CONTENTS

Acknowledgement	iii	
Abstract in English	iv	
Abstract in Thai	vi	
List of Tables	xi	
List of Figures	xii	
List of Abbreviations and Symbols	xiv	
Chapter 1 Introduction		
1.1 Principles and Rationale	1	
1.2 Objectives	2	
1.3 Expect Outcome	2	
Chapter 2 Literature reviews		
2.1 Importance of forage grass	3	
2.2 The forage description of pangola grass 5		
2.3 The historical of pangola grass in Thailand 5		
2.4 Factors affecting on pangola grass yield	6	
2.5 Factors affecting on chemical composition of pangola grass	8	
Forage age and maturity stage	8	
Optimal regrowth cutting stage	10	
2.6 Preserved process of forage	13	
2.7 Hay	13	
2.8 Silage	14	
2.8.1 Silage Microbiology	15	
2.8.2 Fermentation Processes	15	

	10
2.8.3 Molasses as a silage additive	18
2.8.4 Advantage of preserved grass	19
2.9 The grouping of the quality roughage	20
2.10 Digestive physiology of the cow	21
2.11 Roughage necessary and digestibility	26
2.12 Chemical composition analysis	31
2.13 In vitro digestibility	32
2.13.1 In vitro gas production	33
2.13.2 Daisy ^{II} incubator	34
2.14 In sacco technique	34
Chapter 3 Materials and methods	
3.1 Instrument and chemicals	
3.1.1 Instruments	37
3.1.2 Chemical	38
3.2 Experimental site	39
3.3 Forage management and harvest	39
3.4 Animals	40
3.5 The experiments	
3.5.1 Experiment 1 Analyses of nutrient composition of fresh and prese	rved
pangola grass at 45 days of regrowth stage cutting	41
3.5.1.1 Chemical composition analysis	4.1
ALL FIGHLS LESELVEU	41 41
Sample preparation	
3.5.1.2 Silage characteristics	42
3.5.1.3 <i>In vitro</i> gas production measurement for treatments	42
3.5.2 Experiment 2 In vitro digestibility of treatments using DAISY ^{II} incut	oator
technique	45
3.5.3 Experiment 3 In sacco digestibility by nylon bag technique	46
3.6 Statistical analysis	47

Chapter 4 Results and discussion

4.1 Nutrient composition of fresh and preserved pangola grass at 45 d	ays of
regrowth stage cutting	48
4.1 1 Chemical compositions	48
4.1.2 Silage characteristics	50
4.1.3 In vitro gas production measurement	53
4.2. In vitro digestibility using the DAISY incubator	55
4.3 In sacco technique (Nylon bag technique)	56
Chapter 5 Conclusions	59
Recommendation for future work	60
References	61
Appendix A	
A-1 Analysis of <i>In vitro</i> true digestibility using Daisy ^{II} incubator	73
1.1 Materials	73
1.2 Chemical used	73
1.3 Methods	75
1.4 Analysis	75
A-2 Organoleptic test	76
Appendix B	78
Curriculum Vitae	83

LIST OF TABLES

Table 2.1	Numbers of total farmers and ruminants in each part of Thailand in 2014	4
Table 2.2	Effect of nitrogen fertilizer on dry matter yield and number of stem	of
	pangola grass.	7
Table 2.3	Chemical Chemical composition of pangola grass at 35-50 days of regro	wth
	stage cutting (% of dry matter unless stated)	12
Table 2.4	Preserved pangola grass at difference regrowth stage cutting (% of	dry
	matter unless stated)	13
Table 4.1	The chemical composition of the forages	48
Table 4.2	Physical characteristic of pangola silage in the experiment	51
Table 4.3	In vitro gas production characteristics of forages in buffered rumen flue	uid,
	organic matter digestibility (%) and metabolizable energy (ME)	54
Table 4.4	In vitro dry matter and fiber digestion using Daisy ^{II} incubator	56
Table 4.5	Degradation of forages in cattle using nylon bag technique	57
Table B-1	Statistical analysis of the chemical composition of the forages	78
Table B-2	Statistical analysis of Silage characteristic of pangola silage	79
Table B-3	Statistical analysis of In vitro gas production characteristics of forages	s in
	buffered rumen fluid on organic matter digestibility (%) and metabolization	able
	energy (ME)	80
Table B-4	Statistical analysis of In vitro dry matter and fiber digestion using Dai	isy ^{II}
	incubator	80
Table B-5	Statistical analysis of Degradation of forages in cattle using nylon	bag
	technique	81

LIST OF FIGURES

Figure 2.1	Percentages of total ruminant populations in each part of Thailand in	2014
		4
Figure 2.2	Numbers of pasture in each part of Thailand in 2014	4
Figure 2.3	The cell walls of pangola grass (right) internodes at 4 (A), 6 (B), 8 (C	C) and
	10 (D) weeks a fter cutting digested by rumen micro-organisms i	in the
	rumen for 72 hours observed by transverse section, respectively. ((x100)
	S. / 3.	10
Figure 2.4	The optimum time to graze or harvest pastures and forages is in th	e late
	vegetative stage just prior to the flowering and seeding stage	11
Figure 2.5	Dry matter yield and crude protein of pangola grass at different reg	rowth
	stage	12
Figure 2.6	Phases of normal fermentation	16
Figure 2.7	Digestive anatomy of a cow	23
Figure 2.8	Digestion of carbohydrates, production and absorption of volatile fatty	acids
	in the dairy cow	28
Figure 2.9	Overview of protein metabolism in dairy cows	29
Figure 2.10	O Overview of lipid metabolism in dairy cows	30
U	1 Feed composition and routine laboratory analysis	32
Figure 2.12	2 Schematic of the detergent system of forage analysis	33
Figure 3.1	The field of this experiment	39
Figure 3.2	Rumen fluid collected from fistulated cows that was kept under	39°C
	condition	41
Figure 3.3	In vitro gas production samples preparation	43
Figure 3.4	Placed sample syringes in a rotated incubator	43
Figure 3.5	Daisy ^{II} incubator (ANKOM technology)	45
Figure 3.6	Placed nylon bags in fistulated cattle	47

- Figure 4.1 The cumulative gas production at 24, 48, 72 and 96 hours of forage
 - CHILL ON AL UNIVERSITY

incubation

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

Page

54

ABBREVIATIONS AND SYMBOLS

Abbreviations and symbols

Term

%	percent
/	per
<	is less than
> 21818140	is greater
~	is proximately equal to
+	plus
- 12: 25	is equal to
°C	degree centigrade or Celsius
ADF	Acid detergent fibre
ADL	Acid detergent lignin
ANOVA	Analysis of variance
AOAC	Analysis of Official and Analytical
NY LISE	Chemists
CF CP	crude fiber
CP CP	crude protein
CRD	completely randomized design
Co., Ltd.	Company Limited
CO ₂	carbon dioxide gas
cm	centimeter
df All rights r	degrees of freedom
DM	dry matter
EE	ether extract
et al.	et alia (Latin), and other(s)
<i>e.g.</i>	exempli gratia (for example)
ed., eds.	editor (s)
g	gram

GP	Gas production in 24 hours from
	200 mg (DM) substrate
IVDMD	In vitro dry matter digestibility
h	hour
kg	kilogram
min	minute
ml	milliliter
MS	mean square
NDF	Neutral detergent fibre
рН	negative logarithm of hydrogen ion
	activity
SPSS	the Statistical Package for Social
	Science
SS SS	sum of square
Tel Tel	
NEL IA	
No. Last	251
SHUNI UNI	ERSI
4 UNI	
	Y
ລີ ປສີກຣິ່ນหາ ວ ີກຍາ	ลยเชยงเทม
Copyright [©] by Chiang	, Mai University
All rights	eserved
The second se	