;
(ii) COz from industrial exhaust gases (e.g., flue gas and flaring gas);
and (iii) CO, that is chemically fixed in the form of soluble
carbonates (e.g., NaHCO; and Na,CO,) [7]. However, industrial
exhaust gases can be utilized in ways with clear ecological and
economical advantages, even though the presence of high toxic
gases and various CO, concentrations can be problematic. Thus,
screening for microalgae, which are tolerant to high CO:
concentration levels, has been carried out as an essential step for
the CO, utilization from flue gases [8]. Several species have been
tested under CO, concentrations of over 15%, for example,
Chlorococcum littorale could be grown under 60% CO, using the
stepwise adaptation technique [9]. Other highly CO, tolerant species
are Chlorella sp. and Scenedesmus sp. It is also reported that Chlorella sp.
could grow under 40% CO, conditions while Scenedesmus sp. could
grow under 80% CO, conditions, but the maximum cell mass was
observed in 10-20% of the CO, concentrations [10]. Interestingly, the
red alga, Cyanidium caldarium can grow in pure CO, [11].

However, the screening and isolation of the suitable mono algal
strain was time consuming and not favorable for CO; fixation on the
industrial scale. A mixed culture community selected by succession
of enrichment cultures revealed greater efficiency and accomplish-
ment [12]. Mixed populations (co-culture or consortia) can perform
functions that are difficult or even impossible for individual strains
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or species and they reveal robustness to environmental fluctuations,
display stability for the members, possess inability to share
metabolites and to weather periods of nutrient limitation, and
are resistant to invasion by other species [13]. Nevertheless, using
microalgal consortia for CO, fixation and lipid production has
seldom been reported on. Therefore, in this study, the cultivation of
the microalgal consortium was tested under high levels of CO,
concentrations for enhanced biomass production and CO, fixation.
Growth, lipid contents and CO, fixation of the algal were also
evaluated. To test this potential application in the industrial sector,
microalgal consortium was cultivated with exhaust gas from a
power generator to evaluate the possibility of CO; reduction from
the atmosphere, as well as biomass and lipid production by
microalgae in the industrial process.

2 Materials and methods

2.1 Microalgae and culture

The microalgal consortium used here (composed of 65.7% Scene-
desmus spp., 25.4% Micractinium sp., 3.6% Dictyosphaerium sp., 2.7%
Pseudanabaena sp., 0.8% Monoraphidium sp., 1% Chlamydomonas sp.,
0.4% Chlorella sp. and 0.4% Euglena sp.) was obtained from the algal
collection of the Applied Algal Research Laboratory, Department of
Biology, Faculty of Science, Chiang Mai University, Thailand. The
microalgal consortium cells were incubated in CMU03 medium [14]
at ambient temperature under continuous illumination.

2.2 Cultivation of microalgal consortium

2.2.1 Effect of CO, supplementation

The microalgal consortium was cultivated in CMU03 medium with
a 500 mL working volume in a closed system. The cultures were
aerated with different aerations: ambient air (0.03% CO,), 10 and
30% CO; (vfv), balanced with N; at a flow rate of 0.2vvm, under
continuous illumination with a fluorescent lamp at ambient
temperature. The algal growth was measured until it reached the
early stationary phase. Each treatment was conducted in
triplicate.

2.2.2 Cultivation with exhaust gas

The microalgal consortium was cultivated with exhaust gas and
compared with ambient air at a flow rate of 0.2 vvm. The exhaust gas
(composed of 19% CO,, 0.2% CH,, 0.08% CO, 7% O., and 73% N;) was
obtained from a power generator supplied by the biogas collected
from chicken manure at Hauy Nam Rin’s Farm, Lamphun Province,
Thailand. The cultures were cultivated in an outdoor open system
(without light and temperature control) with a 10 L working volume.
Both treatments were conducted in triplicate.

2.3 Determination of microalgal growth

The dry weight of the microalgae was measured using a modified
method of Yoo et al. [3]. A known volume of microalgal suspension
was filtered through 0.45 pm filter paper under vacuum. After being
rinsed with distilled water, the filters were dried at 60°C for 48 h.
Algal growth was expressed in terms of dry biomass (gL™"), which
was determined gravimetrically.
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The chlorophyll a content (Chla, pgL™') was determined
according to Wintermans and De Mots [15] and Saijo [16] by using
90% methanol for extraction. The pooled extract was measured
spectrophotometrically at 630, 645, 665, and 750 nm, and calculated
with the following equation:

(11.6(Ases — Azso) — 1.31(Agas — Agso) — 0.14(As30 — Agsa)V)
vl

Chla =
(1)

where vis the volume of the extract (mL), V the volume of the sample
filtered (L) and 1 is the path length of the spectrophotometer cuvette
(em).

The biomass productivity (P, mglL~'day™') was calculated
according to the equation [17]:

(X1 — Xo)
s (ty —tq)

(2)

where X, is the initial biomass (g L“I) at the time t, (d), X, is the
final biomass (mgL~") at any time t, (d).

2.4 Estimation of CO, fixation rate

The CO, fixation rate was estimated from the carbon content of algal
cells and the growth rate, as follows [8]:

Mo,
Rcoz=ccmx(M°z) @)

where Rco, and p; are the CO, fixation rate (g CO, L day_l) and the
volumetric growth rate (gdwL™" day™), respectively. Mco, and Mc
represented the molecular weight of CO, and elemental carbon,
respectively. C¢ (g carbon per g cell dw) is the average carbon
content, measured by a CHNS/O elemental analyzer (PE2400 Seriesll,
Perkin Elmer).

2.5 Lipid measurement

Total lipids were extracted using a modified method of Bligh and
Dyer [18]. A known weight of dry microalgal biomass was sonicated
for 1h in chloroform/methanol (2:1, v/v). The chloroform layer was
collected, and evaporated to complete dryness at room temperature.
Lipid contents were measured gravimetrically.

2.6 Microscopic observation

Species and quantities of exponentially growing microalgal cells
were observed under a light microscope (Olympus C011) and
photographed using an Olympus Normaski microscope. The micro-
algal species were morphologically identified according to relevant
keys, that is, Huber-Pestalozzi [19], Komarek and Anagnostidis [20],
and John et al. [21].

2.7 Statistical analysis

The results are expressed as mean = SD of three replicates. All data
were performed by SPSS version 16.0 for Windows, and was
examined by one-way ANOVA and paired sample t-test. A value of
p < 0.05 was considered statistically significant.
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3 Results
3.1 Effect of CO; supplement

The microalgal consortium was cultivated with different levels of
aeration: ambient air (0.03% CO,), 10 and 30% CO; balanced with N,
with a flow rate of 0.2 vwm. The results showed that the microalgae
grew well without any obvious inhibition under all CO, concentra-
tion levels, even without pH control (ranged from 5 to 8, data not
shown). In this study, the growth of the microalgae aerated with 30%
CO, was the highest with a maximum level of algal biomass at
0.36+ 0.07 gL~ (Fig. 1A), while under ambient air conditions (0.03%
CO,) and 10% CO, aeration level, dry biomass readings were
0.1£0.03 and 0.23+£0.06gL™", respectively. Under ambient air
conditions (0.03% CO,), 10 and 30% CO, aeration levels, the Chl-a
reached 1073.04 £294.14, 3193.32+540.61,
2179.67 + 674.55 pg L', respectively (Fig. 1B). Lipid content readings
of the microalgal consortium supplemented with ambient air (0.03%
C0,), 10 and 30% CO, aeration levels were 12.96 + 0.52, 24.55 + 0.50,
and 27.60 +1.67% (w|w), respectively (Table 1).

After 18 days of cultivation, according to Fig. 2, the highest
biomass and lipid productivity levels were 16.3 and 4.8 mgL~" day™"
recorded with the supplementation of 30% CO.. It indicated that the
microalgae in this condition grew better than under other testing
conditions.

content and

Table 2 shows an increase of carbon content in algal biomass,
which enhanced microalgal CO, fixation. The carbon content of the
microalgal consortium supplemented with 30% CO, was found to be
highest at 0.4529gdw™", while CO, fixation was recorded at
0.0271gCO, L™ day™.
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Figure 1. Dry weight (A) and Chl-a contents (B) of the microalgal
consortium under different aeration levels.
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Table 1. Lipid content of microalgal consortium under different aeration
levels

Lipid content

Aeration mg L™’ % of dry weight
Ambient air 13.17 + 0.53¢ 12.96 +0.52¢
10% CO, 50.95 + 1.03" 24.55 +0.50"
30% CO, 86.49 +2.11* 27.60 + 1.68°

Different letters indicate statistical difference (p < 0.05).

Table 2. Volumetric growth rate, carbon content, and CO, fixation rate
of the microalgal consortium under different aeration levels

Aeration u (gdwl™"  Carbon content CO, fixation rate
day™?) (gdw™) (gCO,L " day™)
Ambient air 0.0031 0.4000 0.0045
10% CO, 0.0068 0.4303 0.0107
30% CO, 0.0163 0.4529 0.0271
30 mBiomass = Lipid 10
= T
= -
s 25 3
: T - - g =
o r ! 5
E 20 1 1 g
3 T
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Figure 2. Biomass and lipid productivity of the microalgal consortium
under different aeration levels. * indicated a significant difference
(p < 0.05) between each conditions.

3.2 Cultivation with exhaust gas

The microalgal consortium was cultivated with ambient air and
exhaust gas (19% CO-) from a power generator supplying biogas from
chicken manure. The maximum dry weight for microalgae with the
exhaust gas and ambient air conditions were observed at 0.25 + 0.04
and 0.20+0.01gL™", respectively (Fig. 3A). Under the exhaust gas
conditions the chlorophyll a content also reached its peak on day 8
of cultivation at 1492.5+ 582 pgL™", while the sample cultivated
with ambient air conditions reached its peak on 7th day of the
cultivation at 1141.99 +359.0 pgL™" (Fig. 3B). Lipid content was
16.96 +2.29 and 15.70 + 1.44% (w/w) with exhaust gas and ambient
air conditions, respectively (Table 3).

As shown in Fig. 4, the biomass and lipid productivity of the
culture with exhaust gas was higher than that with the ambient air
by approximately 1.2-fold. Moreover, when using exhaust gas, it was
found that the carbon content of the microalgae increased and it
could lead to an increase of the CO, fixation rate by 1.3-fold
(0.0431gCO,L™"day™"), when compared with the ambient air
aeration (Table 4).
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(A) 035 o Table 4. Volumetric growth rate, carbon content, and CO; fixation rate
“e—Ambicatair —e— Exhaust gas of the microalgal consortium under exhaust gas conditions compared
= with ambient air conditions
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Figure 3. Dry weight (A) and Chl-a contents (B) of the microalgal
consortium under exhaust gas conditions compared with ambient air
conditions.

Table 3. Lipid content of the microalgal consortium under exhaust gas
conditions compared with ambient air conditions

Aeration Lipid content

mgL™! % of dry weight
Ambient air 3162+211° 15.70 4+ 1.44"
Exhaust gas 41.83 +£6.38% 16.96 4+ 2.29*

Different letters indicate a statistical difference (p < 0.05).
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Figure 4. Biomass and lipid productivity of the microalgal consortium
under exhaust gas conditions compared with ambient air conditions. *
Indicated a significant difference (p <0.05) between exhaust gas
conditions and ambient air conditions.
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Dictyosphaerium granulatum, respectively. Nevertheless, a significant
negative %change was found for Micractinium sp.

4 Discussion
4.1 Effect of CO; supplement

The CO; concentration in the aeration of the culture media is
considered one of the main factors in affecting microalgal growth
[22]. In this study, the microalgae could grow well under CO:
concentrations ranging from 0.03 to 30%. Similar results were also
found for 5. obliquus SJTU-3 and Chlorella pyrenoidosa SJTU-2 when the
CO, concentration level increased from 0.03 to 50%. These results
revealed the highest values of maximum biomass concentration at
about 1.8 and 1.5gL™" of S. obliquus SJTU-3 and C. pyrenoidosa SJTU-2,
respectively, at 10% CO: concentration [17]. In this study, the
maximum dry cell weight was observed at 30% CO;. These results
provided evidence that the CO, tolerant microalgae in the mixed
microalgal community were enriched and selected by the high CO,
concentration.

In Fig. 1B, it was found that the Chl-a content of the 10% CO,
concentration level was higher compared to the 30% CO»
concentration level. These results indicated that Chl-a is not related
to algal biomass. Boyer et al. [23] reported that Chl-a is relatively easy
to measure compared to algal biomass. One serious weakness of the
use of Chl-a is the great variability of the cellular chlorophyll content
(0.1-9.7% of fresh algal weight) depending on the algal species. A
great variability in individual cases can be expected, either
seasonally or on an annual basis due to species composition, light
conditions and nutrient availability.

This study showed that the microalgae grew well without any
obvious inhibition under all CO, concentration levels, even without
pH control. Normally, when CO, is aerated into water, it will form
carbonic acid (H,CO;) and the pH value will be decrease. However,
microalgae can increase pH by two ways. Firstly microalgae use
HCO;™ in water as carbon source in the photosynthesis, resulted in
reduce of pH changing by CO,. Another way, microalgae will
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Figure 5. Dominant species of the microalgal consortium under exhaust gas conditions and ambient air conditions. (A) Chlamydomonas sp., (B)
Chlorella sp., (C) Dictyosphaerium granulatum Hindék, (D) Euglena sp., (E) Micractinium sp., (F) Monoraphidium littorale Hindak, (G) Pseudanabaena
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generate alkalinity from their growth [24]. Thus, pH changing by CO,
was mitigated.

Moreover, this experiment seemed to indicate that the lipid
contents increased with the increase of the CO, concentration.
Similarly, Brewer et al. [25] reported that the lipid content of
Botryococcus braunii 765 increased when the CO, concentration was
increased from 2 to 20%.

The carbon content of the microalgal consortium supplemented
with 30% CO, was highest at 04529 gdw™". This value coincided
approximately with the carbon content of S. obliquus SJTU-3 and C.
pyrenoidosa $JTU-2 (about 0.5 g dw™") when cultivated with 30% (vfv)
of CO, concentration [17]. In this study, the CO, fixation rates of the
microalgal consortium at 10 and 30% CO, were higher than under
the ambient air conditions {(0.03% CO,), the maximum CO, fixation
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Figure 6. Percentage of species change in the microalgal consortium
cultivated under exhaust gas conditions compared with ambient air
conditions at the early stage and to the end of the cultivation process.
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rate was 0.0271 g CO, L~" day ™ in the presence of 30% CO,. Prabakaran
and David [26] obtained a similar result with Chlorella sp. UK0O1,
wherein a maximum CO, fixation rate of 0.0318 gCO, L™ " day™" was
obtained at 10% CO, concentration.

4.2 Cultivation with exhaust gas

In this study, the microalgal consortium with exhaust gas revealed
higher growth rate than the ambient air. This result indicated that
the biomass and lipid contents of the microalgae were increased
when exhaust gas was used in the same way that they did even when
the commercial CO, was contaminated with other gases. This
result was similar to Chiu et al. [1], who found that the microalgae
Chlorella sp. MTF-7 could be grown well when it was cultivated with
the industrial exhaust gas (25% CO,) that was contaminated with
other gases.

However, it was obvious that the lipid content in exhaust gas
condition (19% CO,) was compared to the 10% CO; supplement. [t is
because both treatments were cultivated in different conditions. In
the 10% CO, supplement, the microalgae were cultivated in close
system of laboratory with continuous illumination and CO; was
supplied by commercial mixed gases. Whereas, the exhaust gas
supplement was conducted in an outdoor open system under
ambient condition (without light and temperature control) and this
experiment was supplied with the exhaust gas which composed of
various gases. Consequently, the growth and lipid productivity in
the exhaust gas supplement were affected by those factors.

In this study, during the cultivation process with exhaust gas, the
common algal species observed were Scenedesmus spp. and its related
genus Acutodesmus spp., which reported very high biomass and lipid
contents [27]. It indicated that variations in the algal community
were affected by CO, cultivation. Salih |28] reported that Scenedesmus

Clean — Soil, Air, Water 2015, 43 (5), 761-766

117



766 S. Boonma et al.

sp. is one of the species that is highly tolerant to CO,. This strain
could grow under 80% CO, conditions, while the maximum cell
mass was observed in 10-20% CO, concentrations. Moreover,
Guruvaiah and Lee [29] reported that Scenedesmus sp. that was
isolated from the power plant habitat was cultivated with simulated
exhaust gas containing 2% CO,. The lipid content was 15% of its dry
weight. These results indicated that the genus Scenedesmus sp. has
great potential for CO, mitigation, environmental tolerance and
biodiesel production.

5 Conclusions

This study revealed that a microalgal consortium showed high
growth, CO, fixation and lipid production rates, when cultivated
with high CO, concentrations. In addition, it suggested the
possibility of using exhaust gas to enhance microalgal consortium
cultivation for biodiesel production, without the inhibitory effects
of high CO,. This research showed that microalgal consortium
cultivation could be useful for CO, reduction in the industrial
sector. Moreover, microalgae showed very high potential for
renewable energy production and CO, sequestration to mitigate
the negative impacts of global warming and climate change.
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